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Abstract

The technology of Delay Tolerant Networks (DTN) has been designed to
support communication in environments where connectivity is intermit-
tent and communication delays can be very long. We focus on game-
theoretic model for DTNs. We consider the model where the source pro-
poses a fixed reward to persuade selfish mobile nodes to participate in
relaying messages. The mobile relays can decide to accept or not the
packet and then to drop the packet in the future. This game can be mod-
elled as a partially-observable stochastic game. For two relays, we have
shown that the optimal policies for the relays relates to the threshold type.

Keywords: delay tolerant networks, reward incentive mechanism, partially-
observable stochastic game

1 Introduction

In the last ten years, a substantial research effort has been devoted to Delay
Tolerant Networking (DTN) [8,18] for enabling data transfer between mobile de-
vices in environments where there is no communication infrastructure. In such
environments, nodes constantly move and can communicate with each other only
when they enter each others communication range. Since end-to-end connectiv-
ity is only sporadic, DTN implements a store-carry-forward scheme, in which
data packets are transiently stored in a network device to be later forwarded to

∗The work of T. Seregina was done when she was a PhD candidate at LAAS and appeared
in her thesis.
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the destination. In other words, DTN divides the end-to-end path into multiple
DTN hops, each intermediate node receiving packets and temporarily storing
them until an opportunity to send the packet to the destination or to another
intermediate node.

The assumption that mobile nodes may serve as relays with a premise that
they can store information for a long time before forwarding it reflects a main
idea of DTN architecture. Due to random node mobility and uncertainty in
connectivity, DTN algorithms commonly use multi-copy routing for message
delivery, when the message is delivered if one of the relay nodes with a copy
encounters the destination. Replication of the original message by the so-called
epidemic routing protocol ensures that at least some copy will reach the desti-
nation node with high probability and with a minimum delivery delay. Flooding
the network with messages, Epidemic routing leads, however, to a significant
resource consumption. To avoid overloading the network with messages while
retaining a high delivery performance, the two-hop routing scheme provides sim-
ple and more efficient variant of the epidemic-style routing. Under this scheme,
forwarding of a message copy is allowed in at most two steps, when a relay
received the message from the source can not transmit it to another relay node
but only if it encounters the destination.

However, in DTN applications, readiness to participate in forwarding is
rather uncommon. DTN nodes are controlled by rational entities, such as peo-
ple or organizations that can be expected to behave selfishly. When a mobile
node needs to conserve its power or due to other individual objectives, it may
not be willing to serve as a relay in data transmission, a link may then not be
established and the packet will be terminated by the node. Selfish behaviour
of DTN nodes and corresponding decentralized nature of their decision making
requires mechanisms that should offer appropriate incentives for the nodes to
behave in ways that are favourable for the network as a whole.

Several schemes have been proposed in the literature to foster participation
of mobile nodes in DTNs: reputation-based schemes [2, 10, 14, 19–21], barter-
based schemes [3,4,17] or credit-based schemes [5,6,6,7,11–13,22–24,24]. Most
of the above works are simulation-based and do not provide explicit expressions
of the probability of message delivery. One exception is the work of [1] which
proposes a fixed reward to the first relay to deliver the message. Another related
work that contains performance analysis of a reward mechanism is [15]. The
scheme in there is based upon that of [1]. However, instead of a proposing a fixed
reward to each relay, the source proposes a variable reward that depends upon
the meeting time with the source and the information given by the source to
the relay. In these two schemes, we avoid the use of feedbacks that allow relays
to know whether the message has been successfully delivered or not. This is
an important technical issue in DTNs since feedback messages may incur large
delays. In [15], we assume that the relay proposed by the source to a relay
it meets offsets the expected cost of this relay for delivering the message, so
that a relay always accepts the message. We obtain explicit expressions of the
probability of message delivery under different information settings.

In the present work, we consider the fixed reward mechanism as in [1] but

2



assume that the relays are in competition and do not cooperate. A relay meeting
the source is not informed of the existence of other message copies. Assuming
a given lifetime for the message and homogeneous relays (that is, all relays
have the same probability of meeting the source or the destination at next time
step), we considered the discrete-time decision problem faced by a relay. When
it meets the source, a relay has to decide whether to accept the message or not,
and once the relay has the message it has to choose to retain or to drop it at
subsequent decision epochs. Each relay makes its decisions in order to minimize
the expected cost it incurs for participating.

We model the interaction between mobile nodes as a stochastic game with
partial information. For the single player case, we obtain a necessary condition
for the relay to attempt the delivery of the message that reflects a minimal value
of the reward and show that the relay’s strategy to accept the message from the
source is of a threshold type. For two players, we establish that if one of the
players follows a threshold type policy then the other one will also use a similar
strategy.

The rest of the paper is organized as follows. We describe the problem in
Section 2, and formulate it as a stochastic game with partial information in
Section 3. The optimal strategy of a single player is investigated in Section 4,
whereas Section 5 is devoted to the game with two relays. Some conclusions are
drawn in Section 6.

2 Problem description

Consider a set of nodes in which there is one source, one destination, and N
relays. The relays are mobile and meet the source or the destination every once
in a while. It shall be assumed that the inter-meeting time between a relay and
the source (resp., destination) is a sequence of i.i.d. geometric random variables
with distribution function with parameter q (resp. p). Two nodes can exchange
data only when they meet. It is assumed that the source and the destination
are fixed, and thus cannot communicate directly.

After a message is generated, the source proposes it to every relay that it
meets. A relay can choose to either accept the message or reject it. As an
incentive, the source offers a fixed reward, say R, to be claimed by the first
relay that delivers the message to the destination. We emphasize that only the
first relay to deliver the message gets the reward, R. The other relays are not
entitled to any share of the proposed reward. A relay that accepts the message
incurs certain costs:

1. cost related to the energy spent in receiving the message from the source.
This is fixed cost and will be denoted by Cr;

2. energy cost of transmitting the message to the destination in case this
relay is the first one to do so. This cost is also fixed, and will be denoted
by Cd.
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3. and the cost of storing the message while the relay is searching for the
destination. We denote by Cs the cost per unit time incurred for storing
the message.

Associated with each message is a deadline before which the message remains
useful to the destination. Once the deadline has passed, the destination will no
longer accept the message from the relays.

The decision problem for a relay, when it meets the source, is whether to
accept the message or not. In case it accepts the message, the relay can drop
the message at any time if it has not yet delivered it to the destination, and if it
is no longer profitable to keep the message. The precise optimization problem
for the relays is described next.

3 Stochastic game with partial information

We shall study a discrete-time model of this game. The source generates the
message at time instant 0 with a deadline at instant τ+1. It is assumed that the
reception of the message from the source and its transmission to the destination
each takes one time slot, so that a relay has to meet the destination before time τ
in order to get the reward. When a relay meets the source it can decide whether
to accept or reject the message (assuming it does not already have it). Once the
relay accepts the message it can choose to retain or to drop it in each subsequent
time slot until it meets the destination or the deadline of the message expires.
Thus, the potential decision epochs for every relay are in the set {0, 1, . . . , τ−1}.
Each relay has to make decision over multiple stages and its cost depends upon
its own actions as well as those of the other relays. The objective of each
relay is to minimize expected cost it incurs for participating in the game. This
strategic interaction between the relays falls within the framework of stochastic
games introduced by [16]. In our model, each relay is aware of its own state but
does not know that of the others. Furthermore, it does not know whether the
packet has already been delivered to the destination or not. Our game is thus
a stochastic game with partial information [9]. We now give some background
on this type of games. These games are defined by:

• τ : time horizon (message deadline, in our case)

• R = {1, 2, . . . , N} set of players (relays)

• Ej , j ∈ R : state space of relay j. We denote by Xj
n the state of player j

at time n.

• Aj , j ∈ R : action space of relay j. We denote by Ajn the action taken by
player j at time n.

• E :=
⊗
j∈R
Ej .

• A :=
⊗
j∈R
Aj .
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• Bj : Ej × {0, 1, . . . , τ − 1} → D(Aj), where D(A) is the set of probability
measures on A. The set Bj(t) is the set of mixed strategies available to
relay j at every time instants. In other words, an element σjn(x) is the
probability distribution over the set of actions Aj used by player j to
choose its action when it is in state x at time n.

• Pj , j ∈ R : transition probability matrix of relay j on the space of its
state-action pairs.

• E0 : state space of the packet. This can be 0 or 1 which indicates whether
the packet has been delivered or not. We denote by X0

n the state of the
packet at time n.

• gj : Ej ×Aj × E0 → R, j ∈ R : cost function for relay j.

Fix σ :=
(
σj
)
j∈R ∈

⊗
j∈R
Bj . Let

{
Zσn := (Xj

n, A
j
n)

(σ)
j∈R

}
n=0,...,τ−1

be the

stochastic process of state-action pairs generated by σ. And, assume that the
process X0

n, n ≥ 1 is adapted to the natural filtration of Zσn. By this we mean
that, at every time instant, X0

n is measurable with respect to the history of the
state-action pairs.

Let b−j ∈ D(E−j) be the distribution of the initial state of the relays other
than j. The expected cost of relay j for σ can then be defined as:

Vj(σ
j , σ−j ;x00, x

j
0,b−j) = Ex0,b−j

τ−1∑
n=0

αngj(X
j
n, A

j
n, X

0
n), (1)

where α is the discount factor. The terminal cost is assumed to be 0 in every
state.

The objective of relay j is to minimize its cost given the strategy of the
others. That is,

Wj(σ
−j ;x00, x

j
0,b−j) = min

s∈Bj

Vj(s, σ
−j ;x00, x

j
0,b−j), (2)

and compute

βj(σ
−j ;x00,b−j) = arg min

s∈Bj

Vj(s, σ
−j ;x00, x

j
0,b−j), (3)

which is the best-response of relay to σ−j given the intial conditions.
This is a partially observable stochastic game (see for example, [9]) since

each relay knows only its state but not that of the others. A consequence of
the lack of information is that the concept of Markov strategies and Markov
equilibrium is not applicable to this setting. The optimal action of a relay in
a given state depends on the state of the other relays which is not known to
this relay. The probability distribution over the states of the other relays will
depend upon the actions they have been taking in the past. This means that
a relay will have to keep track of the past actions of the others in order to
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compute its own action in a given state. The probability of arriving in a given
state depends on the actions taken in the past because the action in the current
state will depend upon the state of the other relays which is not known.

A policy σ is said to be an equilibrium if

βj(σ
−j ;x00,b−j) = σj , ∀j. (4)

The values of different parameters for our model are as follows.

State and action spaces

The state of each relay takes one of the five possible values:

Value Significance Action set
0 relay does not have the packet ∅
ms relay meets the source (accept, reject)
1 relay has the packet (drop, keep)
md relay meets the destination ∅
2 relay quits the game ∅

In states 0 and 2 the relay does not have a non-trivial action. In state 0 it
is waiting to meet the source, while in state 2 it has already quit the game.

Transition matrix

Regarding the contact process that keeps track of the contacts of the relay
with the source and the destination, we shall assume i.i.d. contact times. As a
consequence, a relay needs to know only the current state of the contact process,
and not its entire history to take its decision. In the following, we let p be the
probability that a relay meets the destination at the next time step, and q be the
probability that it meets the source. The state of each relay evolves according
to a time-homogeneous Markov chain whose transition probabilities depend on
the action chosen in each state, and is given by:

Pj =



0 ms 1 md 2

0 1− q q 0 0 0
ms 1reject 0 1accept 0 0
1 1drop 0 (1− p)1keep p1keep 0
md 0 0 0 0 1
2 0 0 0 0 1


The transition diagram of the Markov chain is shown in Figure 1.

State of the packet

The state of the packet can take two values: 0 (it has not been delivered) or 1
(it has been delivered). The transition probabilities between these two states
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1accept
0 21ms md

q

1reject

1drop (1− p)1keep

1p1keep

1− q

1

Figure 1: Transition diagram for the Markov chain governing the state of each
relay.

depends upon the state of the relays.

P (X0
n+1 = 1|X0

n = 0,Xn) = P ((∪j∈R{Xj
n = 2} = ∅) ∩ (∪j∈R{Xj

n = md} 6= ∅)),
P (X0

n+1 = 1|X0
n = 1,Xn) = 1.

Cost function

The one-step cost incurred by the relay depends on its current state and the
action it takes (whether it accepts the packet or not, whether it drops the packet
or not). Further, when it meets the destination (that is, in state md) the cost
incurred depends upon whether any other relay has already delivered the packet
or not. Hence

g(ms, accept, ·) = Cr,

g(1, keep, ·) = Cs,

g(md, ·, 0) = R− Cd,

and is 0 for all other arguments.

4 The Single Player Case

In order to get some insights into the structure of the best-response policy of
a relay, we shall first consider the case of a single player. In order to simplify
notations, we drop the index j of the relay. Since no other relay can deliver the
message, the state of the packet is X0

n = 0 until the relay meets the destination,
and thus we can further simplify notations by writing g(x, a) instead of g(x, a, 0).

4.1 Dynamic Programming Formulation

Assume that the relay meets the source at instant t ∈ [0, τ ]. For epochs 0, . . . , t−
1, thus, there are no decisions to be made. For the remaining epochs, the optimal
policy can be computed using Dynamic Programming.
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Let Vn(x) be the optimal cost-to-go starting in state x ∈ {0,ms, 1,md, 2} at
instant n. From the dynamic programming equation,

Vn(Xn) = min
a∈A(Xn)

g(Xn, a) + αEVn+1(Xn+1), (5)

where α is the discount factor (0 ≤ α < 1).
At time n, if the relay is in contact with the destination, its terminal cost is

Vn(md) = Cd −R, n = 1, 2, . . . , τ. (6)

In particular, we have Vτ (md) = Cd −R at time τ . If at that time the relay
has the message and is not in contact with the destination, then it is optimal
to drop the message since it is no longer useful, so that Vτ (1) = 0. On the
other hand, if the relay does not have the message at instant τ , then it incurs
no costs, so that Vτ (0) = Vτ (ms) = 0. To summarize, the terminal costs at the
instant n = τ are:

Vτ (md) = Cd −R. (7)

Vτ (x) = 0, ∀x 6= md. (8)

The optimal policy at different decision epochs and states can be computed
recursively by rolling back (5). If the contact process is history dependent, then
the optimal policy is usually computed numerically. However, as we shall see
below, the assumption of an i.i.d. contact process enables the derivation of
structural properties of the optimal policy.

4.2 To Drop or to Retain

Assume that the relay is in state 1 at instant τ − 1, that is it has the message
and it is not in contact with the destination. The relay has to decide whether
to drop the message or not. Taking n = τ − 1 in (5), we obtain

Vτ−1(1) = min
a∈{keep,drop}

[g(1, a) + αEVτ (Xτ )]

= min (0, Cs + α(pVτ (md) + pVτ (1))) ,

= min (0, Cs + pα(Cd −R)) , (9)

where we have used the short-hand notation p = 1 − p, and the last equality
follows from (7)–(8). Thus, if the first term is the minimum, then it is optimal
to drop the message at τ − 1, otherwise it is optimal to keep it.

One can recursively develop (9) to compute the optimal policy at step n given
that the relay has the message and has not yet encountered the destination. For
n = τ − 2, we obtain

Vτ−2(1) = min {0, Cs + α(pVτ−1(md) + pVτ−1(1))} ,
= min { 0, Cs + pα(Cd −R),

Cs(1 + pα) + (Cd −R)α(p+ ppα)} . (10)
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Here, the second and the third terms in the minimum correspond to the cost
of retaining the message at instant τ − 2. Thus, if either term is negative, then
it is optimal to retain the message. Otherwise, it is optimal to drop the message
at instant τ − 2.

More generally, the ith component in the min corresponds to the cost ob-
tained if the action keep is played i consecutive times starting from the current
decision epoch n, until the relay meets the destination or decides to drop the
message. This ith component can be represented as follows,

Un,i =

i∑
j=1

(αp)
j−1

(Cs + (Cd −R)αp) , (11)

= (Cs + αp(Cd −R))
1− (pα)i

1− pα . (12)

The recursion (9) can be developed in terms of Un,i as:

Vn(1) = min(0, Un,1, Un,2, . . . , Un,τ−n). (13)

The optimal policy at instant n is to retain the message if either of Un,i is
negative. Otherwise it is optimal to drop the message at time n. Note from
(12) that if Cs + αp(Cd − R) < 0, then Un,i < 0, ∀n and ∀i, and the sequence
decreases with i. From (13), one can conlude that if Cs + αp(Cd − R) < 0,
then the relay will retain the message until it is delivered to the destination or
the deadline expires. Otherwise, the relay will drop the message immediately.
Thus,

R >
Cs
αp

+ Cd, (14)

is a necessary condition for the relay to attempt the delivery of the message.

4.3 To Accept or to Reject

Assume that the relay is in state ms at instant t, that is it in contact with the
source and has not the message. The relay has to decide whether to accept the
message or not. The optimal cost at t is:

Vt(ms) = min(0, g(ms, accept) + αVt+1(1))

= min(0, Cr + αVt+1(1)), (15)

where Vt+1(1) can be computed from (13). Thus, if at time t the second term is
negative, then it is optimal to accept the message from the source. Otherwise,
it is optimal to reject it. In particular, if condition (14) is satisfied, Un,i is a
decreasing function of i and equation (13) yields

Vn(1) = Un,τ−n = (Cs + αp(Cd −R))
1− (pα)τ−n

1− pα . (16)
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We thus obtain that the expected cost for the relay if it accepts the message
is

g(ms, accept) + αVt+1(1) = Cr + Ut+1,τ−t−1. (17)

We conclude from (15) and (17) that if the relay meets the source at time t,
it will accept the message provided that

Cr + Ut+1,τ−t−1 < 0. (18)

Note that (16) implies that Ut+1,τ−t−1 increases with t. Since Ut+1,τ−t−1 is
negative and increases with t, there exists a threshold t∗ such that for t ≤ t∗,
the relay will accept the message, and it will reject the message after t∗. The
threshold can be easily computed using the above inequality,

t∗ = τ − 1−
ln
(

1 + Cr(1−pα)
Cs+αp(Cd−R)

)
ln(pα)

. (19)

5 Game with two relays

We now consider the newtork with two relays. We shall restrict our attention
to threshold type policies, that is policies such σjn(ms) = accept if n ≤ θ1 and
reject otherwise, and σjn(1) = drop if n ≥ θ2, and keep otherwise. The threshold
θ2 could depend on the meeting time with the source. We shall show that if one
relay follows a threshold type policy then the best-response of the other relay
is also a policy of threshold type.

We shall thus assume that one of the two relays – say relay 2, follows a
threshold type policy. That is, there exist θ21 and θ22 > θ21 such that

σ2
n(ms) =

{
accept if n ≤ θ21,
reject if n > θ21,

(20)

and

σ2
n(1) =

{
keep if n ≤ θ22,
drop if n > θ22.

(21)

As in Section 4, we shall use dynamic programming to derive the best-
response policy of the first player to the above policy of relay 2. We let V 1

n (x)
be the optimal cost-to-go starting in state x ∈ {0,ms, 1,md, 2} at instant n. As
we shall see below, the optimal cost-to-go starting in states ms and 1 can be
expressed in terms of the expected costs when the destination is reached.
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5.1 Expected costs when the destination is reached

If at time n relay 1 has the message and is in contact with the destination, then
its expected cost is

V 1
n (md) =

1

2
(Cd −R)P

(
X2
n = md

)
+ (Cd −R)P

(
X0
n = 0, X2

n 6= md

)
, (22)

for all n ∈ {1, 2, . . . , τ}, where it is assumed that if both relays meet the desti-
nation at the same time, then each one wins the reward with probability 1

2 .
Define 1− δn as the probability that relay 2 delivers the message at a time

t ≤ n, as estimated by relay 1 . Note that δn−1 − δn is the probability that the
second relay meets the destination with the message precisely at time n. The
expected cost V 1

n (md) can be written as follows

V 1
n (md) =

1

2
(Cd −R) (δn−1 − δn) + (Cd −R) δn,

=
δn−1 + δn

2
(Cd −R). (23)

Lemma 1 proves two fundamental properties of the sequence V 1
1 (md), V

1
2 (md), . . .

that will be required to establish the structure of the optimal policy of relay 1.

Lemma 1. The sequence V 1
1 (md), V

1
2 (md), . . . is such that

(a) it is non-decreasing with n, and

(b) it is constant for all n ≥ θ22 + 1.

Proof. To prove assertion (a), observe that since δn−1 − δn is the probability
was defined before, we have δn−1 ≥ δn. Hence the sequence δ1, δ2, . . . is non-
increasing. With (23), it yields V 1

n+1(md)−V 1
n (md) = 1

2 (Cd−R)(δn+1−δn−1) ≥
0, which concludes the proof.

Let us now prove assertion (b). Since at time θ22 + 1 the second relay drops
the message if it has it, the probability that it delivers the message after that
time is 0, implying that δn = δθ22+1 for all n > θ22. For k > θ22 + 1, it yields

V 1
k (md) =

δk−1 + δk
2

(Cd −R) = δθ22+1 (Cd −R) = V 1
θ22+1(md), (24)

which concludes the proof.

5.2 To drop or to retain

Let us assume that relay 1 is in state 1, that is it has the message but it is not
in contact with the destination. It has to decide whether to retain it or to drop
it. Proceeding backward in time, we have
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V 1
τ−1(1) = min

a∈{keep,drop}
[g(1, a) + αEV 1

τ (X1
τ )],

= min
(
0, Cs + αpV 1

τ (md) + αpV 1
τ (1)

)
,

= min
(
0, Cs + αpV 1

τ (md)
)
, (25)

and

V 1
τ−2(1) = min

a∈{keep,drop}
[g(1, a) + αEV 1

τ−1(X1
τ−1)],

= min
(
0, Cs + α

[
pV 1

τ−1(md) + pV 1
τ−1(1)

])
,

= min
(
0, Cs + αpV 1

τ−1(md) ,

Cs + αpV 1
τ−1(md) + αp

[
Cs + αpV 1

τ (md)
])
. (26)

More generally, we have

V 1
n (1) = min(0, Un,1, Un,2, . . . , Un,τ−n), (27)

where

Un,i =

i∑
j=1

(αp)j−1
[
Cs + αpV 1

n+j(md)
]
. (28)

The optimal policy at instant n is to retain the message if min
i=1,...,τ−n

Un,i < 0.

Otherwise it is optimal to drop the message at n.
We establish below two properties of the Un,i.

Lemma 2. The sequence {Un,1}n=1,2,··· is a non-decreasing sequence, which is
constant starting from n = θ22.

Proof. We first show that the sequence is non-decreasing. With (28) we have

Un+1,1 − Un,1 = Cs + αpV 1
n+2(md)− Cs − αpV 1

n+1(md),

= αp
(
V 1
n+2(md)− V 1

n+1(md)
)
,

and with Lemma 1 we can conclude that Un+1,1 ≥ Un,1 that corresponds to the
first assertion of the lemma. In order to show that Un,1 = Uθ22 ,1 for all n ≥ θ22,
we use Lemma 1.(b) to obtain

Un,1 = Cs + αpV 1
n+1(md)

= Cs + αpV 1
θ22+1(md)

= Uθ22 ,1
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Lemma 3. For all n ∈ {1, 2, . . . , τ}, if Un,1 ≥ 0, then min
i=1,...,τ−n

Un,i = Un,1.

Proof. Fix n ∈ {1, 2, . . . , τ} and assume Un,1 ≥ 0. It is enough to prove that
the sequence Un,1, Un,2, . . . is a non-decreasing sequence. Observing from (28)
that Un,i can also be written as follows

Un,i =

i−1∑
j=0

(αp)jUn+j,1, (29)

we obtain with Lemma 2 that Un,i+1−Un,i = (αp)iUn+i,1 ≥ (αp)iUn,1. We thus
conclude that Un,1 ≥ 0 implies that Un,1, Un,2, . . . is a non-decreasing sequence,
which yields the proof.

We now show the following result.

Proposition 1. At time n, V 1
n (1) < 0 if and only if Un,1 < 0.

Proof. From (27), it is obvious that Un,1 < 0 implies that V 1
n (1) < 0. By

contraposition, in order to show that the converse is true, it is enough to show
that Un,1 ≥ 0 implies that V 1

n (1) ≥ 0, which is a direct consequence of Lemma
3.

According to Lemma 2, the Un,1 are non-decreasing with n. Thus, Proposi-
tion 1 implies that relay 1 will retain the message as long as Un,1 < 0, and will
drop it once Un,1 becomes positive. We are now in position to show that once
relay 1 has the message, it uses a threshold type strategy to decide whether to
retain it or to drop it.

Proposition 2. If Uθ22 ,1 ≥ 0 then there exists threshold θ12 ≤ θ22 such that relay 1

retains the message until θ12 and drops it at time θ12 +1. Otherwise, if Uθ22 ,1 < 0,
relay 1 retains the message until it meets the destination or the deadline expires.

Proof. Let us first consider the case Uθ22 ,1 ≥ 0. Let t be the time at which relay
1 accepts the message from the source. Since

V 1
t (ms) = min

(
0, Cr + V 1

t+1(1)
)
,

has to be negative for relay 1 to accept the message, this implies that V 1
t+1(1) <

−Cr. According to Proposition 1, V 1
t+1(1) < 0 in turn implies that Ut+1,1 < 0.

Since from Lemma 2 the sequence U1,1, U2,1, . . . is non-decreasing, Ut+1,1 < 0
and Uθ22 ,1 ≥ 0 imply that there exists θ12 ∈ [t + 1, θ22] such that Un,1 < 0 for all

n ≤ θ12 and Uθ12+1,1 ≥ 0. We thus conclude that V 1
n (1) < 0 for all n ≤ θ12 and

V 1
θ12+1

(1) ≥ 0. In other words, relay 1 retains the message until time θ12, and

drops it at time θ12 + 1.
Let us now consider the case Uθ22 ,1 < 0. According to Lemma 2, the sequence

U1,1, U2,1, . . . is non-decreasing and constant starting from n = θ22. We thus
conclude that Un,1 < 0 for all n ∈ {1, 2, . . . , τ}. With Proposition 1, it yields
V 1
n (1) < 0 for all n ∈ {1, 2, . . . , τ}, implying that the optimal strategy for relay 1

is to retain the message until it meet the destination or the deadline expires.
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According to Proposition 2, the best-response policy of player 1 to the strat-
egy of player 2 is therefore as follows:

σ1
n(1) =

{
keep if n ≤ θ12,
drop if n > θ12,

(30)

where the threshold θ12 can be greater than τ .

5.3 To Accept or to Reject

Let t be the time at which relay 1 meets the source. The optimal expected cost
at t is:

V 1
t (ms) = min(0, g(ms, accept) + αV 1

t+1(1)),

= min(0, Cr + αV 1
t+1(1)), (31)

where V 1
t+1(1) can be computed from (27). Thus, if at time t the second term is

negative, then it is optimal to accept the message from the source. Otherwise,
it is optimal to reject it.

Proposition 3. There exists θ11 such that relay 1 rejects the message if it meets
the source at a time n > θ11.

Proof. Observe that (31) can be written as follows

V 1
t (ms) = min(0, Cr + min

i=1,...,τ−t−1
Ut+1,i).

Since Lemma 2 implies that min
i=1,...,τ−t−1

Ut+1,i increases with t, we can assert

that if at time θ11 the relay rejects the message, i.e., if min
i=1,...,τ−θ11

Uθ11 ,i ≥ 0, then

it will also reject it at all subsequent contact times k > θ11 with the source.

We note that the threshold θ11 can be larger than τ , in which case relay 1
always accepts the message when it meets the source. Similarly, the threshold
θ11 can be smaller than 1, in which case relay 1 never accepts the message when
it meets the source.

6 Conclusion

We studied the selfish behaviour of DTN nodes incentivised by a reward for
participating in message forwarding. The reward is proposed by the source to
every relay it meets, but is paid only to the first one that delivers the message.
A relay meeting the source is not informed of the existence of other message
copies. Assuming a given lifetime for the message, we considered the (discrete-
time) decision problem faced by a relay. When it meets the source, a relay
has to decide whether to accept the message or not, and once the relay has
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the message it has to choose to retain or to drop it at subsequent decision
epochs. Each relay makes its decisions in order to minimize the expected cost
it incurs for participating. We modelled the interaction between mobile nodes
as a stochastic game with partial information.

For the single player case, we first obtained a necessary condition for the
relay to attempt the delivery of the message that reflects a minimal value of the
reward. In fact it implies the minimal reward sufficient to ensure that the player
will not drop the message. We then saw that the relay’s strategy to accept the
message from the source is of a threshold type.

Extending the model to the case of two players, we established that if one
of the players follows a threshold type policy then the other one will also use a
similar strategy. We thereby have come to the question whether such threshold
strategies are an equilibrium of the game. A positive answer to these question
is not obvious, however if so it gives strong research impetus and opens up a
possibility to fine-tune our reward mechanism.
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