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Multi-Step-Ahead Information-Based Feedback Control
for Active Binaural Localization

Gabriel Bustamante1 and Patrick Danès1

Abstract— Binaural sound localization is known to be im-
proved by incorporating the movement of the sensor. “Active”
schemes based on this paradigm can overcome conventional
limitations such as front-back ambiguity and source range
recovery. Starting from a Gaussian prior on the relative position
of a source, this paper determines the motion of a binaural
sensor which leads to the most effective path for localization.
To this aim, a reward function is defined as the conditional
expectation, over the yet unknown N next observations, of
the entropy of the N -step-ahead posterior pdf of the relative
source position. The optimal motion of the binaural sensor is
obtained from a constrained optimization problem involving the
automatic differentiation of the reward function. The method is
validated in simulation, and is being implemented on a real-life
robotic test bed.

I. INTRODUCTION
In robot audition, binaural localization of sound sources

has been improved by the advent of “active” schemes, com-
bining binaural perception and motor commands. With such
techniques, the front-back ambiguity can be eliminated and
the source range can be recovered [1]. Then, the exploration
problem naturally arises, i.e., how to drive the binaural head
so as to improve the efficiency of the localization process.

This is related to information-theoretic control problems
which consist in determining system inputs in order to max-
imize an information criterion one or several steps ahead. In
robotics, Simultaneous Localization and Mapping (SLAM)
techniques have been extended to cope with this objec-
tive [2]. For instance, control inputs to a mobile robot can be
determined with a single-step-ahead method so as to improve
the knowledge of the environment, this information being
expressed in terms of Shannon entropy [3]. As a sequence
of one-step-ahead optimal controls does not necessary lead
to the best information [4] at the end of a time horizon,
multi-step methods have been investigated. The control of
a robot-mounted camera to optimize depth estimation has
been addressed [5], by maximizing an information gain
several steps ahead. Therein, future unknown observations
are assumed to match their predicted mean, as in [6]. Using
the same assumption, a multi-step ahead entropic criterion
has been proposed [7] to select the optimal zoom of a motor-
controlled camera in an object tracking task.

In robot audition, an audio-based motion planning strategy
has been proposed to improve speech recognition with one
microphone [8]. In [9], an agent selects pre-defined actions
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through (time-consuming) Monte Carlo Exploration in order
to approach a specific goal while reducing the entropy of the
one-step-ahead belief on a source position. An approximate
but tractable multi-step-ahead approach has been set up to
improve audio source localization by a robot equipped with
a microphone array [10]. The belief of the source position is
represented on a discrete grid, then optimal robot commands
over a fixed horizon are computed to minimize the expected
entropy of the grid. In [11], an optimal long-term robot
motion planning algorithm is proposed for active source
localization by performing (time-consuming) Monte Carlo
tree search.

This paper develops a multi-step-ahead control strategy
for sound source localization. First, the audio model is
presented, consisting in a rigid-body dynamics along with
an explicit measurement equation depicting audio cues for
exploration. Then the definition and computation of the
exploration reward function is addressed. The gradient of this
function is computed by means of automatic differentiation
and used in a constrained optimization problem leading
to the solution. Finally, the method is evaluated through
simulations on realistic data. Some aspects related to its
ongoing experimental assessment are discussed.

II. PROBLEM STATEMENT

A. Audio-motor model

Consider a mobile robot equipped with a binaural sensor,
i.e., two microphones R1 and R2 laid on an anthropomorphic
head. The position of the binaural sensor at discrete time k
is denoted by the frame Fk = (Ok,

−−→xRk,
−−→yRk,

−−→zRk) with Ok

the center of ‖
−−−→
R1R2‖. The vector −−→yRk =

−−−→
R2R1

‖
−−−→
R2R1‖

supports

the interaural axis while −−→zRk points frontwards. An omnidi-
rectional sound source E emits continously. It is supposed
to lie on the plane defined by (Ok,

−−→yRk,
−−→zRk), and its relative

coordinates in Fk are denoted by xk = (0, eyk, ezk)T . When
applying the control input vector to the head, the head-to-
source position varies according to the stochastic discrete-
time state equation

xk+1 = f(xk, uk) + wk, wk ∼ N (0, Qk), (1)

with wk a Gaussian zero-mean white dynamic noise of
covariance matrix Qk.

The short-term analysis of the binaural stream leads to
the extraction of binaural cues such as interaural differences
or azimuth likelihood [12]. At time k, a posterior proba-
bility density function (pdf – or “belief”) p(xk|y1:k) of the
head-to-source position is assumed to be available, e.g., on
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the basis of cues y1:k = y1, . . . , yk and motor commands
u0:k−1 = u0, . . . , uk−1. For instance, the Gaussian mixture
square-root unscented Kalman filter (GMsrUKF) proposed
in [13] can be used. This solution incorporates the likelihoods
p(yk|θk) of the source azimuths θk along time, so as to
express p(xk|y1:k) as a gaussian mixture.

B. N -step ahead exploration statement

The aim of the exploration strategy is to compute from the
belief at time k, the N next control inputs ūN = uk:k+N−1

of the binaural head which lead, on average, to the “best”
belief at the end of the N -step horizon, i.e., at time k +N .
This belief depends on the yet unknown observation vari-
ables yk+1:k+N . To guide the exploration, alternative fu-
ture observation variables zk+1:k+N (which can differ from
yk+1:k+N ) are defined. In the proposed approach, these
must be related to the hidden state vector xk and azimuth
θk = −atan2(ey, ez) by a scalar explicit observation model

zk = h(xk) + vk = h̄(θk) + vk, vk ∼ N (0, Rk), (2)

with vk the scalar Gaussian white zero-mean measurement
noise of variance Rk. Importantly, Rk must not depend on
the hidden value of xk. For instance, when the microphones
are laid on a spherical head and when the source is farfield,
h̄(θk) can express the Woodworth-Schlosberg approximation
of the interaural time difference (ITD) [14].

When the motion of the sensor is to be controlled in
real time, a predictive control strategy can be implemented,
which consists in applying the first element u?k of the N -
step-ahead optimal solution ū?N . Then, the new measurement
yk+1 becomes available. Its assimilation leads to the new
belief p(xk+1|y1:k+1) at time k+ 1, and the overall process
can be repeated. The question thus arises of the influence of
the selection of N on the obtained behavior, e.g.: to which
extent are the benefits of a N -step-ahead strategy (computed
from the average behavior of the system w.r.t. zk+1 : zk+N )
better than those of a single-step ahead optimum control?

C. Simplifying assumptions

To develop the exploration strategy, some simplifying
assumptions are made. First, at time k, a Gaussian be-
lief with mean x̂k|k and covariance Pk|k, denoted by
p(xk|z1:k) = N (xk; x̂k|k, Pk|k) is defined to initialize the
exploration strategy. It can typically be deduced from the
gaussian mixture p(xk|y1:k) by keeping its hypothesis of
maximum weight, by computing its moment-matched ap-
proximation, etc. Second, by denoting R(φ) the rotation
matrix of angle φ, the function f in (1) is defined as

f : R3 → R (3)

xk 7→ xk+1 = RT (φk)xk −RT (φk)Tk,

i.e., Fk+1 is the image of Fk by the rigid transform of
2D translation vector Tk ,

(−−−−−→
OkOk+1.

−−→yRk−−−−−→
OkOk+1.

−−→zRk

)
and rotation

angle φk , ̂(−−→zRk,
−−−→zRk+1)around−−→xRk

, see Figure 1. Therefore,
the control vector at time k is defined as uk = (Tk, φk)T .
The dynamic noise covariance Qk is supposed small enough

Fig. 1: Rigid motion of the binaural sensor

so that at first approximation, the loss of information during
the movement can be neglected. Indeed, if the binaural sensor
undergoes a noiseless rigid motion, then p(xk|z1:k) and
p(xk+1|z1:k) describe the same reality but expressed from
the viewpoints of frames Fk and Fk+1, respectively.

III. FEEDBACK CONTROL FOR BINAURAL
LOCALIZATION

A. Multi-step ahead information-theoretic reward function

The differential entropy of the stochastic vector xk
is a measure of uncertainty of xk. If xk is distributed
according to the conditional pdf p(xk|z1:k), then its entropy
is defined as H(xk|z1:k) = −

∫
p(xk|z1:k) log p(xk|z1:k)dx.

Likewise, the mutual information of two random
vectors xk, zk jointly distributed according to
p(xk, zk|z1:k−1) is equal to I(xk, zk|z1:k−1) = Ik with
Ik =

∫
p(xk, zk|z1:k−1)log p(xk,zk|z1:k−1)

p(zk|z1:k−1)p(xk|z1:k−1)dxkdzk.
I(xk, zk|z1:k−1) embodies the amount of information that xk
contains about zk [15]. The entropy of a Gaussian random
vector is an increasing function of the log determinant of its
covariance matrix, e.g., if p(xk|z1:k) = N (xk; x̂k|k, Pk|k)
then

H(xk|z1:k) =
1

2
log((2πe)2 det(Pk|k)). (4)

From the belief p(xk|z1:k) on the source position at time k,
the objective is to compute the sequence of control inputs
ūN that minimizes a reward function JN defined from the
entropy H(xk+N |z1:k+N ). Since this entropy depends on the
yet unknown N future observations zk+1:k+N , JN is set to
the conditional expectation

JN = Ezk+1:k+N |z1:k [H(xk+N |z1:k+N )] . (5)

From the assumptions defined in (II-C) and the Bayes rule,
the one-step-ahead reward function J1 can be set up as

J1 = K ′1 −H(zk+1|z1:k)

= K ′1 − F1(ū1), (6)

with ū1 = uk the next control input vector, K ′1 a scalar
constant independent of ū1, and H(zk+1|z1:k) = F1(ū1) the
entropy associated to the next predicted measurement pdf



p(zk+1|z1:k), which depends on ū1. For N ≥ 2, the reward
function JN (ūN ) comes as

JN = K ′N −H(zk+1|z1:k)

−
N∑
i=2

Ezk+1:k+i−1|z1:k [H(zk+i|z1:k+i−1)]

= K ′N − F1(ū1)

−
N∑
i=2

Ezk+1:k+i−1|z1:k [Fi(ūi, zk+1:k+i−1)] , (7)

where K ′N is a scalar constant independent of ūN ,
H(zk+i|z1:k+i−1) depends on the sequence ūi = uk:k+i−1

of control inputs up to time k + i− 1 and on the future obser-
vations zk+1:k+i−1, and is thus termed Fi(ūi, zk+1:k+i−1).
The proofs of equations (6) and (7) are given in appendix.

Since the function Fi cannot be expressed in closed-
form, a difficulty arises in the computation of the ex-
pectation integral in (7). For i ≥ 2, the conditional pdf
p(zk+1, . . . , zk+i−1|z1:k) of the random vector zk+1:k+i−1

(of size i− 1) is approximated by the Gaussian pdf
N (zk+1:k+i−1; ẑk+1:k+i−1|k, C) centered on ẑk+1:k+i−1|k
with covariance C, by means of the unscented transform.
On this basis, Ezk+1:k+i−1|z1:k [Fi(ūi, zk+1:k+i−1)] is approx-
imated from the evaluation of Fi at the 2(i− 1) + 1 sigma-
points {Zj}, by a linear combination involving the weights
{Wj} of the unscented transform, namely,∫

Fi(ūi, zk+1:k+i−1)p(zk+1, . . . , zk+i−1|z1:k)dzk+1:k+i−1

≈
2(i−1)+1∑

j=1

WjFi(ūi, Zj), (8)

in the vein of [16]. The sigma-points {Zj}
are deterministically drawn from the Gaussian
approximation N (zk+1:k+i−1; ẑk+1:k+i−1|k, C) of
p(zk+1, . . . , zk+i−1|z1:k), what involves the Cholesky
decomposition C = LLT . Finally, the reward function JN
can be rewritten as

JN = K ′N − F1(ū1)−
N∑
i=2

2(i−1)+1∑
j=1

WjFi(ūi, Zj). (9)

B. Gradient of the reward function

Computing the gradient of the reward function JN w.r.t.
the vector made up with the control input sequence ūN is
crucial to study the variations of the information with the
movement and to set up an optimization problem. Denote the
gradient operator as ∇ūN

= (∇T
uk
,∇T

uk+1
, . . . ,∇T

uk+N−1
)T .

In the expression

∇ūN
JN = −∇ūN

F1(ū1)−
N∑
i=2

2(i−1)+1∑
j=1

Wj∇ūN
Fi(ūi, Zj),

(10)

Fi(ūi, Zj) does not depend on control inputs applied after
time k + i − 1. So, ∇uk+i

Fi = . . . = ∇uk+N−1
Fi = 0, and

∇ūN
Fi solely depends on {∇ūl

Fl}l≤i. As Fi has no closed-
form equation, its gradient cannot be evaluated straightfor-
wardly. To avoid finite differences methods which arise the
difficulty of finding the balance between numerical precision
and truncation errors, a forward accumulation automatic
differentiation algorithm has been implemented [17]. The
program that computes Fi for specific control inputs values
ūi = ūi0 is complemented by automatic differentiation, so as
to compute the gradient ∇ūi

Fi(ūi0, zk+1:k+i−1) w.r.t. ūi at
these values. The algorithm relies on dual numbers algebra,
which extends the set of real numbers by adding a nilpotent
element ε such that ε2 = 0. So, any dual number zd writes
as zd = z + εż, with (z, ż) a pair of (real) value and (real)
derivative (e.g., the value and derivative of a given function
at a given point). For instance, suppose that ad = a + εȧ,
bd = b + εḃ. Then the dual number zd = bd cos(ad) writes
as z + εż with

z = b cos(a), (11)

ż = ḃ cos(a)− ȧb sin(a), (12)

which respectively correspond to the value and derivative of
g cos(f) at f = a, ḟ = ȧ, g = b, ġ = ḃ.

C. Constrained optimization problem

From the belief p(xk|z1:k) of the source position
at time k, the reward function JN (9) has been
set up. While minimizing JN is crucial, feasibility
of the control input sequence (i.e., limitations due
to the motion capacities) need to be taken into ac-
count. The sets T = {(Ty, Tz) ∈ R2 | Ty2 + Tz

2 ≤ r2
max}

and R = {φ ∈ R | |φ| ≤ φmax} define the admissible trans-
lation and rotation, with rmax (resp. φmax) the maximum
distance reachable by the robot (resp. the maximum possible
rotation of the head) between two consecutive time steps.
The constrained optimization problem PN follows:

(PN )


ū?N =arg min

ūN∈(T ×R)N
JN (ūN )

=arg max
ūN∈(T ×R)N

F1(ū1)+

N∑
i=2

2(i−1)+1∑
j=1

WjFi(ūi, Zj)

(13)
Using the gradient (10), pointing to the direction of

steepest ascent of JN , the problem PN is numerically solved
by means of a projected gradient algorithm. The values of
each element uk+i (for i ∈ {0, . . . , N − 1}) of the general
control input vector ūN , are iteratively updated through the
conventional gradient ascent method, then projected onto the
closed convex set (T ×R) by the operator

πT ×R(u) , arg min
x
{‖u− x‖2, x ∈ (T ×R)} . (14)

IV. SIMULATIONS WITH REALISTIC DATA

The whole binaural localization framework including, the
short-term detection of azimuth and the multi-Gaussian
filtering strategy has been implemented on a simulated
KEMAR binaural head-and-torso-simulator (HATS) from
G.R.A.S.r(kemar.us). The binaural head is supposed to

kemar.us
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Fig. 2: Simulated sound source localization for different exploration horizons. The control inputs are computed from the
minimization of the reward function J1,J2,J3 or J5 at each sampling time. (a): Source position, localization of the sound
source with the 99%-probability confidence ellispoids of the initial belief and head trajectories in the world frame (i.e., in
the initial frame F0) . (b): Decrease of the entropy of the filtered (posterior) state pdf for the various motion strategies. See
the url at the end for further experiments.

be endowed with omnidirectional planar motion, i.e., with
two translational and one rotational degrees of freedom. The
sound source is a non-intermittent white noise signal, filtered
by a 1kHz bandwidth band-pass filter with 1kHz central
frequency, as it endows the azimuth pseudo-likelihood with
modes much sharper than with speech sources for instance
[12]. The movements of the binaural sensor have been
limited in translation and rotation by r ≤ rmax = 0.1m
and |φ| ≤ φmax = 15◦.

The binaural signals perceived from the microphones
have been generated online, without reverberations. While
the sensor is moving, guided by the exploration strategy,
those binaural signals are synthesized by using a database
of Head Related Impulse Responses (HRIRs) suited to be
used with KEMAR HATS and recorded in an anechoic
environment. This database as well as a binaural simulator
are publicly available at the URLs www.twoears.eu and
docs.twoears.eu/en/latest/binsim. The sound
source is initialized at the position x0 = (0, 1.5, 1.5)T in
the robot frame F0 at time k = 0. To simplify the nota-
tion in the legends of the next plots, this frame writes as
F0 = (O,−→x 0,

−→y 0,
−→z 0).

The exploration strategy has been tested for different
horizons (figure 2). In each scenario, a receding horizon ex-
ploration strategy is applied. At each time of the simulation,
the sequence of control inputs is calculated from the solution
of PN with N = {1, 2, 3, 5}, and only its first element is
applied. The entropy H(xk|z1:k) of the posterior belief has
been evaluated for the different strategies. During the 10 first

seconds, although each strategy leads to a distinct position
of the binaural sensor, the four entropies are similar. The 5-
step strategy drives the binaural sensor directly to the sound
source, and offers the best results after t = 10s. This is
in accordance with the intuition that driving and heading
the binaural sensor towards the sound source improves the
localization [4].

The entropy of the posterior pdf has also been evaluated
for a large number of Monte Carlo runs for various horizon
lengths N = {1, 2, 7} (Figure 3). For each N , the compu-
tation of the first control input u0 (applied from k = INIT
to k = 1) does not depend on the run, as it is independent
of the next measurement z1. So, given N , no spreading is
observed on the entropy of the filtered state pdf at k = 1.
Incidentally, the obtained values are close to each other for
all N . At the end of an horizon defined by N = 7, the 7-step
strategy leads to the lowest average entropy, as expected.

V. CONCLUSION

We presented a multi-step-ahead information based feed-
back control for binaural localization. The main contributions
of this article are the theoretical reward function and the
implementation of an automatic differentiation design so
as to compute its gradient. The one-step-ahead exploration
strategy has been implemented on a real KEMAR binaural
head-and-torso endowed with omnidirectional planar motion
http://homepages.laas.fr/danes/IR2017. The
proposed multi-step-ahead strategy is being implemented too.
The single-step strategy can be computed online at each time

www.twoears.eu
docs.twoears.eu/en/latest/binsim
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Fig. 3: Distribution of entropies of the filtered state pdfs
for N -step-ahead controls, N = {1, 2, 7}. A set of 1000
experiments has been simulated for each N . In each set, the
measurement zk+1 subsequent to the filtered state pdf at time
k, has been drawn following the measurement process (2).
For N = {1, 2}, the control input vector ūN is calculated at
each time step and only the first element is applied. For
N = 7, the control inputs vector is calculated once, at
the initial step, and is applied throughout the horizon. The
bottom and top of the boxes respectively depict the first and
third quartiles, so that the boxes collect 50% of the data.
The extremities of the dash lines are the extremum values.
Finally, the empirical means of entropies are annotated with
black dots.

of the simulation. In view of the limited computation time
of the MATLAB implementation of the multi-step algorithm
for small N , i.e., less than 1 second for N ≤ 3, the method
is expected to work in real time. Besides, as many tasks do
not only aim at localization, another prospect is to develop
multiobjective feedback control policies which optimize a
tradeoff between localization and a conflicting goal, such as
reaching a specific position.

APPENDIX

The objective of this part is to demonstrate the results (6)
and (7). First, the mutual information I(xk+i, zk+i|z1:k+i−1)
of the state and observation vector at time k+i will be noted
Ik+i so as to simplify the notations. Then, the following
lemmata are introduced

Lemma 1: The expectation of the entropy H(xk+i|z1:k+i)
of the filtered state pdf at time k + i over the measurement
zk+i conditioned on the previous measurements can be
decomposed into

Ezk+i|z1:k+i−1
[H(xk+i|z1:k+i)] = H(xk+i|z1:k+i−1)− Ik+i.

(15)
Proof: At any time k, the entropy H(xk+1|z1:k+1) of

the next filtered state pdf can easily be shown to be connected
to the entropy of the next predicted state pdf and the mutual
information by an update rule such as [18],[19]

Ezk+1|z1:k [H(xk+1|z1:k+1)] = H(xk+1|z1:k)− Ik+1. (16)

The same relation holds between any set of consecutive time
instants k + i − 1, k + i by direct mathematical induction,

what leads to (15).
Lemma 2: The mutual information Ik+i of the state xk+i

and observation zk+i conditioned on past measurements can
be decomposed into

Ik+i = Ki +H(zk+i|z1:k+i−1), (17)

where Ki is independent of the sequence of control in-
puts ūi = uk:k+i−1.

Proof: The mutual information can be decomposed into
Ik+i = A+B such that

A =

∫
log

p(xk+i, zk+i|z1:k+i−1)

p(xk+i|z1:k+i−1)

p(xk+i, zk+i|z1:k+i−1)dxk+idzk+i, (18)

and

B = −
∫

log p(zk+i|z1:k+i−1)

p(xk+i, zk+i|z1:k+i−1)dxk+idzk+i. (19)

The quantity A can be rewritten as

A =

∫
log

p(xk+i|z1:k+i−1)p(zk+i|xk+i)

p(xk+i|z1:k+i−1)
(20)

p(xk+i|z1:k+i−1)p(zk+i|xk+i)dxk+idzk+i

=

∫
log p(zk+i|xk+i)

p(xk+i|z1:k+i−1)p(zk+i|xk+i)dxk+idzk+i

= −Exk+i|z1:k+i−1
H(zk+i|xk+i). (21)

Since H(zk+i|xk+i) solely depends on the covariance matrix
of the measurement noise Rk+i, A is a constant, accordingly
renamed Ki, which does not depend on ūi = uk:k+i−1.

B = −
∫

log p(zk+i|z1:k+i−1)

p(zk+i|z1:k+i−1)

(∫
p(xk+i|z1:k+i)dxk+i

)
dzk+i

= −
∫
p(zk+i|z1:k+i−1) log p(zk+i|z1:k+i−1)dzk+i

= H(zk+i|z1:k+i−1). (22)

Proof: [Proof of equation (6)] Applying Lemma 1 at
i = 1 and combining it with Lemma 2, the reward function
J1 writes as

J1 = −K1 −H(zk+1|z1:k) +H(xk+1|z1:k). (23)

Importantly, H(xk+1|z1:k) does not depend on ū1 = uk.
Indeed, it solely depends on the log-determinant of the
predicted covariance matrix Pk+1|k = RT (φk)Pk|kR(φk),
i.e., in view of the properties of rotation matrices, of the log-
determinant of Pk|k. Therefore, together with −K1, it can be
casted into a constant K ′1. Then, by denoting H(zk+1|z1:k)
as the function F1 of the control inputs ū1, one gets (6).

Proof: [Proof of equation (7)] The demonstration is
obtained by means of mathematical induction.

Basis: First, equation (7) is confirmed for N = 2. Con-



sidering the vector of commands ū2 = uk:k+1, the following
holds:

J2(ū2) = Ezk+1:k+2|z1:k [H(xk+2|z1:k+2)] (24)

= Ezk+1|z1:k
[
Ezk+2|z1:k+1

[H(xk+2|z1:k+2)]
]
.

By applying Lemma 1 at i = 2, J2 becomes

J2(ū2) = Ezk+1|z1:k [H(xk+2|z1:k+1)− Ik+2] . (25)

The assumption (used in the above proof) that there is no
loss of information during the head motion implies that
H(xk+2|z1:k+1) = H(xk+1|z1:k+1). Then by (6), one gets

J2(ū2) = K ′1 − F1(ū1)− Ezk+1|z1:k [Ik+2] (26)

From Lemma (2) at i = 2, the mutual information Ik+2 can
be replaced by K2 +H(zk+2|z1:k+1), with K2 constant and
H(zk+2|z1:k+1) denoted by F2(ū2, zk+1). Assembling the
constants into K ′2 lead to (7), i.e.,

J2(ū2) = K ′2 − F1(ū1)− Ezk+1|z1:k [F2(ū2, zk+1)] . (27)

Inductive step: Assuming that equation (7) is true for
step N , the fact that it holds for N + 1 is demonstrated
as follows. Applying the chain rule of expectations together
with Lemma 1 at i = N + 1 to JN+1(ūN+1) leads to

JN+1(ūN+1) = Ezk+1:k+N+1|z1:k [H(xk+N+1|z1:k+N+1)]

= Ezk+1:k+N |z1:k [H(xk+N+1|z1:k+N )]

− Ezk+1:k+N |z1:k [Ik+N+1] .

As H(xk+N+1|z1:k+N ) = H(xk+N |z1:k+N ), it follows that

JN+1(ūN+1) = JN (ūN )− Ezk+1:zk+N |z1:k+N
[Ik+N+1]

= K ′N − F1(ū1)

−
N∑
i=2

Ezk+1:zk+i−1|z1:k [Fi(ūi, zk+1:k+i−1)]

− Ezk+1:k+N |z1:k [Ik+N+1] . (28)

From Lemma 2 at i = N+1, the mutual information Ik+N+1

can be replaced by the sum KN+1 + H(zk+N+1|z1:k+N ),
with KN+1 constant and H(zk+N+1|z1:k+N ) denoted by
FN+1(ūN+1, zk+1:k+N ). Assembling the constants into
K ′N+1 shows that (7) also holds at N + 1.
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