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Abstract In static scenarios, binaural sound localiza-

tion is fundamentally limited by front-back ambigu-

ity and distance non-observability. Over the past few

years, “active” schemes have been shown to overcome

these shortcomings, by combining spatial binaural cues

with the motor commands of the sensor. In this con-

text, given a Gaussian prior on the relative position to

a source, this paper determines an admissible motion

of a binaural head which leads, on average, to the one-

step-ahead most informative audio-motor localization.

To this aim, a constrained optimization problem is set

up, which consists in maximizing the entropy of the

next predicted measurement probability density func-

tion over a cylindric admissible set. The method is ap-

praised through geometrical arguments, and validated

in simulations and on real-life robotic experiments.

Keywords Robot audition · Binaural audition ·
Active localization · Information theory · Information

based control

1 Introduction

The advent of auditory robots has led to the emergence

of binaural audio-motor localization schemes which, by

combining binaural perception and motor commands,

can disambiguate front from back and recover source

range (Cooke et al 2007; Nakadai et al 2000). Some of

these can cope with a moving and intermittent sound
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CNRS, UPS, Toulouse, France.
Tel: +33 (0)5 61 33 78 25, Fax: +33 (0)5 61 33 64 55,
E-mail: patrick.danes@laas.fr.

source (Portello et al 2012). However, the question re-

mains how to drive a binaural head so as to maximize

the spatial information on a source extracted from the

sensorimotor flow.

In Robotics, Simultaneous Localization and Map-

ping (SLAM) techniques have been extended to make

robots move in order to improve their knowledge about

the environment (Thrun et al 2005). Control policies

could be found by maximizing information criteria re-

lated to the robot situation, e.g., by determining the

direction of maximum local information improvement.

Shannon entropy or mutual information have often been

used (Bourgault et al 2002), as well as the Fisher in-

formation matrix (FIM) (Feder et al 1999). It has been

shown that a mapping robot guided by a mutual in-

formation based controller can be “attracted” towards

unexplored areas (Julian 2013). Similar strategies have

been used to coordinate multiple sensor platforms (Gro-

cholsky et al 2003). Information-theoretic controllers

can address different objectives such as the control of

a robot-mounted camera to optimize depth estimation

(Forster et al 2014), or the selection of sensor parame-

ters (e.g., zoom or attitude) for scene analysis (Denzler

and Brown 2002; Sommerlade and Reid 2008).

In the bearings-only tracking problem, optimum ob-

server actions can be determined by maximizing a cost

functional involving FIM determinants (Le Cadre and

Laurent-Michel 1999). When the problem is the reduc-

tion of the mean square tracking error, the minimiza-

tion of the posterior Cramér-Rao lower bound—i.e., the

inverse of the Bayesian extension of the FIM—has been

addressed (Ristic and Arulampalam 2003).

In robot audition, the problem of auditory

scenes exploration has also been investigated

(Martinson and Schultz 2009). A mobile robot has

been equipped with a microphone array to localize
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Fig. 1: The three-stage framework to active binaural localization. This paper addresses Stage C.

sound sources and estimate its own position in a

known geometric map (Sasaki et al 2010). Motion

planning based on audio situation has been proposed

to improve speech recognition by a monaural robot

(Kumon et al 2010). In (Martinson et al 2011), sound

source localization was improved by optimizing the

position of microphones deployed in the environ-

ment. Recently, a robot equipped with a microphone

array was controlled to locate a sound source by

minimizing a criterion based on the entropy of an

occupancy grid used to represent the source position

belief (Vincent et al 2015).

Given a prior knowledge on the relative position of

a static sound source with respect to a binaural head,

this paper deals with the determination of an admissible

finite motion of the sensor which leads, on average, to

the minimum uncertainty in the one-step-ahead local-

ization. It is organized as follows. First, the three-stage

approach to binaural active localization (Bustamante

et al 2015) which has motivated this work is recalled

(Section 2). Then, a constrained optimization problem

is defined, so as to get the next best position of the

sensor (Section 3). A numerical solution scheme is pro-

posed. Further, useful insights into the geometry of the

problem are provided (Section 4), when the exploration

is guided by directional cues such as the interaural time

difference (ITD) between two microphones placed an-

tipodally on a spherical binaural head. Evaluations are

then conducted in simulation and on a binaural robotic

platform (Section 5). Therein, a comparison is made

with some open-loop motion policies. Conclusions and

prospects end the paper.

2 A three-stage framework to active binaural

localization

This work took place within the EU FET Two!Ears

project (www.twoears.eu) whose aim was to develop a

computational model of auditory perception and expe-

rience in humans. Listeners are regarded as multi-modal

agents that develop their concept of the world by active,

exploratory, interaction, and, in the course of this pro-

cess, interpret percepts, collect knowledge and develop

concepts accordingly. To enable this, the Two!Ears

model includes not only bottom-up—signal-driven—

processing but also top-down—hypothesis-driven—

feedbacks. Some of these feedbacks come from the cog-

nitive level, e.g., the context-dependent adjustment of

bottom-up processing parameters, or the hypothesis-

driven activation of specific low-level processing pro-

cedures. Other feedbacks operate at the sensorimotor

level—with no cognition in between—at much shorter

time scales, e.g., “turn-to-reflex” exploratory move-

ments to dispel localization ambiguities.

Such sensorimotor feedbacks for single-source active

binaural localization can be adressed through the three-

stage framework depicted on Figure 1. Stage A imple-

ments the maximum likelihood estimation of the source

azimuth and the information-theoretic detection of its

activity from the short-term channel-time-frequency de-

composition of the binaural stream (Portello et al 2013).

Stage B assimilates these azimuths over time and com-

bines them with the motor commands into a stochas-

tic filter, leading to the posterior probability density

function (or “belief”) of the head-to-source relative po-

sition (Portello et al 2014b). Stage C is the topic of

this paper. It consists in a feedback controller which,

on the basis of the output from Stage B, can move

the head so as to improve the quality of the localiza-

tion. Stage A has been extended to the multiple-source

case (Portello et al 2014a), and Stage B can cope with a

moving and/or intermittent source (Portello et al 2012),

but this is not considered here.

First an overview of Stages A and B is proposed.

Then, the paper focuses on Stage C.

www.twoears.eu
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Fig. 2: Sketch of the planar problem. The dashed circle

depicts the binaural head, with R1 and R2 its left and

right microphones, and a its radius. The sound source

E is located on the plane (O,−→yR,−→zR) at the distance r

and azimuth θ. By convention, θ is zero along along −→zR
and increases clockwise (so, θ > 0 here). In this plot

and all subsequent plots depicting the motion of the

binaural head, the front and interaural axes are colored

in red and blue, respectively.

2.1 Terminology

A binaural head is fitted with the left and right micro-

phones R1 and R2. A frame F = (O,−→xR,−→yR,−→zR) is at-

tached to it, with
−−→
R1O =

−−→
OR2 (Figure 2). R1, R2 and

the pointwise emitter E lie on a common horizontal

plane defined by (O,−→yR,−→zR), where −→yR =
−−−→
R2R1

‖
−−−→
R2R1‖

sup-

ports the interaural axis and −→zR is oriented towards the

front direction. So,−→xR is vertical and points downwards.

a terms the radius of a sphere approximating the head.

Throughout the paper, geometric vectors are de-

noted with arrows. Scalar, vector or matrix variables

are written in normal font. Whether they are deter-

ministic or stochastic can be straightly inferred.

2.2 Stage A: Short-term extraction of directional cues

The interaural transfer function is assumed known

over an adequate range of source azimuths and fre-

quencies. The source signal and sensor noises are

modeled as jointly Gaussian, zero-mean, individu-

ally and jointly “locally stationary” random processes

(Portello et al 2013). Then, on the basis of the channel-

time-frequency decomposition zk of the binaural signal

on a sliding window ending at time k, the short-term

maximum likelihood θ̂k of the source azimuth θk comes

as the argmax of a “pseudo likelihood” p(zk|θk). This

pseudo likelihood is obtained by replacing in the gen-

uine likelihood of the unknown variables the most likely

spectral parameters of the source as a function of its az-

imuth, by means of a notable separation property.

2.3 Stage B: Combination with motor commands

A discrete-time stochastic state space equation is set

up, uniting the motor commands to the head-to-source

position xk = (ey, ez)
T to be estimated (Figure 2). A

theoretically sound Gaussian mixture square-root un-

scented Kalman filter (GMsrUKF) is defined so as to

incorporate the above pseudo likelihood p(zk|θk), where

θk comes as a static function of xk, and compute a

Gaussian mixture approximation of the posterior prob-

ability density function (pdf), or “belief”,

p(xk|z1:k) =

Ik∑
i=1

wikN (xk; x̂ik|k, P
i
k|k), (1)

where (wik, x̂
i
k|k, P

i
k|k) are the weight, mean and covari-

ance of each hypothesis (Portello et al 2014b). Empiri-

cal tests show that self-initialization as well as posterior

covariance consistency are generally ensured, so that

front and back are disambiguated, and both range and

azimuth are faithfully recovered.

2.4 Stage C: Problem statement

Let Fk = (Ok,
−→xRk,−→yRk,−→zRk) and Xk = (ex, ey, ez)

T be

the frame F at time k and the Cartesian coordinates of

the—static—source in Fk. If between times k and k+1

the sensor undergoes the translation Ty
−→yRk+Tz

−→zRk fol-

lowed by the rotation of angle φ , ̂(−→zRk,−→zRk+1) around
−→xRk, then the vector Xk+1 of the source coordinates in

Fk+1 = (Ok+1,
−→xRk+1,

−→yRk+1,
−→zRk+1) writes as

Xk+1 = RT (φ)Xk −RT (φ)T + wk, (2)

with T = (0, Ty, Tz)
T , R(φ) the rotation matrix corre-

sponding to φ, and wk the dynamic noise (if present).

A belief on the sensor-to-source position

xk = (ey, ez)
T at time k is given in terms of the

2D Gaussian pdf N (xk; x̂k|k, Pk|k), with x̂k|k the

estimate of xk and Pk|k the associated error covariance

matrix. The problem consists in determining the

motion (T, φ) of the sensor which best improves, on

average, the next localization of the sound source.

First, a metric is described, uniting the belief on the

state at time k and the rigid motion applied over

[k; k + 1], to the expected information obtained after

a measurement update at time k + 1. The exploration
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is assumed to be guided by a scalar closed-form

observation model such as

zk = l(xk)+vk = l̄(θk)+vk, zk ∈ R, vk ∼ N (0, Rk), (3)

with vk the measurement noise and Rk its (co)variance.

In the above, zk is assumed to be a directional cue, in

that it solely depends on the source relative azimuth

θk = −atan2(ey, ez). Note that by convention, θk is 0

along −→zR and increases clockwise. Assuming a farfield

sound source, l̄(θk) in (3) could express the time de-

lay of arrival (TDOA) between two microphones in free

field. Unless otherwise stated, in the sequel l̄(θk) stands

for the Woodworth-Schlosberg farfield approximation

of the ITD between two antipodal microphones placed

on a spherical head. That is, (Aaronson and Hartmann

2014)

l̄(θk) =
a

c
(θk + sin(θk)) for |θk| ∈ [0,

π

2
],

l̄(θk) =
a

c
(π − θk + sin(θk)) for θk ∈ [

π

2
, π],

l̄(θk) =
a

c
(−π − θk + sin(θk)) for θk ∈ [−π,−π

2
], (4)

with c the velocity of sound.

3 Feedback control of the binaural sensor

On the basis of Stages A and B introduced above, the

main topic of the paper is now adressed, namely, the de-

velopment of Stage C. The information based feedback

control is first stated, then turned into a constrained op-

timization problem. A geometric interpretation is dis-

cussed. A numerical solution is obtained by means of

the projected gradient algorithm.

3.1 Information-theoretic constrained optimization

Let x, y be continuous random variables with joint and

marginal pdfs p(x, y) and p(x), p(y). The differential en-

tropy

h(x) = −
∫
p(x) log p(x)dx (5)

and the mutual information (nonnegative by definition)

I(x, y) =
∫
p(x, y) log p(x,y)

p(x)p(y)dxdy (6)

respectively embody the uncertainty in x and measure

the amount of information that x contains about y

(Cover and Thomas 1991).

When conditioned on the event that a random vari-

able z takes a given value, they will henceforth be de-

noted by h(x|z), h(y|z) and I(x, y|z). The Bayes rule

underlying the measurement update stage relates the

next filtered state pdf p(xk+1|z1:k+1), the next pre-

dicted state pdf p(xk+1|z1:k), the observation model

p(zk+1|xk+1) and the next predicted measurement pdf

p(zk+1|z1:k). Consequently, entropies and mutual infor-

mation of these distributions can be connected with

an entropy update rule of the same kind as (Manyika

1993). The expectation∫
- log p(xk+1|z1:k+1)p(xk+1, zk+1|z1:k)dxk+1dzk+1, (7)

of − log p(xk+1|z1:k+1) conditioned on z1:k, which is

also equal to Ezk+1|z1:k
{
h(xk+1|z1:k+1)

}
, satisfies (Bus-

tamante et al 2016)

Ezk+1|z1:k{h(xk+1|z1:k+1)} = h(xk+1|z1:k)− I,
Exk+1|z1:k{h(zk+1|xk+1)} = h(zk+1|z1:k)− I, (8)

I = I(xk+1, zk+1|z1:k),

with I the conditional mutual information of the next

state and measurement. Due to the nonnegativity of I,

Ezk+1|z1:k{h(xk+1|z1:k+1)} ≤ h(xk+1|z1:k) holds, which

highlights the information gain brought by the mea-

surement update.

Between times k and k + 1, (linear) Kalman

time update equations turn the Gaussian belief

p(xk|z1:k) = N (xk; x̂k|k, Pk|k) into the next predicted

state pdf p(xk+1|z1:k) = N (xk+1; x̂k+1|k, Pk+1|k).

Then, (nonlinear) Kalman measurement update

equations incorporate the measurement zk+1

so as to compute a Gaussian approximation

p(xk+1|z1:k+1) ≈ N (xk+1; x̂k+1|k+1, Pk+1|k+1) of

the next filtered state pdf. They involve a Gaussian

approximation p(zk+1|z1:k) ≈ N (zk+1; ẑk+1|k, Sk+1|k)

of the next predicted measurement pdf.

Let |.| term the determinant of a matrix. If wk is neg-

ligible in (2), then h(xk+1|z1:k)= 1
2 log[(2πe)nx |Pk+1|k|]

is also equal to 1
2 log[(2πe)nx |Pk|k|] in view of

the fact that the sensor undergoes a rigid mo-

tion1, with nx = 2. In addition, h(zk+1|xk+1) =
1
2 log[(2πe)nz |Rk+1|], with nz = 1, is also inde-

pendent of the control variables (T, φ). Besides,

both h(xk+1|z1:k+1) = 1
2 log[(2πe)nx |Pk+1|k+1|] and

h(zk+1|z1:k) = 1
2 log[(2πe)nz |Sk+1|k|] do not depend on

the measurement zk+1. Consequently, the following

rule is in effect.

1 Consider again the dynamic equation (2) with no
dynamic noise, and assume that the posterior covari-
ance Pk|k of the full state Xk (defined in R3) is

Pk|k = diag(0, Pk|k). As the vector RT (φ)T is con-

stant, the next “full” predicted covariance Pk+1|k writes as

Pk+1|k = RT (φ)Pk|kR(φ), with R(φ) = diag(1, r(φ)), and

|R(φ)|= |r(φ)|=1. Consequently, Pk+1|k = diag(0, Pk+1|k)

with |Pk+1|k| = |rT (φ)Pk|kr(φ)| = |Pk|k|.
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Theorem 1 Finding the next best sensor position

which minimizes the entropy h(xk+1|z1:k+1) of the

next filtered state pdf—which is also its expected value

w.r.t. zk+1—is equivalent to maximizing the mutual

information I(xk+1, zk+1|z1:k) of the next predicted

state and measurement, or to maximizing the entropy

h(zk+1|z1:k) of the next predicted measurement pdf. In

other words, the optimum rigid body motion (T ∗, φ∗) to

be applied to the sensor is the solution of

(P)


(T ∗, φ∗) = arg min

(T,φ)∈T ×R
h(xk+1|z1:k+1)

= arg max
(T,φ)∈T ×R

I(xk+1, zk+1|z1:k)

= arg max
(T,φ)∈T ×R

h(zk+1|z1:k),

(9)

where T and R respectively term the sets of admissible

translations and rotations.

3.2 Interpretation

A fundamental feature of the observation model (3) is

that the spreading of the measurement noise—i.e., the

(co)variance Rk—is assumed known and constant in-

dependently of the value of the hidden state vector. If

the exploration is guided by TDOAs/ITDs, then this

assumption is valid since the standard deviation of the

noise associated to their extraction is typically a frac-

tion of the audio sampling period.

From (3), the loci of the sensor-to-source posi-

tions x corresponding to given values of the mea-

surement z in the absence of noise—or “iso-z loci”—

are radial lines rigidly linked to frame F and pass-

ing through O. For TDOA/ITD measurements, because

of the nonlinearity of the measurement equation—see

for instance (4)—these lines are not uniformly dis-

tributed along the azimuths. They are more concen-

trated along the direction of −→zR which defines the au-

ditive fovea, while they are sparser around the inter-

aural axis −→yR. Given a belief N (xk; x̂k|k, Pk|k) on the

head-to-source position at time k, Figure 3 sketches

the 2D Gaussian approximation of the next filtered

state pdf N (xk+1; x̂k+1|k+1, Pk+1|k+1) after applying

various rigid motions (T, φ) to the sensor. All the in-

volved normal distributions are depicted by related

99%-probability confidence ellipses. Importantly, if the

dynamic noise is neglected in (2), then the next pre-

dicted state pdf N (xk+1; x̂k+1|k, Pk+1|k) is basically de-

scribed by the same ellipse as for the initial belief, but

“viewed” from the sensor once it has completed its

motion. Besides, (3) implies that the pdf of the head-

to-source position deduced from the sole measurement

(a) (b)

(c) (d)

Fig. 3: Iso-z loci and measurement update for various

scenarios. (a): Frame Fk attached to the binaural head

(blue); sound source genuine position (yellow square);

confidence ellipse associated to the belief at time k

(grey); iso-zk loci depicting the measurement space

(grey radial lines). (b)-(c)-(d): Frame Fk+1 (blue); con-

fidence ellipse associated to the next predicted state

pdf at time k+1 (blue); iso-zk+1 loci (grey); confidence

cone associated to the measurement (green); confidence

ellipse associated to the next filtered state pdf (belief

at k + 1) after the incorporation of zk+1 (red).

zk+1 can be described by a 99%-probability confidence

cone tapering to the apex Ok+1. For a given variance

Rk of the measurement noise, the extent of this cone on

each side of the iso-z locus corresponding to the gen-

uine azimuth of the source is all the more important

as the iso-z loci are sparse. The measurement update

fuses these two last pdfs so as to get the next belief

N (xk+1; x̂k+1|k+1, Pk+1|k+1). Qualitatively, the fusion

is all the more efficient as the overlap of the respective

confidence ellipse and cone occurs around the modes of

the pdfs and has a limited spatial extent.

From the initial configuration depicted in Figure 3a,

the head first undergoes a pure rotational motion so

that the auditive fovea (supported by −→zRk+1) becomes

oriented towards the major axis of the confidence ellipse

associated to the next predicted state pdf (Figure 3b).

On Figure 3c, a translation is applied so as to drive
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Ok+1 on the line supported by the minor axis of that

ellipse, and a subsequent rotation makes −→yRk+1 point

towards its center. Last, in Figure 3d, the auditive fovea
−→zRk+1 is driven towards the minor axis of that ellipse.

Equation (9) in Theorem 1 states that the next best

sensor position must maximize the (determinant of)

the (co)variance Sk+1|k of the next predicted measure-

ment pdf p(zk+1|z1:k). Here, the scalar value of Sk+1|k
is heuristically related to the number of iso-zk+1 loci in-

tersecting the confidence ellipse associated to the next

predicted state pdf. The more iso-zk+1 loci intersect

that ellipse, the higher is Sk+1|k.

As aforementioned, the confidence cone describing

the spatial uncertainty on the head-to-source position

due to the noisy measurement is wide if the source lies

along the interaural axis (Figure 3c). In this case, a

small number of iso-z loci intersect the confidence el-

lipse associated to the predicted state pdf, so that the

measurement update cannot significantly improve the

information in the next filtered state pdf. When the au-

ditive fovea is oriented towards the confidence ellipse,

the confidence cone is narrower, so the measurement

update is more efficient (Figures 3b and 3d). The vari-

ance Sk+1|k is also higher than in the above case. Fur-

ther, if the fovea points to the minor axis of the confi-

dence ellipse, then the measurement update is improved

(Figure 3d).

Importantly, the closer the sensor gets to the source,

the smaller is the spatial uncertainty on the head-to-

source position given a TDOA/ITD measurement. Then,

a greater number of iso-z loci cross the confidence el-

lipse associated to the predicted state pdf, so that the

predicted measurement variance Sk+1|k increases, what

is beneficial.

3.3 Numerical solution

In view of the above, starting from the head-to-source

position belief N (xk; x̂k|k, Pk|k) at time k, the desired

optimum finite translations T ∗y , T
∗
z and rotation φ∗

maximize the log-determinant—as z ∈ R, just the log—

of the (co)variance the next predicted measurement pdf

p(zk+1|z1:k), i.e., maximize Fk(Ty, Tz, φ) = logSk+1|k
with Fk : R3 → R. Then, the optimization problem (P)

defined in (9) can be stated as

(P)

{
(T ∗y , T

∗
z , φ

∗) = arg max
(Ty,Tz,φ)∈(T ×R)

Fk(Ty, Tz, φ) (10)

with T = {(Ty, Tz) ∈ R× R | Ty2 + Tz
2 ≤ r2max} and

R = {φ ∈ R | |φ| ≤ φmax} the sets of admissible trans-

lations and rotations. T ×R thus constitutes a cylinder

(a) (b)

Fig. 4: Representation of the admissible cylindrical set

T ×R of the problem (P). The contour lines of the cri-

terion Fk(Ty, Tz, φ) are sketched as functions of Ty, Tz
when φ takes a constant value corresponding to the bot-

tom (φ = −φmax) or top (φ = φmax) side of T × R,

respectively. The red spots depict the optima of Fk re-

stricted to these sides.

volume (Figure 4a). The height of the cylinder repre-

sents the admissible rotations while horizontal sections

stand for the feasible translations given a fixed rotation.

Though Fk has no closed form, an approximation of

its gradient around a defined translation and rotation

U = (Ty, Tz, φ)T can be derived by means of successive

first order Taylor expansions and the Unscented trans-

form (Julier and Uhlmann 2004). This approximation

writes as

Fk (U + du) = Fk (U) +∇Fk (U)
T
du, (11)

with du = (dTy, dTz, dφ)T the infinitesimal motion vec-
tor applied around U and ∇Fk(U) the gradient of Fk
evaluated at U , which points to the direction of steep-

est ascent of Fk around U . A derivation of ∇Fk(U) is

proposed in Appendix 7.

The projected gradient algorithm is then used to

solve (P) numerically. It consists in iteratively updat-

ing the value of the decision variable U = (Ty, Tz, φ)T

obtained through the conventional gradient ascent

method by projecting it onto the closed convex set

T × R by means of the projection operator πT ×R(.)

defined as

πT ×R(U) , arg min
x
{‖U − x‖2, x ∈ (T ×R)} . (12)

This leads to Algorithm 1.

4 Geometrical insights

In this section, the geometry of the maximization prob-

lem (P) is depicted.
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Algorithm 1: Simplified Projected Gradient

Data:
– Moments of the initial belief at time k: x̂k|k, Pk|k
– Maximum admissible translation of the head: rmax

– Maximum admissible rotation of the head: φmax

– Step size: γ
– Number of iterations: M
– Projection operator onto T ×R: πT×R(Ty, Tz, φ)

Outputs: U∗ = (T∗y , T
∗
z , φ
∗)T , UM = (TyM , TzM , φM )T

Initialization

1 U0 = [Ty0, Tz0, φ0]T ;

for i = 0, . . . ,M − 1 do
2 evaluate di = ∇Fk(Ui), where Fk is defined on the

basis of the initial belief at time k;
3 set Ui+1 = πT×R (Ui + γdi);

4 end

Fig. 5: Contour lines and local gradient vectors of the

criterion Fk(Ty, Tz, 0) w.r.t. the translation variables

Ty, Tz, i.e., when no subsequent rotation is applied to

the head (φ = φ0 = 0). The red circle delimits the

admissible translations. The magenta spot depicts the

constrained local maximum.

4.1 Overview

Given a belief N (xk; x̂k|k, Pk|k) on the sensor-to-source

position at time k, it is interesting to consider the level

sets of the criterion Fk(Ty, Tz, φ) w.r.t. the translation

and rotation variables Ty, Tz, φ. The gradient vectors of

Fk(Ty, Tz, φ) are orthogonal to these surfaces and high-

light the directions of steepest ascent. Restricting to

horizontal sections of the admissible cylindrical set in-

dexed by values φ0 of the rotation variable can ease the

analysis. The contour lines of F (Ty, Tz, φ0) w.r.t. Ty, Tz

can be observed, as well as the 2-dimensional “local”

gradient vectors—which are just obtained by setting

the third entry of the genuine 3-dimensional gradient

vectors to 0 (Figure 5).

For the instances of the problem (P) considered in

Sections 4.2–4.3 below, the optimum solution(s) have

been observed to lie on the external surface of T ×R in

all considered scenarios (this fact has not been proved

analytically). So, the contour lines of the criterion Fk
constrained to the cylinder surface will also be dis-

played. To this aim, the following bivariate function is

introduced

F̃k(α, φ) = [Fk ◦ g](α, φ) (13)

with g : R2 → R3( α
φ

)
7→
( rmax sin(α)
rmax cos(α)

φ

)
,

where (α, φ) references the position onto the cylinder

surface (Figure 4a–4b).

4.2 Iso-entropy contour lines for ITD based

exploration

When l̄(θk) in (3) stands for the Woodworth-Schlosberg

farfield approximation (4) of the ITD between two an-

tipodal microphones placed on a spherical head, the

iso-zk loci are similar to those depicted in Figure 3.

The contour lines of Fk(Ty, Tz, φ0) are plotted on

Figures 6a–6c w.r.t. Ty, Tz for various subsequent rota-

tions φ0 of the head, given an initial frame Fk and a con-

fidence ellipse describing the belief N (xk; x̂k|k, Pk|k),

where x̂k|k = (1, 1.5)T . The set of admissible trans-

lations is also displayed, as well as the constrained lo-

cal maximum on the slice of the admissible set defined

by φ0.

In Figure 6a, the sensor undergoes a pure transla-

tion followed by no rotation. The contour lines of the

criterion appear to be distorted—i.e., the gradient of

the criterion is subject to important local variations—

whenever the translation is either T = (1, .)T or T =

(., 1.5)T . By refering to intuitive arguments from Sec-

tion 3.2, one can show that for T = (1, .)T (resp.

T = (., 1.5)T ), the distorsion is explained by the

fact that Ok+1 lies on the major axis of the confi-

dence ellipse associated to the next predicted state pdf

N (xk+1; x̂k+1|k, Pk+1|k) (resp. the interaural axis−→yRk+1

is aligned with the minor axis of this ellipse). For each

such restricted value of T , the head must get closer to

the source so as to reach a given value of the information

criterion, than if a neighboring unrestricted translation

were applied.
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Fig. 6: (a,b,c,e,f,g): Contour lines of the criterion Fk(Ty, Tz, φ0) w.r.t. Ty (abscissa, in meters) and Tz (ordinate,

in meters). (d,h): Contour lines of F̃k(α, φ) w.r.t. α (abscissa, in radians) and φ (ordinate, in radians). In (a,b,c,d)

(resp. (e,f,g,h)), the exploration is based on ITD measurements (resp. on ideal azimuth observations). The sensor

frame in the initial position Fk = (O,−→xR,−→yR,−→zR) is plotted in red. The initial estimate of the head-to-source

position is x̂k|k = (1, 1.5)T . The blue ellipse/circle represents the 99%-probability confidence ellipse associated

to the initial belief N (xk; x̂k|k, Pk|k). The red circle delimits the admissible translation T ∈ T . The blue frame

portrays the orientation of Fk+1 if a zero translation were applied. The contours are warm (resp. cold) when

Fk—or, equivalently, F̃k—has high (resp. low) values. On Figures (d,h), the horizontal red lines depict the limits

of the admissible head rotation, which have been set to ±60◦.

Subsequent rotations of the head by φ0 = +30◦ or

φ0 = −30◦ turn Figure 6a into Figure 6b or Figure 6c,

respectively. The contour lines are changed, and so is

the maximum restricted to the slice defined by φ0. It

is more interesting to apply a rotation of −30◦ than

+30◦, because the obtained optimum for φ0 = −30◦ lies

on a contour line with higher value (and thus warmer

color). Noticeably, the first distortions explained in the

above paragraph for a null rotation remain, while the

second ones are just rotated by φ0. Also, as the step

size between the index of two consecutive contour lines

is constant, and as these contour lines are not regularly

spaced, the closer the sensor gets to the source, the

higher is the increase in the information criterion Fk.

To get some insight on the maximum value of

Fk(Ty, Tz, φ) on the cylindrical surface of the admis-

sible set, the function F̃k(α, φ) has then been evaluated

for the same initial belief. It appears that its maximum

is located on φ∗ = −48◦ (Figure 6d).

In some cases, e.g., x̂k|k = (0, 1.5)T , the problem

(P) has several optimums, see Figures 7a–7b.

4.3 Iso-entropy contour lines for azimuth based

exploration

This section considers the following observation model

zk = θk + vk, zk ∈ R, vk ∼ N (0, Rk). (14)

Note that observing azimuth measurements contam-

inated with constant-variance noise is unrealistic in

practice. Indeed, when extracting azimuth measure-

ments from the binaural stream, the closer the sound

source is to the front axis (resp. to the interaural axis),
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Fig. 7: Contour lines of: (a) Fk(Ty, Tz, φ0) w.r.t. Ty, Tz;

(b) F̃k(α, φ) w.r.t. α, φ when (P) has two solutions.

Conventions similar to Figures 6a–6h are used.

the smaller (resp. the bigger) the associated uncertainty

is. Nevertheless, this case has been included because it

enables a verification of some intuitive features.

The iso-z loci corresponding to equispaced values of

the azimuth measurements are equiangular radial lines

passing through O . The confidence cones associated to

any measured azimuth then have the same width—they

are just rotated images of each other. So, given a belief

on the source position evenly spread around its genuine

location, the assimilation of such an azimuth measure-

ment intuitively brings the same information whether

the sensor remains static or whether it moves on a circle

centered on the source, regardless of its orientation.

The analysis of the contour lines of Fk(Ty, Tz, φ0)

w.r.t. Ty, Tz shows that they do not depend on the rota-

tion φ0 (Figure 6e–6f). Consequently, the contour lines

of F̃k(α, φ) w.r.t. α, φ are vertical (Figure 6h). Nonethe-

less, the contour lines are still distorted for T = (1, .)T

in (Figure 6e–6f) for the same reasons as those ex-

plained in Section 4.2. These distortions vanish when

the confidence ellipse associated to the initial belief is

circular (Figure 6g), and the contour lines become con-

centric. In this case, the only way to increase the gained

information on the source location is to get closer to it,

which is in agreement with the above intuition.

5 Evaluation of the algorithm

The whole three-stage scheme has been implemented on

a simulated or real KEMAR binaural head-and-torso-

simulator (HATS) from G.R.A.S.r(kemar.us) endowed

with omnidirectional planar motion, i.e., with two

translational and one rotational degrees of freedom.

This section reports the assessment of the obtained

audio-motor localization, depending on whether the

binaural head undergoes the active motion developed

in this paper or other kinds of open-loop movements.

For the sake of simplicity, the binaural head and the

robot supporting it move every Ts = 1s, then stop in

order to acquire binaural signals, perform their short-

term analysis (Stage A, Section 2.2) and update the

belief on the source position (Stage B, Section 2.3). To

drive the exploration, Stage C relies on the Woodworth-

Schlosberg measurement equation. The next best posi-

tion of the robot then comes from the solution of (P)

(Section 3.3).

The quality of the short-term azimuth estimation

in Stage A critically affects the behavior of the whole

binaural active localization. Therefore, in both simu-

lated and live experiments, a non-intermittent white

noise signal filtered by a 1kHz bandwidth band-pass

filter with 1kHz central frequency has been selected for

the sound source, as it endows the azimuth pseudo-

likelihood with modes much sharper than with speech

sources for instance (Portello et al 2013). Various ways

to cope with intermittent sources in Stages A or B have

been proposed in (Portello et al 2014b) and (Portello

et al 2012), but they have not been implemented here.

The movements of the binaural sensor have been lim-

ited in translation and rotation by r ≤ rmax = 0.1m

and |φ| ≤ φmax = 15◦.

5.1 Simulations with audio spatialization

The online rendering of realistic binaural signals caused

by a static sound source has first been simulated in an

anechoic environment. When the sensor moves, those

binaural signals are synthesized by using a database

of Head Related Impulse Responses (HRIRs) suited to

the used KEMAR HATS. This database as well as a

binaural simulator are publicly available at the URLs

www.twoears.eu and docs.twoears.eu/en/latest/

binsim/.

The sound source is initialized at the position

X = (1, 2)T in the robot frame F0 at time k = 0. To

simplify the notation in the legends of the next plots,

this frame is denoted as F0 = (O,−→x 0,
−→y 0,
−→z 0).

Various motions of the sensor have been simulated:

the proposed active strategy, a translation along the in-

teraural axis, a circular movement such that the front

direction of the head stays tangent to its trajectory, and

a random movement (Figure 8a). During the five first

seconds in all the scenarios, the same rotational move-

ment is applied to the sensor in order to disambiguate

front and back, so that at t = 5 s the Gaussian mixture

belief can be better approximated by a single Gaussian

pdf. The common progress of the audio-motor localiza-

tion from initial time t = 0 s to t = 5 s is displayed on

Figures 8c–8d. Then, each specific movement is applied

from time t = 6 s until the end.

kemar.us
www.twoears.eu
docs.twoears.eu/en/latest/binsim/
docs.twoears.eu/en/latest/binsim/


10 Gabriel Bustamante et al.

(a)

0 10 20 30 40
−2

−1

0

1

2

3

4

5

E
n
tr

o
p
y

Time (s)

 

 

← t=5

← t=1

← t=17

active movement
y

R
 translation

random movement

circular movement

(b)

(c) Initialisation (d) Situation at t = 5 s (e) Circular movement at
t = 17 s

(f) Active movement at
t = 17 s

Fig. 8: Simulated sound source localization for different scenarios. In the circular movement, the front direction is

tangent to the circle. The random path is generated by randomly selecting positions on admissible cylindrical set.

(a): Source position and head trajectories in the world frame (i.e., the initial frame F0). (b): Entropy decrease of

the posterior state pdf for the various motion strategies. (c,d,e,f): Interesting snapshots of the localization process

showing the binaural head (front direction in dashed red, interaural axis in dashed blue), the source (in red), and

the 99%-probability confidence ellipses of the hypotheses constituting the Gaussian mixture belief.

It can be observed that the active motion trans-

lates the sensor and rotates its fovea towards the es-

timated position of the sound source. By computing

the Gaussian moment-matched approximation of ev-

ery state belief
∑Ik
i=1 w

i
kN (xk; x̂ik|k, P

i
k|k), the entropy

h(xk|z1:k) has been evaluated for the different strate-

gies (Figure 8b). In terms of localization efficiency, the

active motion strategy clearly outperforms the random

and translation open-loop movements.

In view of the closeness of the entropies of the pas-

sive circular and active motions at each time t ∈ [6 s, 9 s]

and at t = 17 s, the confidence ellipses of the respec-

tive beliefs have similar sizes. However, they may have

distinct centers and/or orientations, see for instance

Figures 8e and 8f.

Between t = 9 s and t = 17 s, the entropies of the

posterior state pdfs obtained for the circular motion

are minimum. This does not contradict the fundamen-

tal property that, between any two consecutive times,

the active strategy finds the translation and rotation of

the head leading to the maximum decrease of the en-

tropy. In fact, this is an interesting example where the

sequence of N one-step-ahead optimum motions does

not constitute a N -step-ahead optimum motion.
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By Section 3.2, if at t = 17 s the head starts from

Figure 8e—where its (blue) interaural axis is close to

the confidence ellipse—and keeps moving on a circu-

lar path tangent to its front axis with no dynamic

noise, then only little information can be brought by

the measurement. In the simulated experiment, the en-

tropy even increases because the information loss im-

plied by a noisy dynamics cannot be compensated by

the little information gain brought by the measurement.

If at t = 17 s the head starts from Figure 8f—where its

(red) front axis intersects the confidence ellipse—then

there plausibly exists an admissible translation and ro-

tation which can further decrease the entropy, even if

little noise affects the dynamics.

5.2 Live experiments on a binaural robot

A KEMAR HATS has been mounted on a NEOBOTIX

MP-L655 nonholonomic mobile robot. In order to make

the head omnidirectional, i.e., to endow it with two

translational and one rotational degrees of freedom, the

neck of the HATS has been equipped with a homemade

controllable azimuth degree of freedom (Figure 1). Its

software architecture is based on the ROS middle-

ware. Real time components such as binaural audio

stream server or three-stage active localization have

been synthesized by means of the GenoM3 module gen-

erator (Mallet et al 2010). The supervision task which

manages the program, plots and saves the results, is

performed by a MATLAB
r client. The experiments have

been conducted in an open-space 15m× 5m× 8m area
delimited by dividing walls made of resin, so that re-

verberation effects were limited.

The results of the audio-motor localization for sev-

eral motion strategies as well as the genuine position

of the source measured by a real-time motion cap-

ture system—with ±0.1 mm accuracy—are displayed

on Figure 9. A translation along the interaural axis re-

duces the uncertainty on the distance to the source but

cannot disambiguate front from back. A pure rotation

(not shown on Figure 9 due to space reasons) resolves

the front-back ambiguity but cannot recover the source

range. The active motion drives the head in the same

way as before. The entropy of the moment-matched ap-

proximation of the state posterior pdf is reported on

Figure 10. A circular motion is also implemented, lead-

ing to a behavior quite similar to Section 5.1.

The whole three-stage framework runs in 5 ms on a

i7 quadcore laptop @2.8 GHz with 16 GB RAM. Further

videos are available on http://homepages.laas.fr/

danes/AR2016.

6 Conclusion and prospects

Given a Gaussian belief on the relative position of a

sound source with respect to a binaural head, a method

has been proposed to determine the admissible planar

motion of the sensor which leads to the one-step-ahead

best audio-motor localization. It internally relies on a

measure of the information brought by the incorpora-

tion of TDOA/ITD observations after the sensor has

moved. Any other measurement variable could guide

the exploration, provided that it is related to the hid-

den relative position by a closed-form equation similar

to (3). Experiments have been conducted on a sound-

scape rendering simulator and on a mobile binaural

robot, when the approach constitutes the “feedback

control” component of a three-stage framework to ac-

tive binaural localization.

Though the “one-step-ahead” statement of the syn-

thesis of the active motion of the sensor is greatly sim-

plified, several issues remain open even in this con-

text. An immediate problem concerns the gap between

the Gaussian prior required by the method and the

—multimodal—Gaussian mixture (1) provided by the

used estimation technique (GMsrUKF) in Section 2.3.

This is especially significant at the first localization

times, as the combination of the short-term azimuths

extracted from the binaural stream and of the sensor

motion does not yet enable front-back disambiguation

nor range recovery. Several elementary options can be

envisaged to get around this problem: (a) keep the most

probable hypothesis of the belief provided by the GM-

srUKF; (b) turn the genuine multimodal belief into

its Gaussian moment-matched approximation; (c) keep

the most probable “branch” of the genuine Gaussian

mixture—i.e., set of contiguous hypotheses with sim-

ilar azimuths— and compute its moment-mached ap-

proximation; (d) at the early times, apply elementary

translation and rotation movements to the head so as

to reduce the number of hypotheses in the Gaussian

mixture. In this paper, (b) and (d) were jointly used.

One more involved alternative is to avoid trading the

Gaussian mixture belief for a single Gaussian distri-

bution. As the differential entropy of a Gaussian mix-

ture density cannot be evaluated analytically, two so-

lutions can be envisaged: use an alternative measure

of information which can be expressed in closed-form

for a Gaussian mixture distribution and supports a

rule similar to (8); approximate the differential entropy

of a Gaussian mixture wherever needed by a closed-

form formula whose accuracy-complexity balance can

be handled. These topics are the subject of current re-

search.

http://homepages.laas.fr/danes/AR2016
http://homepages.laas.fr/danes/AR2016
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Fig. 9: Single-source localization for different scenarios: (a,b,c,d) translation of the head along the interaural axis;

(e,f,g,h) circular movement; (i,j,k,l) active motion. Snapshots (a–l) of the localization process display in the initial

frame F0 the binaural head (front direction in dashed red, interaural axis in dashed blue), the source (in red),

and the 99%-probability confidence ellipses of the hypotheses constituting the Gaussian mixture belief. They are

displayed at times: (a,e,i) t = 1 s; (b,f,j) t = 10 s; (c,g,k) t = 20 s; (d,h,l) t = 28 s. Screenshots of the recorded video

for the active motion scenario are reported at times: (m) t = 2 s; (n) t = 10 s; (o) t = 34 s.
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Fig. 10: Entropy reduction of the posterior state pdf for

various motion strategies

Though the proposed strategy does find the trans-

lation and rotation optimizing a one-step-ahead cri-

terion, the sequence of N such motions may be out-

performed by another sequence of admissible displace-

ments as explained in Section 5.1. This is why cur-

rent research also focuses on multi-step methods, where

the objective is to find a sequence of the robot com-

mands u? = {uk, uk+1, . . . , uk+N} which improves the

localization after N -steps. For instance, this optimum

N -step sequence may be obtained by expressing the

differential entropy of the belief at k + N and mini-

mizing its expected value over the next measurements

zk+1, . . . , zk+N , in the vein of Deutsch et al (2004).

A thorough evaluation of Stage A in several kind

of acoustic environments is in process. It will be fol-

lowed by the evaluation of the whole localization frame-

work, including the audio-motor localization Stage B

and information-based feedback control Stage C.

Finally, the integration of the proposed active local-

ization framework within a comprehensive computa-

tional model of human auditory perception—like the

one developed in Two!Ears—requires further investiga-

tion. Active localization has been viewed as a sensori-

motor function operating on short time ranges, i.e., a

low-level “reflexive behavior”. So, its interaction with

upper-level long-term cognitive processes needs to be

refined. Among the important issues are a kind of

exploration-exploitation dilemma: when and how must

a cognitive process decide between exploring—i.e., pa-

rameterizing and triggering an active localization re-

flexive behavior in order to gather information—and

launching an elaborate reasoning on the basis of its cur-

rent knowledge?

7 Appendix

Consider the posterior state pdf p(xk|z1:k) of the sensor-

to-source position at time k, and N (xk; x̂k|k, Pk|k)

the approximate Gaussian belief. This pdf can

be mapped into the 1D Gaussian approximation

N (zk+1; ẑk+1|k, Sk+1|k) of the predicted measurement

pdf p(zk+1|z1:k), by using the unscented transform. The

aim is then to maximize the variance Sk+1|k so as to in-

crease the entropy h(zk+1|z1:k). This involves the com-

position of several functions.

First the sigma-points
{
X−i
}

corresponding to

p(xk|z1:k) = N (xk; x̂k|k, Pk|k) are computed from the

posterior mean x̂k|k of the state vector at time k and

the Cholesky decomposition Pk|k = Lk|kL
T
k|k of the pos-

terior covariance:{
X−i
}

= Sigma points
(
x̂k|k, Lk|k

)
(15)

The sigma-points
{
X+
i

}
of the next predicted state

pdf p(xk+1|z1:k) = N (xk; x̂k+1|k, Pk+1|k) can be ob-

tained by applying the translation and rotation on each

sigma point in the set
{
X−i
}

. Note that (2) is defined

as a function of (Ty, Tz, φ), so that

∀i, X+
i = ΦX−i

(Ty, Tz, φ). (16)

Then the set of sigma-points
{
Z+
i

}
of the predicted

measurement pdf p(zk+1|z1:k) = N (zk; ẑk+1|k, Sk+1|k)

can be obtained from
{
X+
i

}
defined in (16) by:

∀i, Z+
i = l

(
−atan2

(
X+
i (1), X+

i (2)
))
, (17)

with X+
i (1) and X+

i (2) the components of X+
i , and

l(·) the measurement equation used to guide the explo-

ration. Finally the mean ẑk+1|k and variance Sk+1|k of

p(zk+1|z1:k) are computed by

ẑk+1|k =
∑
i

wimZ
+
i (18)

Sk+1|k =
∑
i

wic
(
Z+
i − ẑk+1|k

)2
, (19)

with
{
wim
}

and
{
wic
}

the classic weights of the un-

scented transform.

The log of the variance Sk+1|k comes as a function

of the finite translation and rotation, i.e., logSk+1|k =

Fk(Ty, Tz, φ). However the maximum of this function

is not analytically tractable. Its gradient around U =

(Ty, Tz, φ) is then computed as follows.

The first order Taylor expansion of the func-

tions ΦX−i
, atan2, l, and log, are composed around



14 Gabriel Bustamante et al.

U with infinitesimal translations and rotation du =

(dTy, dTz, dφ)T :

ΦX−i
(U + du) = ΦX−i

(U) + JΦX−i
(U) du

atan2(u, v)=atan2(u0, v0)+∇T atan2(u0, v0)

(
u− u0
v − v0

)
l(w) = l(w0) + l′(w0)(w − w0)

log(r) = log(r0) +
1

r0
(r − r0) (20)

with ∇ the gradient operator. JΦX−i
(U) is the Jaco-

bian of ΦX−i
at U . Then the result of the composition,

noted Zi(dTy, dTz, dφ), is used to retrieve the mean and

the variance with (18) and (19). Finally, the first order

Taylor expansion of Fk(dTy, dTz, dφ) is obtained, high-

lighting the gradient ∇Fk:

Fk (U + du) = Fk (U) +∇TFk(U) du. (21)
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