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Benchmark model of Quanser’s 3 DOF Helicopter
Mirko Brentari, Paolo Bosetti, Isabelle Queinnec, and Luca Zaccarian

Abstract—This paper proposes a software benchmark tool for
the Quanser “3 DOF Helicopter” in the Mathworks Simscape
environment, based on a multi-body model of the experimental
setup. The proposed benchmark tool takes into account a number
of implementation features of the experimental setup and aims
at providing a tool for simulative validation and performance
analysis of control strategies. Along with this software-in-the-
loop tool, a novel reduced complexity non-linear model for the
Quanser “3 DOF Helicopter” is derived from the Lagrangian
description of the full multi-body model, with the scope of being
used in the control synthesis phase. The identification of the
models parameters is carried out following a “gray-box” type of
paradigm in order to match the models with the experimental
setup. A feedback linearizing control law is as well proposed,
based on the reduced complexity model. Closed-loop experimen-
tal results both show the accuracy of the simulated response
compared to the experimental response, and the effectiveness of
the proposed control strategy in a set-point regulation task.

I. INTRODUCTION

Propeller-actuated aerial vehicles and UAVs are gaining
increasing popularity (they are de-facto a standard) due to
their simplicity and the availability of increasingly cheaper
and lightweight control and sensing electronics. Nevertheless,
due to their under-actuated nature, they represent an inter-
esting and challenging control application. Many different
architectures of propeller-actuated aerial vehicles have been
proposed and studied, frequently in the VTOL (Vertical Take
Off and Landing) configuration. Among these, consider the
widespread quadrotors drones [1], ducted-fan configurations
[2], and helicopter-like configurations [3].

The use of a benchmark platform both for research and
educational purposes is a well established practice in these
days. Quanser [4] is a Canada-based company that supplies
a vast range of didactic platforms for control, robotics and
mechatronics applications. Among these, a relevant propeller-
based platform comprising many of the challenges of the
VTOL configuration is the “3 DOF Helicopter”, because not
only it is actuated by the nowadays vastly used propeller
actuation, but it is underactuated and embeds a multi-body
dynamics. It is composed by three rotational joints, with
the end bar carrying a pair of propellers actuated by DC-
motors. Measurements of the joints angles are supplied by
incremental encoders and two power amplifiers are in charge
of actuating the DC-motor/propeller assemblies. Both angular
measurements and control voltages are then made available in
MATLAB-Simulink environment.

For these reasons, Quanser’s “3 DOF Helicopter” is con-
sidered a challenging application and a good benchmark
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example. Indeed, many works focusing on the control of this
platform have appeared in the last years, proposing a variety
of control strategies and focusing on different aspects. Among
them, robust schemes are widely investigated. For example,
[5] proposes two robust controllers based on sliding mode
techniques, while [6] proposes a robust hierarchical controller.
The authors of [7] focus on the regulation of two of the three
helicopter’s degrees of freedom thanks to a robust attitude
control algorithm and an exogenous system in charge of
generating the reference signals. Adaptive control seems to be
another well investigated control strategy. Indeed, [8] makes
use of the “3 DOF Helicopter” for experimentally validating
an adaptive attitude controller based on the super-twisting
algorithm, while in [9] the adaptive paradigm is addressed
based on passivity and Implicit Reference Model techniques.
In [10] an LMI procedure is proposed which allows designing
simple adaptive control laws, while [11] focuses on an adaptive
parameter identification algorithm. In [12], an adaptive con-
troller is proposed which considers adaptation to parametric
uncertainty, unmodeled dynamics, and actuator characteristics,
while in [13] a nonlinear adaptive controller is considered,
which includes a parameter identification scheme in the closed
loop. In [14] a nonlinear model using a tree structure notation
is developed, whose parameters are identified with an inverse
dynamic model, while [15] deals with the trajectory tracking
problem considering both state and input constraints in order to
accomplish aggressive maneuvers. Finally, in [16] a nonlinear
multivariable predictive controller is proposed, based on a
each-sample-linearization of a neural network model of the
nonlinear plant.

All of the above mentioned works are based on various
reduced complexity models of the full helicopter dynamics. In
this paper, instead, we propose the derivation of a full dynam-
ical model of the Quanser “3 DOF Helicopter” experiment,
based on a multi-body representation of the physical setup.
Based on this representation, we develop a software-in-the-
loop platform in the MATLAB-Simulink environment based on
the Simscape package that takes into account a number of
implementation features. We provide a downloadable version
of this implementation as well, in order to make it usable by
everyone for testing and validating control algorithms thereby
obtaining reliable results before running actual experiments.
We believe that this be a valuable benchmark, especially for
teaching purposes but also for research results. Indeed, to
the best of our knowledge, no reliable simulation model is
available in the literature for this widespread experimental
setup. In addition to the above, based on the Lagrangian rep-
resentation of the full dynamical model, a reduced complexity
model is also derived, with the scope of supplying a tool
to be used in the control synthesis phase. Differently from
past works, the reduced complexity model is derived with a



strong link to the full dynamical model in mind. Both the
full model and the reduced one have been tuned in a system
identification procedure using experimental data. A feedback-
linearizing controller has been finally developed based on the
reduced complexity model. This control strategy has been then
tested on the simulation tools and on the real experiment,
obtaining consistently desirable results.

The paper is organized as follows. In Section II a multi-
body model of the Quanser “3 DOF Helicopter” is proposed.
In Section III, the reduced complexity model is derived. The
identification of the system parameters and the comparison of
the proposed models with respect to the experimental setup is
addressed in Section IV, while in Section V the synthesis of
the control law is illustrated. Closed-loop experimental results
and comparisons are reported in Section VI.

II. THE EXPERIMENTAL SETUP AND MECHANICAL MODEL

The experimental setup considered in this work is the
Quanser “3 DOF Helicopter” and we will refer to it as “the
helicopter”.

It is composed by a base on which an arm is connected
by means of 2 revolute joints, one allowing the arm to rotate
around the vertical axis (the “travel” motion), and one allowing
the arm to tilt around the horizontal axis (the “elevation”
motion). The helicopter body is mounted on one of the two
extremities and it is allowed to tilt around the axis aligned
with the arm (the “pitch” motion). It carries two propellers
actuated by two DC-motors, which can generate a force that
depends on the applied voltage. On the other arm extremity,
a counterweight is mounted. The three “degrees of freedom”
(dof ), (i.e. the travel, the elevation and the pitch) are measured
by three encoders with a resolution of 0.0015rad. A picture of
the helicopter is reported in Figure 1.

Figure 1: Picture of the Quanser “3 DOF Helicopter”.

In order to study the helicopter motion, we now proceed
with the illustration of a mechanical dynamical model (the
“mechanical model” in the following) that fully describes the
helicopter mechanical dynamics. This model is a lumped-mass
model, with the mass concentrated in four points, two rep-
resenting the counterweight and the arm, and the other two
representing the two motor-propeller assemblies. In Figure 2,
a representation of the model is depicted.

Some simplifying assumptions are exploited when deriving
the mechanical model: the gyroscopic torques developed by
the spinning motor-propeller assemblies are neglected, as well
as the aerodynamic effects acting on the helicopter. The
structure is considered as non deformable.
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Figure 2: Mechanical model of the helicopter.

Let us start by defining an inertial Reference Frame (RF)
{X-Y -Z} whose origin corresponds to the point where the
arm is connected to the base by means of the two revolute
joints. We will refer to this reference frame as the “inertial
RF”. We consider the gravity acting along the negative Z
direction with magnitude g. A second RF {X ′-Y ′-Z ′} (rep-
resented in light red in Figure 2) is obtained by applying
to the inertial RF a Z-Y rotation sequence, corresponding
respectively to a rotation of an angle λ(t) (travel angle) and a
subsequent rotation of an angle −ε(t) (elevation angle). The
arm of the helicopter lays along the X ′-axis: for this reason
we call the {X ′-Y ′-Z ′} frame the “arm RF”. The arm mass is
concentrated at its extremities, therefore we place a first mass
m1 at [−l1, 0,−d1]> and a second mass m2 at [l2, 0, 0]>, both
in the arm RF. A third RF {X ′′-Y ′′-Z ′′} (represented in light
blue in Figure 2) is obtained starting from the arm RF and
applying a translation of l2 along the X ′-axis and a rotation
of an angle θ(t) (pitch angle) around the same axis. The
helicopter body lays in this third RF, for this reason we refer
to {X ′′-Y ′′-Z ′′} as the “helicopter body RF”. As mentioned
before, the helicopter body mass m3 is split in two halves,
each one concentrated at one extremity of the helicopter
body. Therefore, the two masses representing the motors-
propellers assemblies are placed respectively at [0, l3,−d2]>

(front motor-propeller assembly) and at [0,−l3,−d2]> (rear
motor-propeller assembly), both coordinates being expressed
in the helicopter body RF. Moreover, two lumped forces
parallel to the Z ′′-axis are placed in correspondence to the
two motor-propeller assemblies, respectively f1 for the front
and f2 for the rear. These forces represent the forces generated
by the spinning propellers. Finally, two torques γ1 and γ2 are
applied at the same positions, representing the aerodynamics
drag torques exerted by the propellers.

Without loss of generality, a constraint equation is added
to the mechanical model, and it is such that the elevation
equilibrium position corresponds to zero. This is done by
selecting m1 = l2

l1
(m2 +m3).

The friction at the joints has to be taken into account
as well. While complex friction models, such as Coulomb
friction, could be considered and implemented in the mechan-
ical model, those highly nonlinear effect do not seem to be
dominant in the experimental responses. Therefore, to reduce
the model complexity we consider only linear viscous friction
acting at each joint. Similar assumptions have been made in
past works focusing on this experiment, for example in [9],
[8], and in [10].



As the common practice, we assume that both the thrust
forces f1 and f2 as well as the drag torques γ1 and γ2 exerted
by the propeller have a quadratic relationship with the angular
speed of the propellers themselves (see for example [17] and
[18]). This leads to a linear relation between the thrust force
and the drag torque (see for example [19]):

γi = kγffi i ∈ {1, 2}. (1)

For the helicopter, the propellers are both right-handed, there-
fore kγf < 0.

The mechanical model introduced in this section fully
describes the dynamics of the helicopter experiment, and can
be used in order to validate a reduced complexity model
that can be used for control design purposes. Moreover, it
can be straightforwardly implemented in numerical physical
simulation softwares such as MathWorks Simscape in order to
simulate the helicopter dynamics and using it as a model-
in-the-loop test platform for control strategies. Indeed, a
MathWorks Simscape implementation of the proposed model
is provided here (https://github.com/mrkrb/3dof helicopter
benchmark), which embeds as well the identified parameters
thanks to the procedure discussed further in the paper in
Section IV.

III. REDUCED COMPLEXITY MATHEMATICAL MODEL

The aim of this section is to build a reduced complexity
mathematical model of the helicopter that, in spite of its
simplicity, captures the most relevant dynamic behavior of the
real experiment. This model is useful in order to synthesize
control laws, and we will refer to it as the “control model”. The
control model is constructed based on the mechanical model
described in Section II, depicted in Figure 2.

The Lagrangian approach is widely used in order to compute
the equations of motion of multi-body systems as the one of
the helicopter (see, for example, [20, Chapter 7]).

The equations of motion of the system are obtained from
the Lagrange equation:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= ξ (2)

where L = K − U is the Lagrangian function defined as the
difference between the kinetic K and potential U energies, q ∈
Rn is the vector of the generalized coordinates, and ξ ∈ Rn is
the vector of the generalized forces associated to q. In the case
of our mechanical model, we select q(t) = [λ(t), ε(t), θ(t)]>

(see Figure 2).
In general, for a mechanical system equation (2) can be

written in the following standard form [20, Section 7.1.3]:

M(q)q̈ + C(q, q̇)q̇ +Rq̇ + g(q) = S(q)τ (3)

where M(q) is a symmetric uniformly positive definite and
uniformly bounded matrix representing the inertia of the
system, C(q, q̇) is a matrix associated to the Coriolis and
centrifugal terms. R is a diagonal matrix of viscous friction
coefficients, g(q) represents the gravitational term, S(q) is an
n×m actuation matrix that maps the real input forces of the
system τ ∈ Rm into the generalized forces ξ.

In our case, we choose as τ as a combination of the input
forces f1 and f2 exerted by the propellers (see Figure 2):

τ :=

[
fs
fd

]
:=

[
f1 + f2

f1 − f2

]
. (4a)

This choice allows us to obtain a more compact input matrix
S(q) and, as clarified in the following, it is more convenient
during the control synthesis.

For the sake of conciseness, we report here only the terms
R, g(q), and S(q), since the full M(q) and C(q, q̇) are very
complex and not necessary for the derivation below:

R :=



rλ 0 0
0 rε 0
0 0 rθ


 , (4b)

g(q) :=




0
g

l1
sin(ε)(d1l2(m2 +m3) + d2l1m3 cos(θ))

gd2m3sin(θ) cos(ε)


 ,

(4c)

S(q) :=



−l2 cos(ε) sin(θ) 0

l2 cos(θ) 0
0 l3




︸ ︷︷ ︸
:=S1(q)

+

+



kγf cos(ε) cos(θ) l3 sin(ε)

kγf sin(θ) 0
0 0




︸ ︷︷ ︸
:=S2(q)

,

(4d)

where we emphasize the peculiar structure of the two terms S1

and S2 in the expression of S(q) := S1(q)+S2(q) in (4d). This
structure is motivated by the fact that we will consider S2(q)
acting on the system as a bounded-time-varying disturbance,
which will be neglected in the reduced complexity model. This
results into having a decoupled input action on the λ-ε and on
the θ dynamics.

The control model that we are going to introduce is a
simplified version of the full equations of motion (3) of
the mechanical model presented in Section II, where some
terms are neglected after some assumptions. In particular, the
following assumptions are made.

Assumption 1: The inertial coupling effects are neglected,
and the diagonal part of M(q) is constant or slowly vary-
ing. Moreover, the Coriolis and centrifugal term C(q, q̇)q̇ is
neglected.
We make this assumption because the terms M(q) and C(q, q̇)
are the most convoluted ones and their contribution is not
fundamental for reproducing the relevant part of the dynamical
behavior of the helicopter, as confirmed later in the paper.
Assumption 1 turns into having a diagonal and constant inertia
matrix M and not having the C(q, q̇)q̇ into the control model.
Based on these assumptions, the following control model is
obtained:

q̈ = M−1 (−g(q)−Rq̇ + S1(q)τ) (4e)

where

M :=



jλ 0 0
0 jε 0
0 0 jθ


 , (4f)

https://github.com/mrkrb/3dof_helicopter_benchmark
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ji, i ∈ q are constant parameters to be identified and
As one can notice, the control model (4) preserves the

full gravitational term g(q) and a part of the input matrix
S(q) of the mechanical model, at the cost of neglecting the
complex terms of the inertial coupling between the different
dof , the fictitious forces contained in the C(q, q̇) term, and
a part of the input matrix, which is considered to act on the
system as a limited-time-varying disturbance. Even with these
simplifications, in the following sections it will be shown that
the relevant dynamical behavior of the helicopter is retained.

Model (4) will be tuned with a system identification proce-
dure in order to reproduce as well as possible the helicopter
dynamics.

Hereafter, we rearrange the equations of the control model
(4) collecting the physical parameters into a set of non-
redundant parameters to be identified.

q̈ = −g(q)−Rq̇ + S1(q)τ (5a)

where

g(q) := M−1g(q) =




0
sin(ε)(aε1 + aε2 cos(θ))

aθ cos(ε) sin(θ)


 , (5b)

R := M−1R =



cλ 0 0
0 cε 0
0 0 cθ


 , (5c)

S1(q) : = M−1S1(q) =



−bλ cos(ε) sin(θ) 0

bε cos(θ) 0
0 bθ


 =

=



−bλ cos(ε) 0 0

0 bε 0
0 0 bθ




︸ ︷︷ ︸
:=T (ε)




sin(θ) 0
cos(θ) 0

0 1




︸ ︷︷ ︸
:=B(θ)

.
(5d)

The factorization of the input matrix S1(q) = T (ε)B(θ) will
be useful for the synthesis of the control law proposed in the
following.

We thus obtain the following equations of motion:

λ̈ = - cλλ̇ - bλ cos(ε) sin(θ)fs

ε̈ = - aε1 sin(ε) - aε2 sin(ε) cos(θ) - cεε̇+ bε cos(θ)fs

θ̈ = - aθ cos(ε) sin(θ) - cθ θ̇ + bθfd

(5e)

whose state is q = [λ, ε, θ]> with q̇, and whose input is τ =
[fs, fd]

>. It is worth to point out that the factorization of the
parameters of model (4) into the redundant parameters of (5)
is not a reversible relationship, but it makes sense in a system
identification procedure viewpoint as it will be commented
in Section IV. Despite in literature many reduced complexity
model of the experimental system of Quanser considered here
[21] are present, the control model (5) is somewhat new and
better justified than the existing ones in [6], [8], [9], [10],
and [15], while preserving their core structure. In particular,
in the reduced complexity model proposed in [6], the authors
take into account a Coriolis contribution in the ε dof , while in
[10] a variant of the input matrix is considered. In [8] and [15]

slightly different input and gravitational effects are considered,
while in [9] only the θ dof dynamics is taken into account,
thanks to the same equation of motion considered in [10]. As
a result, the reduced complexity models considered in these
works are simpler than the one proposed here and there is no
clear link between the multi-body dynamics and the reduced
models.

Conversely, the control model (4) and (5) is preferable and
more justifiable due to its clear and strong link with the
Lagrangian representation of the equation of motion of the
helicopter’s mechanical model (3).

IV. IDENTIFICATION AND RESPONSES COMPARISON

In this section we describe the identification procedure
followed in order to estimate the models parameters. A “gray-
box model estimation” paradigm has been followed, in which
the goal is the estimation of the model parameters of a known
model. As outlined in Section II, in the experimental setup the
input forces are generated by applying a voltage to each motor-
propeller assembly. In the following subsection, the relation
between the applied voltages and the exerted forces will be
identified.

A. Input nonlinearity

Consider a τ in (4a) such that fd = 0 and consider that
the two motor-propeller assemblies are equal. Under these
conditions, we can state that

fs = h(vs) (6)

where vs = v1 + v2 is the total voltage applied to the motors,
and h is an unknown function that maps the total voltage vs
into the thrust fs. Consider now the elevation dynamics in
equation (5) at some equilibrium, with θ = 0, and with a
constant input fs = h(vs):

− aε1 sin(εss) + bεh(vs) = 0 (7)

By applying n different voltages vs,k k ∈ {1 . . . n} spanning
the allowed range [−10, 10]V ([−5, 5]V for each motor), it is
possible to take n samples of a scaled version h̃ of function
h (and therefore a scaled version f̃s of the thrust fs) by
observing the resulting steady state condition εss,k :

f̃s := h̃(vs) := c fs = c h(vs) = sin(εss) (8)

The voltage to be applied to a motor in order to exert a desired
scaled force f̃i can be then computed as:

vi =
1

2
h̃−1(f̃i) , (9)

with i ∈ {1, 2}. Since we are identifying a scaled version
of the thrust, we include as well a normalization procedure,
such that the maximum applicable scaled force f̃i, i ∈ {1, 2}
corresponds to 1. Based on some experimental evidences and
intuitions, h̃(vs) has been selected to be a locally quadratic



and globally linear function based on the following piecewise
description:

h̃(vs) :=





p−2 vs + p−3 if vs ≤ vsn
p−1 v

2
s if vsn ≤ vs ≤ 0

p+
1 v

2
s if 0 ≤ vs ≤ vsp

p+
2 vs + p+

3 if vsp ≤ vs

, (10)

where vsn and vsp represents threshold values specified below.
This particular choice can be justified observing that the
transfer function of a DC motor is such that in steady state
conditions the rotational speed depends linearly on the applied
voltage and on the applied load torque. Then for a DC motor
with a propeller connected on its shaft, since both the thrust ad
the aerodynamic load torque exerted by the propeller depend
quadratically on the rotational speed, a linear relation between
the voltage applied to the DC motor and the thrust exerted by
the propeller is expected. Nevertheless, at slow rotational speed
the aerodynamic load torque is negligible, and a quadratic
dependence between the thrust and the voltage emerges.

A least square procedure has been then applied to identify
the parameters of function (10), in order to best fit the exper-
imental samples. C1 continuity constraints of function (10)
have been imposed during the optimization procedure. The
threshold values vsn and vsp have been manually selected
based on the measured points. The numerical values are
reported in Table I. In Figure 3 both the experimental samples
and the fitted function are depicted. Note that the function is
non symmetric due to the propellers shape.

−10 −5 0 5 10
−0.23

0

0.5

1

vs[V]

f̃
s

exp. samples

fit

Figure 3: Input nonlinearity relation within the domain
[−10, 10]V of the voltage input vs.

Due to the fact that a scaled version of the forces f̃s has been
identified, we introduce the scaled input τ̃ acting on model (5)
defined as:

τ̃ = cτ. (11)

Due to this scaling, we will identify a scaled version of the
input parameters of the control model bλ, bε, bθ, taking into
account the scaling factor, i.e. b̃λ = bλ/c, b̃ε = bε/c, b̃θ =
bθ/c.

B. Identification of the models parameters

Once the relation between the scaled version of the forces
exerted by the two motor-propeller assemblies has been identi-
fied, the estimation of the model parameters can be faced. The

parameter cλ b̃λ aε1 aε2 cε b̃ε

value 0.274 0.257 2.356 0.799 0.053 0.565

unit 1
s

1
s2

1
s2

1
s2

1
s

1
s2

parameter aθ cθ b̃θ p−1 p−2 p−3

value 0.858 0.048 7.340 -0.012 0.024 0.012

unit 1
s2

1
s

1
s2

1
V2

1
V

-

parameter p+
1 p+

2 p+
3 vsn vsp

value 0.028 0.111 -0.111 -1 2

unit 1
V2

1
V

- V V

Table I: Control model identified parameters.

identification procedure is based on a “gray-box” paradigm,
both for the mechanical model and the control model, as
detailed next.

1) Identification of the control model: For the control
model the “gray-box” identification has been carried out using
MATLAB idnlgrey and pem tools, due to their suitability
for identifying nonlinear systems. Firstly, the free motion of
the ε-θ dynamics has been identified. This permits to have
an estimate for the parameters of the autonomous part of the
ε-θ dynamics in equation (5), i.e. aε1, aε2, cε, aθ, cθ. To this
end, experiments with initial elevation and pitch angle different
form zero and no voltages applied to the motors have been
carried out. The parameters estimation resulting from this first
identification procedure has then been used as a warm-start
for the identification of the full motion. Forced experiments
have been performed with input voltages consisting in a
combination of steps in f̃s and f̃d applied to the helicopter.
The resulting parameters estimation for the control model are
reported in Table I.

2) Identification of the mechanical model: The identifica-
tion of the mechanical model is more delicate than the one of
the control model. First of all, there are more parameters to be
identified. In addition to the lengths, masses and friction coeffi-
cients, there are the constant kγf in equation (1) generating the
aerodynamic drag torques, and the constant c in equation (11)
needed to generate the real forces starting from the scaled
forces. Secondly, the mechanical model is computationally
heavier to be simulated. Moreover, there exist more than one
realization of the mechanical model that produce the same
responses of the experimental setup. Indeed, the same inertia
properties can be achieved with infinitely many combinations
of lengths and masses. For this reason, and in order to remove
some degrees of freedom during the identification process, the
length parameters l1, l2 and l3 have been constrained to be
similar to the ones of the real experiment. The experimental
data used to tune the mechanical model are the same used
to identify the control model. An initial manual tuning has
been performed in order to fit as close as possible the free
motion. Then, starting from this first tuning, an optimization
procedure has been launched in order to refine the parameters
with the aim of minimizing the RMS of the difference between
the responses of the mechanical model with respect to the
experimental responses. To this end, the MATLAB functions
lsqnonlin and ga have been used, due to their flexibility



parameter l1 l2 l3 d1 d2 m2

value 0.520 0.650 0.180 0.192 0.003 1.00

unit m m m m m kg

parameter m3 rλ rε rθ kγf c

value 0.771 0.250 0.050 0.003 -0.067 1.272

unit kg Nms Nms Nms m Nm

Table II: Mechanical model identified parameters.

and the good exploration properties of the genetic algorithm.
The resulting parameters estimation for the mechanical model
are reported in Table II.

Figure 4 shows the results of the identification procedure
of both the mechanical model and the control model in the
case of the experimental data used during the identification
procedure (the identification set), while Figure 5 shows the
responses in the case of experimental data different from the
one used during the identification procedure (the validation
set). Below each plot, a table reports the RMS of the difference
between the experimental data and the models responses. From
these tables it is possible to notice that in the case of the
identification set, the mechanical model performs better than
the control model, as expected. Except for the λ dof , this
trend is present in the validation set as well. With regard
to the λ dof , some observation can be done to justify the
mismatch in the responses. Consider firstly the λ responses
after 20s. Except for a rigid translation, here the trend of both
the control model and the mechanical model are similar to the
real one, with more detail fidelity produced by the mechanical
model. The big difference is in the motion accumulated during
the responses before 20s. This mismatch can be justified by
considering that the λ dynamics is such that a non constant
solution can only be experienced with a nonzero input. This
makes the identification procedure of the λ dof harder and
even a slight presence of dry friction can influence the re-
sponse. Nevertheless, it will be shown that the closed-loop
responses are such that this mismatch is compensated by the
stabilizing controller.

V. CONTROLLER DESIGN

The synthesis of a control law for the underactuated plant
(5) is based on a time scale separation paradigm, where the
travel λ and the elevation ε are treated as the slow dynamics,
the pitch θ as faster than the latter two dof , and the neglected
propeller dynamics between the commanded thrust (requested
by the controller) and the exerted control input τ as the fastest
quantity.

The controlled dof are the travel λ and the elevation ε,
to which we will refer as qc := [λ, ε]>. The corresponding
reference qcr := [λr, εr]

> is constant.
Firstly, we derive a feedback linearization control which

relies on a virtual input ν ∈ R3. Then, a reference value θr
for the pitch angle and the input τ are selected in such a way
to match the virtual input.
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A. Feedback linearization

Considering qcr as the constant reference for the controlled
dof qc = [λ, ε]>, we define the tracking error as:

q̃ :=

[
qc − qcr
θ − θr

]
(12)

Following a feedback linearization paradigm, we would
like the dynamics of the mismatch q̃ to behave like three
decentralized damped oscillators, therefore we impose the
following dynamics:

¨̃q = q̈ = −Ξ˙̃q − Ω2q̃ = −Ξq̇ − Ω2q̃ (13a)

where
Ω := diag(ωλ, ωε, ωθ) , (13b)

Ξ := 2diag(ζλωλ, ζεωε, ζθωθ) , (13c)

and ζi > 0, ωi > 0, i ∈ {λ, ε, θ} are tuning parameters and
represent respectively the damping terms ζi and the natural
frequency ωi of the artificial damped oscillator dynamics. We
now proceed in substituting equation (13a) into the underactu-
ated plant dynamics (5a), which for the sake of clarity is here
recalled

q̈ + g(q) +Rq̇ = T (ε)B(θ)τ (14)

Substituting equation (13a) in (14) it is possible to compute
the virtual control action ν needed in place of B(θ)τ in order
to make the mismatch dynamics behave as specified in (13a):

ν := T−1(ε)
(
g(q)− Ω2q̃ − (Ξ−R)q̇

)
+ νff , (15)

noting that T (ε) defined in (5d) is diagonal and invertible
thanks to the fact that cos(ε) > 0 due to the constraint on the
elevation dof in the real experiment: ε ∈ [−15◦, 15◦]. In (15)
we introduced a feedforward term νff := [νλff , 0, 0]> as a con-
stant steady-state compensation acting on the first component
of ν. This term improves the steady state tracking performance
of the λ dof by compensating for the disturbance produced by
the (1,1)-element of matrix S2(q) in equation (4d). Note that
the cos(ε) term present in the (1,1)-element of matrix S2(q) is
matches with the same term in the matrix T (ε) that multiplies
the virtual input ν.

With the above equation, we introduced the idea of using ν
as a virtual input in order to make the underactuated system
behave as a linear system. We now proceed in manipulating the
virtual input in order to obtain the real input. We will compute
an input τ and a reference value for the pitch dynamics θr in
such a way that the real applied input produces an effect as
close as possible to the desired one.

B. The virtual input

We would like B(θ)τ to be as close as possible to the
computed virtual input ν = [νλ, νε, νθ]

> in equation (15).
Considering the slow dynamics as constant, we define the
mismatch between the desired virtual input and the applied
virtual input:

η := ν −B(θ)τ , (16)

and the following objective function:

J(θ, τ) := ‖η‖2 = ‖ν −B(θ)τ‖2

=ν>ν − 2ν>B(θ)τ + τ>τ
(17)

where we used that B>(θ)B(θ) = I . Consider therefore the
following minimization problem:

argmin
θ,τ

J(θ, τ) . (18)

The fact that the two optimization variables θ and τ belong
to two different time scales suggests to solve the optimization
problem (18) in two different steps: first, a desired value for
the pitch (the slow quantity) is computed:

θ∗ := argmin
θ

J(θ, τ) = arctan

(
νλ
νε

)
, (19)

then, the optimal value for τ for a general θ = θ̄ is derived:

τ∗ := argmin
τ

J(θ̄, τ) = B>(θ̄)ν =

=

[
νλ sin(θ̄) + νε cos(θ̄)

νθ

]
.

(20)

The resulting τ∗ comes from basic computations, being
J(θ, τ) convex in τ . The result θ∗ is as well simply derived
and it is unique modulo 2π if τ1 6= 0. Otherwise every value
of θ zeroes out J(θ, τ). We select the reference setpoint θr
and the input τ as the optimal ones:

θr = θ∗ , τ = τ∗ . (21)

As one can notice, θ∗ (and thus θr) depends on νλ and
νε. Therefore, the control scheme can be applied as follows.
Firstly, the first two component of (15) are computed in order
to get νλ and νε (note that (15) represents 3 independent
equations). Secondly, θr is computed thanks to (19), which
allows us to compute νθ with the third component of (15).
Finally, τ is computed from (20).

C. State estimation

The feedback linearization control law proposed in equa-
tion (15) relies on the knowledge of both the dof position
q and on the dof velocity q̇. As discussed in Section II, the
experimental setup is equipped with an encoder at each one
of the three joints, which supplies a quantized measure with
a resolution of 0.0015rad. Therefore only piecewise constant
position measurements are available. In this paper, we follow
an indirect approach where q̇ has been estimated using the
high-gain observation law proposed in [22] (see also [23] for
the use of high-gain observers to estimate time derivatives).
In particular, if we denote by x the collection of q and q̇

x := [q, q̇]> ∈ R6 (22)

and if with x̂ we refer to the estimate of x

x̂ :=
[
q̂, ̂̇q
]> ∈ R6 . (23)

The estimator dynamics is given by

˙̂x =

[
0 I
0 0

]
x̂+

[
kpE

−1

kvE
−2

]
(q − q̂) , (24)



parameter ωλ ωε ωθ ζλ ζε ζθ

value 0.37 1.60 2.80 0.80 0.60 0.90

parameter ελ εε εθ νλff

value 0.10 0.10 0.05 -0.08

Table III: Controller and state estimator tuning.

where matrix E ∈ R3×3 is a positive definite diagonal matrix
containing the three decoupled high-gain scaling factors

E = diag(ελ, εε, εθ) , (25)

and kp kv are two positive scalars such that the characteristic
equation s2 + kvs + kp = 0 has roots with negative real
part. The three high-gain scaling factors εi, i ∈ q are design
parameters that can be conveniently adjusted in order to obtain
a trade-off between smoothening action and reduction of the
time lag of the estimator. Moreover, the smoothing action of
the proposed approach mitigates the effect of the quantized
position measurements. For these reasons, the control loop is
in feedback from the estimated state x̂.

VI. CLOSED-LOOP EXPERIMENTS AND COMPARISONS

In this section we discuss and compare the results obtained
interconnecting a realization of the control scheme proposed in
Section V to both the simulation platform and the experimental
setup. Simulation results are obtained thanks to the mechanical
model discussed in Section II.

A tuning process of the controller parameters has been
carried out in order to obtain desirable evolutions. In particular,
the natural frequencies in Ω have been chosen in such a way
to respect the time scale separation discussed before, and in
order to not reach the actuator limits in standard transient,
while the damping parameters in Ξ have been chosen in such a
way to obtain desirable transients with a slightly overshooting
behavior. The presented results have been obtained using
the same controller settings in both the experiment and the
simulation. The used settings are reported in Table III.

The testing scenarios consist of a reference for the λ dof
composed by a sequence of steps between −90◦, 0◦, and 90◦,
to be performed at a fixed constant reference for the ε dof . In
particular, three experiments are presented, the first one with
εr = 8◦, the second one with εr = 10◦, and the third one with
εr = 13◦. The results are reported in Figure 6.

Let us start discussing the case with εr = 10◦, depicted in
Figure 6b. First of all, it is possible to see that the simulation
response matches well the experimental response, confirming
that the proposed mechanical model is a good software-in-the-
loop platform for testing and synthesizing control algorithm
for the helicopter experiment. Observing the responses, we
can claim that the proposed control algorithm succeeds in
the stabilization and set-point regulation of the helicopter,
producing a graceful evolution to the desired set-point. The
step response of the λ dof exhibits the typical response of an
over-critically damped oscillator, showing a non-overshooting
behavior. A good tracking performance is present in the θ dof
as well, while ε seems to be the most problematic dof . This is

probably due to the disturbances produced by the term S2(q) in
equation (4d), which has been neglected in the control model.

Moving to the experimental test with εr = 13◦, depicted
in Figure 6c, similar considerations can be made. Observing
the figure, it is possible to note that due to a larger value of
εr in the fourth plot, the θr evolution in the fifth plots is in
general smaller than in the two other cases. This is due to the
fact that a larger νε is needed to track a larger εr. This turns
into having a smaller argument in the arctangent function in
equation (19). Nevertheless, a larger νε produces a larger f̃s,
which amplifies the disturbance effect due to the neglected
term S2(q) in equation (4d) (in particular due to the (1,2)-
element). Indeed a larger tracking error of the ε dof is present
in this case. Moreover, looking at the two upper plots it is
possible to notice that a larger value of f̃s turns into larger
mean values of the two forces f̃1 and f̃2 than in the other
cases, but the smaller θr in the fourth plot is such that smaller
peaks are present.

The opposite trend holds in the case of the experiment with
εr = 8◦ depicted in Figure 6a. Indeed, to track a smaller
εr depicted in the fourth plot, a smaller νε is needed, which
turns into having a larger argument in the arctangent function
in equation (19), which produces a larger θr in the last plot.
Due to the fact that the θ controller is the most aggressive
one, a larger θr produces larger peaks in f̃1 and f̃2 in the first
two plots, which in the experimental setup lead to saturation.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we firstly analyzed the multi-body dynamics
of the Quanser “3 DOF Helicopter” and proposed a full
dynamical model (the “mechanical model”), based on which
we developed a software-in-the-loop testing platform. An
implementation of the mechanical model in the MATLAB-
Simulink environment is made available for free download and
usage. This implementation has been proven to be a good
software testing tool by means of experimental validation.
Based on the Lagrangian representation of the mechanical
model, a reduced complexity model has been derived (the
“control model”). Both the mechanical and the control model
have undergone a system identification procedure, in order
to estimate the model parameters. The control model, despite
its simplicity, captures the most relevant dynamical behavior
of the helicopter as confirmed by the comparison with both
the mechanical model and the experiment. This model then
represents a good tool for control synthesis. Indeed, based
on this reduced complexity model we developed a feedback
linearizing control law, for which good set-point tracking
performance has been validated both via simulation of the
mechanical model and via experiments. Future work comprises
the synthesis of saturation-aware control law based on anti-
windup schemes, and the use of robust controllers including
integral action to reject unknown biases.
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