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Robust linear static anti-windup
with probabilistic certificates

Simone Formentin, Member, IEEE, Fabrizio Dabbene, Senior Member, IEEE, Roberto Tempo, Fellow, IEEE,
Luca Zaccarian, Fellow, IEEE, and Sergio M. Savaresi, Senior Member, IEEE

Abstract—In this paper, we address robust static anti-windup
compensator design and performance analysis for saturated
linear closed loops in the presence of probabilistic parameter
uncertainties via randomized techniques. The proposed static
anti-windup analysis and robust performance synthesis corre-
spond to several optimization goals, ranging from minimization
of the nonlinear input/output gain to maximization of the stability
region or maximization of the domain of attraction. We also
introduce a novel paradigm accounting for uncertainties in the
energy of the disturbance inputs.

Due to the special structure of linear static anti-windup design,
wherein the design variables are decoupled from the Lyapunov
certificates, we introduce a significant extension, called scenario
with certificates (SwC), of the so-called scenario approach for
uncertain optimization problems. This extension is of inde-
pendent interest for similar robust synthesis problems involv-
ing parameter-dependent Lyapunov functions. We demonstrate
that the scenario with certificates robust design formulation is
appealing because it provides a way to implicitly design the
parameter-dependent Lyapunov functions and to remove restric-
tive assumptions about convexity with respect to the uncertain
parameters. Subsequently, to reduce the computational cost, we
present a sequential randomized algorithm for iteratively solving
this problem. The obtained results are illustrated by numerical
examples.

Index Terms—robust control, anti-windup augmentation, un-
certainty, randomized methods.

I. INTRODUCTION

ANTI-WINDUP designs correspond to control systems
augmentations in light of actuator saturations, to mitigate

the negative effects of the input nonlinearity. Their develop-
ment has a history dating back to the era of analog controllers,
more than half a century ago, and the most effective techniques
are well illustrated in [33], [37], [34], [18]. When robustness
to parameter uncertainties must be taken into account, only
recent results on suitable anti-windup constructions become
available, all of them formulated in the deterministic robust
control context. Some relevant examples correspond to [26],
[36], [31], [14], [30], [19], [17], [22], [20], where several suc-
cessful solutions differing in nature and architecture have been
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proposed. While these available robust anti-windup solutions
arise from different approaches and paradigms to the robust
anti-windup problem, they mostly share the common feature
of arising from a deterministic approach wherein a constant
but unknown parameter belongs to a (known) compact set.
Then, by suitable relaxations of the assumptions at the price
of increased conservativeness, these sets are convexified to
obtain numerically tractable approaches to the analysis and
design problem. In this paper we follow a radically different
paradigm, arising from randomized methods for performance
analysis and control design.

Randomized and probabilistic methods for control received
a growing attention in the systems and control community
in recent years [35]. These methods deal with the design of
controllers for systems affected by possibly nonlinear, struc-
tured and unstructured uncertainties. One of the key features
of these methods is to break the curse of dimensionality, i.e.,
uncertainty is “lifted” and the resulting controller satisfies a
given performance for “almost” all uncertainty realizations. In
other words, in this framework, we accept a “small” risk of
performance violation.

One of the successful methods that have been developed
in the area of randomized and probabilistic methods is the
so-called scenario approach, which provides an effective tool
for solving control problems formulated in terms of robust
optimization [6]. In this case, the sample complexity, which is
the number of random samples that should be drawn according
to a given probabilistic distribution, is derived a priori, and it
depends only on the number of design parameters nθ, and
probabilistic parameters called accuracy ε and confidence δ.

In parallel with these methods, sequential-based approaches
have been developed, see for instance the recent sequential
probabilistic validation techniques proposed in [1] and ref-
erences therein. In particular, in [11] an algorithm is pro-
posed which, at each iteration, constructs a candidate con-
troller, whose performance is then validated through a Monte
Carlo approach. If the controller does not enjoy the required
probabilistic performance specification, a new controller is
designed based on new sample extractions. At each step of
the sequence, a reduced-size scenario problem is solved. This
method is usually effective in practical applications, even if
its sample complexity cannot be determined a priori. These
methods may be used in specific control problems such as
designing a common quadratic Lyapunov function. In these
cases, however, the fact that a single common Lyapunov
function should hold for all possible uncertainties leads to
an overly conservative design. The same drawback is known
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in classical robust control, where the design of a common
quadratic Lyapunov function requires an exponential number
of computations [2], [9]. For these reasons, parameterized
Lyapunov functions have been developed and used in many
robust control problems subject to uncertainty [3, Chapter
19.4].

Within the above surveyed context, the contribution of this
paper is two-fold. In the first part of the paper (Section II),
we develop a new framework, denoted as scenario with
certificates, which is very effective in dealing with parameter-
dependent Lyapunov functions. This framework continues the
research originally proposed in [29] for feasibility problems
in the context of randomized methods. The main idea in this
approach is to distinguish between design variables θ and
certificates ξ and has the advantage, compared to classical
robust methods, that no explicit parameterization (linear or
nonlinear) of the Lyapunov functions is required. In other
words, the method is based on a “hidden” parameterization
of the Lyapunov functions, and has the clear advantage to
reduce the conservatism compared to the methods based on
the design of common Lyapunov functions.

In the second part of the paper (Sections III and IV), we
show the application of the scenario with certificates approach
to anti-windup design and analysis in the presence of time-
invariant uncertainty. In particular, we concentrate on a specific
anti-windup scheme for linear saturated plant-controller feed-
backs: static direct linear anti-windup design (see, e.g., [37,
Part II]). Direct linear anti-windup corresponds to augmenting
a linear saturated control design with a linear gain Daw

driven by the excess of saturation dz(u) = u − sat(u) and
injecting suitable correction “anti-windup” signals at the state
and output equation of the pre-designed windup-prone linear
controller. Several different performance optimization tasks
are considered, and we present different alternatives in the
subsections of Section III. A notable one, which is novel to
the anti-windup field and arises naturally from the proposed
probabilistic context, is the one (in Section III-B) where the
design minimizes an upper bound of the area spanned by the
nonlinear L2 gain curve, accounting for uncertain (but proba-
bilistically known) energy of the external disturbance acting on
the saturated closed loop. Each proposed performance metric
is shown together with a robust performance analysis result
that is not limited to the anti-windup context but is applicable
to any uncertain linear closed loop subject to saturation in the
classical LFT form. In all the above contexts, we will show
that the probabilistic approach allows to reduce conservatism
as well as to cope with uncertainty entering nonlinearly in
the problem description, without overbounding it. The latter
case has instead already been treated in various examples
in the literature, where the trade-off between the robust and
deterministic approach is usually referred to as probability
degradation function, see e.g. [35, Ex. 11.1 and 12.1].

Preliminary results in the direction of this paper were
presented in [16], [15]. In particular, in [16] the results were
based on the classical scenario optimization approach. In that
formulation, both the certificates and the design variables were
treated as optimization variables over the whole operating
region, thus leading to a conservative solution, and - some-

times - to infeasibility. The scenario with certificates solution
proposed here was then introduced in [15], where we also
provided preliminary results on the design of anti-windup
compensators minimizing the nonlinear L2 gain.

As compared to these preliminary results, in this paper
we fully exploit the potential of the proposed randomized
approach towards the design of static anti-windup gains arising
from suitable performance/robustness trade-offs. More specif-
ically, after analyzing in-depth the formal properties and the
algorithmic solutions for the novel randomized approach, we
apply it to the robust design of anti-windup compensators
within different problem settings; namely, we address the
minimization of the nonlinear L2 gain, the minimization of the
area spanned by the nonlinear L2 gain curve, the minimization
of the reachable set and the maximization of the domain of
attraction for closed-loop saturated systems. For each of the
above problems, we provide several discussions and a suitable
simulation example (in Section IV).

The paper is ended by some concluding remarks.

Notation

In the remainder of the paper, the following notation and
definitions are adopted:
• the L2 norm of a scalar valued signal x(t), defined for
t ≥ 0, is

‖x2‖
.
=

(∫ ∞
0

x2(t) dt

)1/2

;

• e denotes the Euler number;
• given a square matrix Z, He(Z)

.
= Z + ZT ;

• given a matrix X , X[k] denotes the kth row of X .

II. SCENARIO WITH CERTIFICATES

In this section, we briefly recall the scenario approach in
dealing with convex optimization problems in the presence
of uncertainty, and subsequently introduce a novel framework
that we name scenario with certificates (SwC).

A. The scenario approach

The so-called scenario approach [6] has been developed to
deal with robust convex optimization problems of the form

θRO = arg min
θ∈Θ

cT θ (RO)

s.t. f(θ, q) ≤ 0, ∀q ∈ Q,

where, for given q within the uncertainty set Q, f(θ, q) are
convex functions of the optimization variable θ ∈ Θ, the
domain Θ is a convex and compact set in Rnθ and the
uncertainty set Q is not necessarily compact. Furthermore,
we assume that f(θ, q) is a continuous (possibly nonlinear)
function of q for any given θ.

Following the probabilistic approach discussed for instance
in [35], [7] a probabilistic description of the uncertainty is
considered over Q. That is, we formally assume that q is
a random variable with given probability distribution with
support Q. Such a probability distribution may describe the
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likelihood of each occurrence of the uncertainty or a user-
defined weight for all possible uncertain situations. Then, N
independent identically distributed (iid) samples q(1), . . . , q(N)

are extracted according to the probability distribution of the
uncertainty over Q.

These samples are used to construct the following scenario
optimization (SO) problem, based on N instances (scenarios)
of the uncertain constraints

θSO = arg min
θ∈Θ

cT θ (SO)

s.t. f(θ, q(i)) ≤ 0, i = 1, . . . , N.

Problem (SO) can be seen as a probabilistic relaxation of prob-
lem (RO), since it deals only with a subset of the constraints
considered in (RO), according to the probability distribution
of the uncertainty. However, under rather mild assumptions
on problem (RO), by suitably choosing N , this approximation
may in practice become negligible in some probabilistic sense.
Specifically, N can be selected depending on the level of “risk”
of constraint violation that the user is willing to accept. To this
end, the violation probability of the design θ is defined as

Viol(θ) .
= Pr {q ∈ Q : f(θ, q) > 0} (1)

where Pr denotes the probability with respect to the distribu-
tion of the random variable q. Similarly, the reliability of the
design θ is given by

Rel(θ) .
= 1− Viol(θ).

Then the following result has been proven in [10].

Proposition 1. [10] Assume that, for any multisample extrac-
tion, problem (SO) is feasible and attains a unique optimal
solution. Then, given an accuracy level ε ∈ (0, 1), the solution
θSO of problem (SO) satisfies

Pr {Viol(θSO) > ε} ≤ B(N, ε, nθ), (2)

where

B(N, ε, nθ)
.
=

nθ−1∑
k=0

(
N

k

)
εk(1− ε)(N−k). (3)

We note that non-uniqueness of the optimal solution can be
circumvented by imposing additional “tie-break” rules in the
problem, see, e.g., Appendix A of [6]. Also, in [8] it is shown
that the feasibility assumption can be removed at the expense
of substituting nθ − 1 with nθ in B(N, ε, nθ).

From Equation (2), explicit bounds on the number of
samples necessary to guarantee the “goodness” of the solution
have been derived. The bound provided in [1] shows that, if,
for given ε, δ ∈ (0, 1), the sample complexity N is chosen to
satisfy the bound

N ≥ e

ε(e− 1)

(
ln

1

δ
+ nθ − 1

)
m, (4)

then the solution θSO of problem (SO) satisfies Viol(θSO) ≤ ε
with probability 1 − δ. This bound improves by a constant
factor upon previous bounds, see e.g. [8], and it shows that
problem (SO) exhibits linear dependence in 1/ε and nθ, and
logarithmic dependence on 1/δ. Note however that, from a

practical viewpoint, it is always preferable to numerically solve
the one dimensional problem of finding the smallest integer
N such that B(N, ε, nθ) ≤ δ.

B. Scenario with certificates

The classical scenario approach previously discussed deals
with uncertain optimization problems where all variables θ
are to be designed. On the other hand, in the design with cer-
tificates approach we distinguish between design variables θ
and certificates ξ. In particular, we consider now a function
f(θ, ξ, q), which is assumed to be jointly convex in θ ∈ Θ
and ξ ∈ Ξ ⊆ Rnξ for given q ∈ Q (where Θ and Ξ are
supposed to be non-empty), and construct the following robust
optimization problem with certificates

θRwC = arg min
θ
cT θ (RwC)

s.t. θ ∈ S(q), ∀q ∈ Q,

where the set S(q) is defined as

S(q)
.
= {θ ∈ Θ| ∃ξ ∈ Ξ satisfying f(θ, ξ, q) ≤ 0} . (5)

The key observation that is at the basis of the approach
developed in this section is that the set S(q) is convex in θ
for any given q, as formally shown in Theorem 1 below.

Remark 1. [Common vs. parameter-dependent certificates] As
discussed in the Introduction, problem (RwC) corresponds to
searching for so-called parameter-dependent certificates, in the
sense that a different certificate is allowed for every instance of
the uncertainty q, that is ξ = ξ(q). This is very different from
the approach frequently adopted when dealing with uncertain
systems, based on the design of common certificates. This
would result in a robust problem of the form

{θCO, ξCO} = arg min
θ∈Θ,ξ∈Ξ

cT θ (CO)

s.t. f(θ, ξ, q) ≤ 0, ∀q ∈ Q,

where the common certificate ξCO should be the same for all
possible values of q. Clearly, if the spread of the uncertainty
is large, it is unreasonable to expect the same certificate ξCO

to hold for all q ∈ Q. For instance, in the classical case
when the certificates correspond to Lyapunov functions for
proving stability, the difference between the two approaches
lies on the difference between common Lyapunov functions
and parameter-dependent ones. In particular, for this problem,
different solutions have been proposed in the robust control
literature, which are based on explicit parameterizations (e.g.
linear or bilinear) of the function ξ(q), see for instance [3].
One of the main novelties of the probabilistic approach dis-
cussed in this paper is the fact that no explicit parameterization
is necessary. ◦

In [29], an approach to handle parameter-dependent linear
matrix inequalities (LMIs) has been introduced, and a solution
for feasibility problems, based on uncertainty randomization
and on an iterative ellipsoidal algorithm, has been derived.
The approach considers different certificates for each sampled
value of the random uncertainty. In the same paper, the
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conservatism reduction is illustrated by means of a numerical
example showing that traditional robustness methods based on
common Lyapunov functions fail.

In the current work, we follow along this line of research,
and propose to approximate problem (RwC) introducing the
following scenario with certificates problem, based again on
a multisample extraction

θSwC = arg min
θ,ξ1,...,ξN

cT θ (SwC)

s.t. f(θ, ξi, q
(i)) ≤ 0, i = 1, . . . , N.

Note that, contrary to problem (SO), in this case a new certifi-
cate variable ξi is created for every sample q(i), i = 1, . . . , N ,
that is ξi = ξi(q

(i)). To analyze the properties of the solution
θSwC, we note that, in the case of SwC, the reliability and
violation probabilities of design θ are given by

Rel(θ) = Pr
{
q ∈ Q|∃ξ ∈ Ξ satisfying f(θ, ξ, q) ≤ 0

}
,

Viol(θ) = Pr
{
∃q ∈ Q|@ξ ∈ Ξ satisfying f(θ, ξ, q) ≤ 0

}
.

We now state the main result regarding the scenario opti-
mization with certificates.

Theorem 1. Assume that, for any multisample extraction,
problem (SwC) is feasible and attains a unique optimal
solution. Then, given an accuracy level ε ∈ (0, 1), the solution
θSwC of problem (SwC) satisfies

Pr {Viol(θSwC) > ε} ≤ B(N, ε, nθ). (6)

Proof. We first prove convexity of the set S(q). To see this,
consider θ1, θ2 ∈ S(q). Then, there exist ξ1, ξ2 such that

f(θ1, ξ1, q) ≤ 0 and f(θ2, ξ2, q) ≤ 0.

Consider now θλ
.
= λθ1 + (1− λ)θ2, with λ ∈ [0, 1], and let

ξλ = λξ1 + (1 − λ)ξ2. From convexity of f with respect to
both θ and ξ it immediately follows that

f(θλ, ξλ, q) ≤ λf(θ1, ξ1, q) + (1− λ)f(θ2, ξ2, q) ≤ 0,

hence θλ ∈ S(q), which proves convexity.
Now, observe that the condition θ ∈ S(q) is equivalent to

requiring
fξ(θ, q)

.
= inf
ξ∈Rnξ

f(θ, ξ, q) ≤ 0,

so that problem (RwC) is equivalent to

min
θ
cT θ (7)

s.t. fξ(θ, q) ≤ 0 ∀q ∈ Q.

Note that, from the convexity of S(q), it follows that the
function fξ(θ, q) is convex in θ for given q; see also [5, p. 113].
Hence, problem (7) is a robust convex optimization problem.
Then, we construct its scenario counterpart

min
θ
cT θ, (8)

s.t. min
ξi∈Rnξ

f(θ, ξi, q
(i)) ≤ 0, i = 1, . . . , N,

where the subscript i for the variables ξi highlights that the
different minimization problems are independent. Finally, we
note that (8) immediately rewrites as problem (SwC).

We remark that problem (SwC) has N separate constraints,
one for each q(i), and each constraint involves a different
certificate. However, notice that the dimension nξ of the certifi-
cates ξ does not enter in the right-hand side of the probability
bound (6) in Theorem 1. Hence, the sample complexity of
problem (SwC) is smaller than that of the scenario counterpart
of the problem with common certificates (CO), in which both
θ and ξ play the role of design variables. On the other hand,
the complexity of solving problem (SwC) is higher, since
the number of optimization variables significantly increases,
because a different variable ξi is introduced for every sample
q(i). This increase in complexity is not surprising, being
problem (RwC) much more difficult than problem (CO). In
particular, we remark that, in the case when the constraints
are linear matrix inequalities, then the scenario problem can be
reformulated as a semidefinite program by combining the N
LMIs into a single LMI with block-diagonal structure. It is
known, see [4], that the computational cost of this problem
with respect to the number of diagonal blocks N is of the order
of N3/2. The sequential method discussed in the next section
aims at improving the computational efficiency by reducing
the number of scenarios.

C. Sequential randomized algorithm for SwC

Motivated by the computational burden of the SwC solution,
in this section, we present a sequential randomized algorithm
that alleviates the load by solving a series of reduced-size
problems. The algorithm is a minor modification of [11,
Algorithm 1], which was introduced for the standard scenario
approach, and it is based on separate design and validation
steps. The design step requires the solution of the reduced-
size SwC problem. In the validation step, contrary to [11]
where only functional evaluations are required, the feasibility
problems (9) and (10) need to be solved. However, it should
be pointed out that the latter problems are of small size,
and can be solved independently, and hence parallelized. The
sequential procedure is presented in Algorithm 1, and its
theoretical properties are stated in the subsequent lemma. Its
proof follows the same lines of that in [11, Theorem 1 and
Algorithm 1], and is omitted for brevity. It should be stressed,
however, that in [11] the sequential approach was not applied
to SwC, but to standard scenario optimization.

Sequential Algorithm for SwC

1) INITIALIZATION
set the iteration counter k = 0. Choose the desired prob-
abilistic levels ε, δ and the desired number of iterations
kt > 1

2) UPDATE
set k = k + 1 and Nk ≥ N k

kt
where N is the smallest

integer s.t. B(N, ε, nθ) ≤ δ/2
3) DESIGN
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• draw Nk iid (design) samples {q(1)
d , . . . , q

(Nk)
d }

• solve the following reduced-size SwC problem

θ̂Nk = arg min
θ,ξ1,...,ξNk

cT θ, (9)

s.t. f(θ, ξi, q
(i)
d ) ≤ 0, i = 1, . . . , Nk.

• if the last iteration is reached (k = kt),
return θSSwC = θ̂Nk

4) VALIDATION

• set Mk according to (11)
• draw iid (validation) samples {q(1)

v , . . . , q
(Mk)
v }

• for j = 1 to Mk

– if the validation problem

find ξj such that

f(θ̂Nk , ξj , q
(j)
v ) ≤ 0 (10)

is unfeasible goto step (2).
• return θSSwC = θ̂Nk .

Lemma 1. Assume that, for any multisample extraction,
problem (9) is feasible and attains a unique optimal solution.
Then, given accuracy level ε ∈ (0, 1) and confidence level
δ ∈ (0, 1), let

Mk ≥
α ln k + ln (Hkt−1(α)) + ln 2

δ

ln
(

1
1−ε

) (11)

where Hkt−1(α) =
∑kt−1
j=1 j−α, with α > 0, is a finite

hyperharmonic series. Then, the probability that at iteration
k Algorithm 1 returns a solution θSSwC with violation greater
than ε is at most δ, i.e.,

Pr {Viol(θSSwC) > ε} ≤ δ. (12)

Remark 2. The dimension of the system that can be handled
by the algorithm depends not only on nθ, but also on the
desired probabilistic accuracy and confidence. The paper [11]
considers a real-world example of a hard disk drive consisting
of 153 design parameters and 9 uncertain parameters. It is
shown that the sequential approach provides results even for
very tiny values of accuracy and confidence, contrary to the
one-shot solution, i.e. the one considering all the N constraints
at once. ◦

In the second part of this paper, we introduce the problem of
robust L2 gain minimization for linear anti-windup systems.
The SwC approach appears to be well suited for such a
design problem, for several reasons: i) the nominal design can
be formulated in terms of linear matrix inequalities, ii) the
uncertainty set can in principle be of any size and shape, and
iii) the optimization variables can be easily divided in design
variables for the anti-windup augmentation and certificates
for stability and performance guarantees, iv) the number of
uncertain parameters can in principle be arbitrarily large and
any functional dependence is allowed.

III. ANTI-WINDUP COMPENSATOR DESIGN

Consider the linear uncertain continuous-time plant with nu
inputs subject to saturation

ẋp = Ap(q)xp +Bp,u(q)σ +Bp,w(q)w

y = Cp,y(q)xp +Dp,yu(q)σ +Dp,yw(q)w (13)
z = Cp,z(q)xp +Dp,zu(q)σ +Dp,zw(q)w,

where xp is the plant state, σ ∈ Rnu is the control input,
w is an external input (possibly comprising references and
disturbances), z is the performance output, y is the measured
output and q denotes random uncertainty within the set Q.
We denote by q̄ ∈ Q the nominal value of the uncertain
parameters.

As customary with linear anti-windup design [37], we
assume that a linear controller has been designed, based on the
nominal system, in order to induce suitable nominal closed-
loop properties when interconnected to plant (13)

ẋc = Acxc +Bc,yy +Bc,ww + v1

u = Ccxc +Dc,yy +Dc,ww + v2,
(14)

where xc is the controller state, w typically comprises refer-
ences (but may also contain disturbances), u is the controller
output and v = [vT1 vT2 ]T is an extra input available for
anti-windup action. The controller (14) is typically designed
in such a way that the so-called unconstrained closed-loop
system given by (13), (14), σ = u, v = 0 is nominally
asymptotically stable and satisfies some nominal or robust
performance requirements.

Consider now the (physically more reasonable) saturated
interconnection σ = sat(u), where the kth entry of σ is
satk(uk) = max(min(ūk, uk),−ūk), denoting the kth input
by uk. When the input saturates, the closed loop system
composed by the feedback loop between (13) and (14) is no
longer linear and may exhibit undesirable behavior, usually
called controller windup. Then, one may wish to use the free
input v to design a suitable static anti-windup compensator of
the form

v = [vT1 vT2 ]T = Daw(u− sat(u)). (15)

This signal can be injected into the right hand side of the
controller dynamics (14) to recover stability and performance
of the unconstrained closed-loop system.

When lumping together the plant-controller-anti-windup
components (13), (14), (15), σ = sat(u), one obtains the
so-called anti-windup closed-loop system, a nonlinear con-
trol system which can be compactly written using the state
x = [xTp xTc ]T as in (16) (at the top of the next page), where
dz denotes the deadzone function, i.e., dz(u) = u−sat(u), and
all the matrices are uniquely determined by the data in (13),
(14), (15) (see, e.g., the full authority anti-windup section in
[37] for explicit expressions of these matrices).

The compact form in (16) may be used to represent both
the saturated closed loop before anti-windup compensation,
by selecting Daw = 0, or the closed loop with anti-windup
compensation, by performing some nonzero selection of Daw.
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ẋ = Acl(q)x+ (Bcl,q(q) +Bcl,v(q)Daw) dz(u) +Bcl,w(q)w
z = Ccl,z(q)x+ (Dcl,zq(q) +Dcl,zv(q)Daw) dz(u) +Dcl,zw(q)w
u = Ccl,u(q)x+ (Dcl,uq(q) +Dcl,uv(q)Daw) dz(u) +Dcl,uw(q)w

(16)

Q = QT > 0, U > 0 diagonal, (17a)

He


Acl(q)Q (Bcl,q(q) +Bcl,v(q)Daw)U + Y T Bcl,w(q) 0
Ccl,u(q)Q (Dcl,uq(q) +Dcl,uv(q)Daw)U − U Dcl,uw(q) 0

0 0 −I/2 0
Ccl,z(q)Q (Dcl,zq(q) +Dcl,zv(q)Daw)U Dcl,zw(q) −γ2I/2

 < 0, (17b)

[
Q Y T[k]

Y[k] ū2
k/s

2

]
≥ 0, k = 1, . . . , nu, (17c)

He


Acl(q)Q Bcl,q(q)U +Bcl,v(q)X + Y T Bcl,w(q) 0
Ccl,u(q)Q Dcl,uq(q)U +Dcl,uv(q)X − U Dcl,uw(q) 0

0 0 −I/2 0

Ccl,z(q)Q Dcl,zq(q)U +Dcl,zv(q)X Dcl,zw(q) −γ
2

2 I

<0 (18)

A. L2 gain minimization

First, we analyze system (16) for the nominal case, that is
when no uncertainty is present and Q is a singleton coinciding
with the nominal value q̄ of the parameters.

In this nominal case, the results in [12], [24], [23], [33] and
references therein generalize the well-known sector conditions
originating from absolute stability theory, into a so-called
generalized sector condition, stating that given any matrix H ,
it holds that dz(u)TU−1(u − dz(u) + Hx) ≥ 0 for all x
satisfying dz(Hx) = 0. This condition is a powerful tool
because it enables us to provide a non-global homogeneous
characterization of the stability and performance properties of
the nonlinear closed loop (16) by way of an extension of abso-
lute stability theory. In particular, in (17) the generalized sector
condition provides guarantees on the derivative of a quadratic
Lyapunov function xTQ−1x in a suitable (ellipsoidal) sublevel
set E((s2Q)−1) (see (19) below) contained in the region where
dz(Hx) = 0 (this is guaranteed by (17c)). Here, parameters
Q, U and Y = U−1H can be optimized by way of a convex
semi-definite program. More formally, we recall the following
stability and performance analysis result from [23, Theorem
2].

Proposition 2 (Regional stability/performance analysis).
Given a scalar s > 0, consider the nominal system, that is let
Q ≡ {q̄}. Assume that the semidefinite programming (SDP)
problem (17) in the variables γ2, Q, Y and U is feasible.
Then:

(a) the nonlinear algebraic loop in (16) is well posed,
(b) the origin is locally exponentially stable for (16) with

basin of attraction containing the set

E((s2Q)−1) = {x : xTQ−1x ≤ s2}, (19)

(c) for each w satisfying ‖w‖2 ≤ s, the zero initial state
solution to (16) satisfies ‖z‖2 ≤ γ̂‖w‖2, where the L2

gain of the system is given by

γ̂2(s) = min
{γ2,Q,Y,U}

γ2 (20)

s.t. (17).

As suggested in [23], one may use the result of Proposition 2
to compute an estimate of the nominal nonlinear L2 gain curve
(see [27]), namely a function s 7→ γ̂(s) such that for each s in
the feasibility set of (17) and for each w satisfying ‖w‖2 ≤ s,
the zero initial state solution to (16) satisfies

‖z‖2 ≤ γ̂(s)‖w‖2.

To do so, it is possible to sample the nonlinear gain curve
s 7→ γ̂(s) by selecting suitable positive values s1 < · · · < sn
and, for each k = 1, . . . , n, solving (20), after replacing s =
sk. Then, the L2 gain curve estimate can be constructed by
interpolating the points (sk, γ̂k(sk)), k = 1, . . . , n.

Following the derivations in [12] (which generalize the
global results of [28]), one may notice that the product DawU
appears in a linear way in equation (17b) and, for a fixed value
of s, the synthesis of a static anti-windup gain minimizing the
nonlinear L2 gain can be written as a convex optimization
problem, as stated next.

Proposition 3 (Regional stability/performance synthesis).
Given the plant-controller pair (13), (14), and a scalar s > 0,
consider the nominal system, that is Q ≡ {q̄} is a singleton.
Assume that the SDP problem

γ̂2(s) = min
{γ2,Q,Y,U,X}

γ2 (21)

s.t. (17a), (17c), (18)

is feasible. Then, selecting the static anti-windup gain as

Daw = XU−1, (22)

the anti-windup closed-loop system (13), (14), (15), σ =
sat(u) or its equivalent representation in (16) satisfies prop-
erties (a)-(c) of Proposition 2.
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Remark 3. The static linear anti-windup architecture (15)
adopted in Proposition 3 and in the rest of this paper is
only one among many possible choices (see, e.g., [37]). In
particular, when using direct linear anti-windup designs, an
alternative appealing approach is given by the design of a
plant-order linear filter (namely, of the same order of the
plant) generalizing the static selection in (15). Such a dynamic
generalization of (15) was shown in [21] to be important
to guarantee global exponential stability in the presence of
saturation. However, this fact was later de-emphasized once
the above mentioned generalized sector condition was intro-
duced (see [24], which provides the non-global extension of
the results in [21]). More specifically, non-global guarantees
of stability in the presence of saturations/deadzones is a
fundamental tool to establish exponential stability properties
of the origin for non-asymptotically stable plants that are
stabilized through a saturated control input. ◦

Remark 4. The separation between the Lyapunov certificate
Q,Y and the optimization variables X,U in (18) is only
possible when adopting the static architecture in (15), which
makes the robust extensions provided below reasonably sim-
ple. Extensions to the dynamic plant-oder anti-windup case
is possible only if one adopts certain conservative convex
relaxations of the nonconvex robust conditions, along similar
directions to those well surveyed, for example, in [13]. ◦

Consider now the uncertain case, when the system matrices
in (16) defining the dynamics of x and z are continuous (pos-
sibly nonlinear) functions of the uncertainty q ∈ Q, which is
considered to be time invariant. Then, the interest is in finding
robust solutions to the analysis and design problems discussed
before. For instance, in the analysis case, one could search for
common certificates Q,Y, U in (20) such that γ2 is minimized
over (17) for all q ∈ Q. This approach is pursued in [16],
where scenario results are used to find probabilistic guaranteed
estimates. Note that the use of a common Lyapunov function
is well justified when the uncertainty is, for instance, time-
varying. However, as discussed in Section II-C, an approach
based on common certificates is in general very conservative in
the case of time-invariant uncertainty, and one would be more
interested in finding parameter-dependent certificates. To do
this, we would need to solve the following robust optimization
problem with certificates

γ̂2(s) = min γ2 (23)

s.t. γ2 ∈
{
γ2| ∃{Q,Y, U} satisfying (17)

}
∀q ∈ Q.

A similar rationale can be applied to robustify the anti-windup
synthesis problem of Proposition 3. As a matter of fact, when
the system matrices are uncertain, one meets similar obstruc-
tions to those highlighted as far as analysis was concerned.
Again, instead of looking for common Lyapunov certificates
as in [16], we write the following RwC problem

γ̂2(s) = min γ2 (24)

s.t. {γ2, U,X} ∈
{
{γ2, U,X} | ∃{Q,Y } satisfying

(17a), (17c), (18)
}
∀q ∈ Q.

Note that both problems (23) and (24) are difficult non-
convex semi-infinite optimization problems, due to the fact
that one has to determine the certificates as functions of the
uncertain parameter q. A classical approach in this case is
to assume a specific dependence (generally affine) of the
certificates on the uncertainty. Instead, in this paper we adopt
a probabilistic approach, assuming that q is a random variable
with given probability distribution over Q, and apply the SwC
approach discussed in Section II-C. This allows us to find an
implicit dependence on q of the certificates. This is in the
spirit of the original idea proposed in [29]. The following
two theorems, whose proofs come straightforwardly from
Propositions 1 and 2, exploit the SwC approach to address the
robust nonlinear L2 gain estimation and synthesis for saturated
systems.

In particular, our first anti-windup theorem provides a con-
vex optimization procedure to obtain probabilistic information
about the worst case nonlinear L2 gain. To this end, we fix
an upper bound s for ‖w‖2 and define two scalars ε and δ in
(0, 1) denoting, respectively, an acceptable level of probability
of constraint violation and a level of confidence. Then, inspired
by (20), we apply Theorem 1 with the design variables θ
and the certificates ξ given, respectively, by θ = γ2 and
ξ = {Q,U, Y } and the number N of samples selected, based
on bound (6), to satisfy

B(N, ε, nθ) ≤ δ. (26)

Then the following result is a straightforward consequence of
Theorem 1 and Proposition 2.

Theorem 2 (Probabilistic performance analysis). Given
scalars s > 0, and ε, δ ∈ (0, 1), select N satisfying (26),
fix θ = γ2 and ξ = {Q,U, Y }.

If the scenario approximation (SwC) of problem (23) is
feasible and attains a unique optimal solution, then for each
‖w‖2 < s, the zero initial state solution of system (16) satisfies

Pr(‖z‖2 > γ̂(s) ‖w‖2) < ε,

with level of confidence no smaller than 1− δ.

Our second anti-windup theorem allows for robust random-
ized synthesis using the SwC approach and follows parallel
steps to those of Theorem 2 by combining Theorem 1 with
Proposition 3. To this end, and following (21), we choose
the design variables θ and the certificates ξ as follows:
θ =

{
γ2, X, U

}
and ξ = {Q,Y }. Indeed, the variables θ

must include the quantities X and U used to determine the
anti-windup gain in (22): these variables must be the same over
all sample extractions so that a unique anti-windup gain can be
determined. Then the following holds combining Theorem 1
with Proposition 3.

Theorem 3 (Probabilistic anti-windup synthesis). Given
scalars s > 0, and ε, δ ∈ (0, 1), select N satisfying (26),
fix θ =

{
γ2, X, U

}
and ξ = {Q,Y }.

If the scenario approximation (SwC) of problem (24) is
feasible and attains a unique optimal solution, then for each
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γ̂2(s) = min
{γ2,Q1,...,QN ,Y1,...,YN ,U,X}

γ2

s.t. Qi = QTi > 0, U > 0 diagonal,

He


Acl(q

(i))Qi Bcl,q(q
(i))U +Bcl,v(q

(i))X + Y Ti Bcl,w(q(i)) 0
Ccl,u(q(i))Qi Dcl,uq(q

(i))U +Dcl,uv(q
(i))X − U Dcl,uw(q(i)) 0

0 0 −I/2 0

Ccl,z(q
(i))Qi Dcl,zq(q

(i))U +Dcl,zv(q
(i))X Dcl,zw(q(i)) −γ

2

2 I

<0

[
Qi Y Ti,[k]

Yi,[k] ū2
k/s

2

]
≥ 0, k = 1, . . . , nu, i = 1, . . . , N

(25)

‖w‖2 < s, the zero initial state solution of the uncertain
system (16) with anti-windup static compensator (22) satisfies

Pr(‖z‖2 > γ̂(s) ‖w‖2) < ε,

with level of confidence no smaller than 1− δ.

For completeness, in (25) we report the SwC problem based
on the application of Theorem 3. Similarly, the SwC problem
based on the application of Theorem 2 can be constructed
following the same rationale and it is not reported here due to
space limitations.

Remark 5. The reformulation of the SwC approach for
nonlinear gain analysis and anti-windup synthesis in Theo-
rems 2 and 3 is appealing from an engineering viewpoint.
As a matter of fact, since the N instances of the system
matrices are extracted according to the probability distribution
of the uncertainty, this solution provides a view of what
may happen in most of practical situations. Moreover, we
stress that the proposed formulation does not constrain the
unknown Lyapunov matrices Qi’s to be the same for all the
sampled perturbations. Instead, it allows them to vary among
different samples. This is possible because the Qi’s (as well
as the Yi’s) are only instrumental for the computation of the
robust compensator. Note that, unlike system matrices, e.g., the
Acl(q

(i))’s, which are uncertain by definition, the certificates
are unknown but they are not random variables. ◦

B. Uncertain disturbance energy

The previous approach can be further modified by observ-
ing that the design is valid only for a given value of s,
correspondnig to an upper bound on the disturbance energy
‖w‖2 (see the guarantees in Theorems 2 and 3). However,
randomization makes it possible to change the perspective
of anti-windup augmentation, by considering also s as an
uncertain variable, to take into account the knowledge of a
certain known probability distribution of the energy of the
disturbances acting on the system.

When considering an uncertain disturbance energy, rather
than minimizing the L2 gain at a specific value of s, we may
consider to minimize the curve over a compact range [s, s] of
values of s, possibly being relevant for the specific distribution.

To this end, we represent the L2 gain curve estimate by a
polynomial curve over the considered interval, that is,

γ2(s) =

nγ∑
k=0

Γks
k, s ∈ [s, s]. (27)

Then we may compute an upper bound on the area spanned
by the L2 gain as follows∫ s

s

γ2(s) ds ≤
∫ s

s

nγ∑
k=0

Γks
k ds =

nγ∑
k=0

Γk
sk+1 − sk+1

k + 1
.

This leads to the following RwC problem

min
Γ,U,X

nγ∑
k=0

sk+1 − sk+1

k + 1
Γk (28)

s.t. {s,Γ, U,X} ∈ S(q, s), ∀q ∈ Q,∀s ∈ [s, s],

where we used Γ = [Γ0, . . . ,Γnγ ]T and, according to
parametrization (27),

S(q, s) :=
{
{Γ, U,X} | ∃{Q,Y } satisfying (17a), (17c), (18)

with γ2 replaced by
nγ∑
k=0

Γks
k
}
.

Notice that the above design problem is still a convex
optimization problem, with the only difference that the cost
function is not a single value of γ (for a nominal s), but a
set of values of γ’s. Namely, we want to minimize the area
underlying the L2 curve parameterized as a polynomial curve.
The problem constraints can still be formulated as LMI’s.

The following result is a straightforward generalization of
the construction in Theorem 3 for this new optimization goal.

Theorem 4 (Probabilistic synthesis with uncertain energy).
Given scalars ε, δ ∈ (0, 1), select N satisfying (26), fix θ =
{Γ, X, U} and ξ = {Q,Y }.

If the scenario approximation (SwC) of problem (28) is
feasible and attains a unique optimal solution, then the zero
initial state solution of the uncertain system (16) with static
anti-windup compensator (22) satisfies

Pr(‖z‖2 > γ̄(s) ‖w‖2) < ε,

with level of confidence no smaller than 1− δ, where γ̄(s) =√
γ2(s), and γ2(s) defined in (27).

Remark 6. Notice that, when also the input is uncertain, an
additional tuning knob appears, namely nγ , which character-
izes the trade-off between computational load and conserva-
tiveness. On the one hand, more additional parameters mean a
more difficult optimization problem. On the other hand, if the
L2 gain curve is well approximated by the selected polynomial
expansion, the upper bound is tight. From practical experience
[37], the gain curves are typically sigmoidal or exponential
functions. Then small values of nγ are already enough to
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obtain good results (usually, from 3 to 6). Notice that other
basis functions whose integral is linearly parameterized can
be suitably selected, without any conceptual change. ◦

C. Optimized domain of attraction and reachable set

Similar derivations to the ones of the previous sections can
be obtained by focusing on different performance goals, as
well characterized in [12] (see also [24]). In particular, two
performance goals which have been well characterized within
the context of the use of generalized sectors for saturated
systems correspond to: i) maximizing the size of a quadratic
estimate of the domain of attraction of the origin in the
absence of disturbances (that is, w = 0), ii) minimizing
the best quadratic estimate of the reachable set from zero
initial conditions and in the presence of a bounded disturbance
‖w‖2 ≤ s.

The goal of this section is then to briefly overview the
possible extensions of the results in Theorems 3 and 4 to
these two cases. The following two propositions establish the
baseline results, proven in [12], [24] for the nominal case.

Proposition 4 (Domain of attraction). Given the plant-
controller pair (13), (14) and a matrix Q̄ = Q̄T > 0, consider
the nominal system, that is Q ≡ {q̄} is a singleton. Assume
that the SDP problem

max
{Q̄,Q,Y,U,X}

log det(Q̄) (31)

s.t. (29), ∀q ∈ Q,

is feasible. Then, selecting the static anti-windup gain as in
(22), the nonlinear algebraic loop in (16) is well posed and
for any initial condition x(0) in the set

E(Q̄−1) := {x : xT Q̄−1x ≤ 1}, (32)

the (unique) solution x to the anti-windup closed loop with
w = 0 satisfies lim

t→∞
|x(t)| = 0.

Proposition 5 (Reachable set). Given the plant-controller pair
(13), (14), and a scalar s > 0, consider the nominal system,
that is Q ≡ {q̄} is a singleton. Assume that the SDP problem

min
{Q,Y,U,X}

trace(Q̄) (33)

s.t. (30), ∀q ∈ Q,

is feasible. Then, selecting the static anti-windup gain as in
(22), the nonlinear algebraic loop in (16) is well posed and
any solution from x(0) = 0 with ‖w‖2 ≤ s satisfies

x(t) ∈ E(Q̄−1) = {x : xT Q̄−1x ≤ 1}, ∀t ≥ 0.

In light of the results summarized above, we can formulate
robust optimal design and analysis exploiting the constraints
(29) and (30), respectively, and leading to randomized analysis
and synthesis tools. These are stated below in two theorems
whose formulations parallel the one of Theorem 3. Analysis
results can also be easily stated, paralleling the formulation in
Theorem 2, but are omitted due to their straightforward nature,
and to avoid overloading the exposition.

Theorem 5 (Robust domain of attraction). Given scalars
ε, δ ∈ (0, 1), select N satisfying (26), fix θ =

{
Q̄,X, U

}
and ξ = {Q,Y }.

If for a selection of Q̄ = Q̄T > 0 and a scalar α > 0 the
scenario approximation (SwC) of problem (31) is feasible and
attains a unique optimal solution, then for any initial condition
in the set (32), any solution x of the uncertain system (16) with
anti-windup static compensator (22) and with w = 0 satisfies
for all t ≥ 0,

x(0) ∈ E(Q̄−1)⇒ Pr
(

lim
t→∞

|x(t)| = 0
)
≥ 1− ε,

with level of confidence no smaller than 1− δ.

In Theorem 5 we characterize properties of the scenario
approximation (SwC) of problem (31) with the certificates
ξ = {Q,Y }. Then, according to the definition in (5), it
becomes clear that constraints (29) are imposed with certifi-
cates {Q,Y } depending on the uncertainty q, which lead to
reduced conservativeness. An interesting feature arising from
these q-dependent certificates in (29) is that the rightmost
constraint in (29a) implies that Q̄ is a uniform lower bound
on all certificates Qi. Stated otherwise, this implies that
E(Q̄−1) ⊂ E(Q−1

i ), i = 1, . . . , N , namely set E(Q̄−1)
is a subset of all the stability regions E(Q−1

i ) obtained for
each one of the extracted samples qi. Then, differently from
classical deterministic approaches, although the set E(Q̄−1)
is a guaranteed region of robust stability, it is not necessarily
a forward invariant set (whereas for each qi we know that
E(Q−1

i ) is a forward invariant set).
A similar (but somewhat converse) comment applies to the

robust reachable set studied in the theorem below, wherein the
rightmost inequality in (30a) implies that for each qi we have
E(s2Q−1

i ) ⊂ E(Q̄−1), i = 1, . . . , N , namely set E(Q̄−1) is
a superset of all the reachable set estimates E(s2Q−1

i ) obtained
from the scenario approximation of (33).

Theorem 6 (Robust reachable set). Given scalars s > 0, and
ε, δ ∈ (0, 1), select N satisfying (26), fix θ =

{
Q̄,X, U

}
and

ξ = {Q,Y }.
If the scenario approximation (SwC) of problem (33) is

feasible and attains a unique optimal solution, then for each
‖w‖2 < s, the zero initial state solution of the uncertain
system (16) with anti-windup static compensator (22) satisfies

Pr
(
x(t) /∈ E(Q̄−1)

)
< ε

for all t ≥ 0, with level of confidence no smaller than 1− δ.

Remark 7. Notice that Theorem 6 proposes a selection of
the anti-windup gain that minimizes a suitable measure of the
size of the reachable set for a specific selection of the bound
s on the L2 norm of the disturbance w. It is then possible to
follow similar derivations to those given in Section III-B with
the goal of providing a suitably weighted optimal selection
of the anti-windup gain performed by focusing on the size
of the reachable set in the presence of an unknown L2

norm of the disturbance, for which probabilistic information is
available. Then one may quantify the “size” of the reachable
set for each value of s by a suitable parametrization similar
to the right hand side of (27), and finally minimize some net
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Q = QT > 0, U > 0 diagonal, Q̄ ≤ Q, (29a)

He

[
Acl(q)Q Bcl,q(q) +Bcl,v(q)X

Ccl,u(q)Q− Y Dcl,uq(q)U +Dcl,uv(q)X − U

]
< 0, (29b)[

ū2
k Y[k]

Y T[k] Q

]
≥ 0, k = 1, . . . , nu, (29c)

Q = QT > 0, U > 0 diagonal, s2Q̄ ≥ Q, (30a)

He

 Acl(q)Q Bcl,q(q) +Bcl,v(q)X Bcl,w(q)
Ccl,u(q)Q− Y Dcl,uq(q)U +Dcl,uv(q)X − U Dcl,uw(q)

0 0 −I/2

 < 0, (30b)

[
ū2
k/s

2 Y[k]

Y T[k] Q

]
≥ 0, k = 1, . . . , nu, (30c)

performance metric taking into account the whole range of
possible occurrences of the L2 norm s of the disturbance w.
Since this extension is straightforward, it is not discussed in
greater detail. ◦

IV. SIMULATION EXAMPLES

The following numerical results are obtained using Matlab
R2015a on a 64 bit Windows 8.1 computer equipped with
an Intel(R) Core(TM) i7-4500U at 1.80 GHz and 8 GB of
memory. The optimization is implemented using Yalmip [25]
and Sedumi [32].

A. L2 gain minimization

In this section, we show the effectiveness of the proposed
approach, by designing an anti-windup compensator for the
passive electrical network in Fig. 1. The circuit is a bench-
mark example in the anti-windup literature and was already
employed in [37] to show the potential of static anti-windup
in a deterministic context.

��
�
H

HH

6 6

Vi Vo
C2

C3

C1

R2 R4

k
R5R3R1

Fig. 1. The passive electrical network with saturated input voltage.

The dynamics of the network is determined by 5 resistors
and 3 capacitors, whose nominal values are reported in Table I.
The gain k is instead selected such that the transfer function
between Vi and Vo is monic.

After some cumbersome computations, the transfer function
of the network turns out to be

G(s) =
s2 + C1R2+C2R4

C1C2R2R4
s+ 1

C1C2R2R4

s3 + η2
η3
s2 + η1

η3
s+ 1

η3

(34)

name value units
R1 313 Ω
R2 20 Ω
R3 315 Ω
R4 17 Ω
R5 10 Ω
C1 0.01 F
C2 0.01 F
C3 0.01 F

TABLE I
NOMINAL PARAMETER VALUES FOR THE NETWORK IN FIG. 1.

with

η1 = C1R1 + C1R2 + C2R3 + C2R4 + C3R5, (35)
η2 = C1C2R1R3 + C1C2R1R4 + C1C2R2R3

+ C1C2R2R4 + C1C3R1R5 + C1C3R2R5

+ C2C3R3R5 + C2C3R4R5, (36)
η3 = C1C2C3R1R3R5 + C1C2C3R1R4R5

+ C1C2C3R2R3R5 + C1C2C3R2R4R5. (37)

Notice that the dependence of ηi, i = 1, 2, 3 upon the physical
parameters is highly nonlinear.

The nominal plant can then be put in the form (13) via
suitable state-space realization, where

[
Ap Bp,u Bp,w

Cp,z Dp,zu Dp,zw

Cp,y Dp,yu Dp,yw

]
=


−10.6 −6.09 −0.9 1 0

1 0 0 0 0
0 1 0 0 0
−1 −11 −30 0 0
1 11 30 0 0

 ,
and w represents the reference value for the output voltage Vo,
so that z = w − y is the tracking error.

The controller is a PID and it is designed based on the
nominal model, such that the nominal phase margin is 89.5
degrees and the nominal gain margin is infinity. In the form
(14), the controller is expressed by the matrices[

Ac Bc,y Bc,w
Cc Dc,y Dc,w

]
=

 −80 0 1 −1
1 0 0 0

20.25 1600 80 −80

 .
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Assume now that the input Vi is saturated between the
minimum and the maximum voltages ±1. For a specific
value of s, a static anti-windup compensator based on the
nominal model can be designed to minimize the nonlinear
gain between the reference and the tracking error, by solving
the optimization problem (21) and relying on Proposition 3.
Using s = 0.003, the nominal optimal value γ̂2

n(s) = 2.31 is
obtained, together with the optimal nominal anti-windup gain
Dnom

aw = [−0.0855, 0.0011, 0.9887]T . This value corresponds
to the squared value of the dashed blue curve in Fig. 2 at the
abscissa s = 0.003 ≈ 10−2.52.

Under the hypothesis that the parameters are Gaussian dis-
tributed with mean values as in Table I and standard deviation
of 10%, a robust randomized compensator can be computed
following Theorem 3. First notice that nθ = 5 = 1+3+1 (aris-
ing from γ2, X and U , respectively). Then, fixing parameters
ε = 0.01 and δ = 10−6, we see that N = 2819 samples are
necessary to satisfy (4). Therefore, we follow the sequential
algorithm of Section II-C to reduce the computational burden.
In particular, using the same value s = 0.003 as in the nominal
synthesis above, we apply the Sequential algorithm for SwC,
initialized with kt = 10. Such a procedure terminates after
3 iterations, using only N = 846 samples, and providing
the robust optimal value γ̂2

r = 9.1 (evidently larger than
the nominal one), together with the optimal robust anti-
windup gain Drand

aw = [−2.1493, 0.0266, 0.6407]T . This value
approximately corresponds to the squared value of the solid
red curve in Fig. 2 at the abscissa s = 0.003 ≈ 10−2.52.
We observe a slight difference between the two values (in
the figure, the gain is higher), justified by the fact that the
performance analysis is carried out with a different set of
samples. We should remark that in terms of computational
time, the SwC approach is more demanding than the nominal
design. In this example, the elapsed time for compensator
design is approximately 7 seconds in the latter case and about
5 hours in the former.

s
×10-3

2 2.5 3 3.5 4 4.5 5 5.5

γ

0

5

10

15

20

25

30

35

no AW (robust analysis)

no AW (nominal analysis)

nAW (robust analysis)

nAW (nominal analysis)

rAW (robust analysis)

rAW (nominal analysis)

Fig. 2. L2 gain estimates for the nonlinear closed-loop systems with and
without anti-windup compensator. Both robust (solid) and nominal (dashed)
analysis are considered to assess the performance of robust (blue, Drand

aw )
and nominal (red, Dnom

aw ) compensators with respect to the system without
anti-windup augmentation (black).

Once the nominal and the robust anti-windup gains are
fixed, we may characterize their nominal and robust perfor-
mance by applying, respectively, the analysis tools of Propo-
sition 2 and Theorem 2. For comparison purposes, we study
the nominal and robust performance also for the case with
no anti-windup compensation. Comprehensively, we obtain six
curves, all reported in Fig. 2, where the nominal curves are
dashed and the robust ones are solid.

As expected, we observe that the robust compensator out-
performs the one designed for the nominal system, as far as the
robust L2 gain is concerned (solid curves). Conversely, when
the performance is evaluated on the nominal system (dashed
curves), the robust compensator yields worse results, since it
is more conservative. From the analysis point of view, notice
also that the L2 gains estimated using the robust probabilistic
method are larger than the ones given by the nominal analysis.
This holds for any configuration of the saturated closed-loop
system (without anti-windup, with nominal compensator and
with robust compensator).

The time-domain performance degradation of the nominal
closed-loop system using the robust compensator in place
of the nominal one can be assessed by looking at the time
responses illustrated in Fig. 3. From the figure, we conclude
that, although in any case the use of a compensator (red
solid and blue dash-dotted curves) improves upon the response
without anti-windup (black dotted) in terms of tracking error
and overshoot, we have to accept worse behavior in nominal
conditions when using robust anti-windup (indeed, the blue
dash-dotted response yields faster transients than the red solid
curves). However, this choice is rewarding when acting on a

0 5 10 15 20 25

−2

−1

0

1

2

Time [−]

 

 

uncon
no AW
nAW
rAW

Fig. 3. Time responses of the closed-loop system with nominal parameters
and different configurations of the anti-windup architecture: unconstrained
system (dashed), saturated system without anti-windup compensator (dotted),
saturated system with nominal anti-windup Dnom

aw (dash-dotted) and saturated
system with robust anti-windup Drand

aw (solid).

system subject to uncertainty. Specifically, in Fig. 4, we show
that the response with the perturbed plant using robust anti-
windup is less sensitive to parameter uncertainties as compared
to nominal anti-windup. As an example, the figure shows the
time responses corresponding to 16 different combinations of
±10% perturbations of the nominal parameters.



12

0 10 20
−4

−2

0

2

4
unconstrained

0 10 20
−4

−2

0

2

4
no AW

0 10 20
−4

−2

0

2

4
nominal AW

Time [−]
0 10 20

−4

−2

0

2

4
randomized AW

Time [−]

Fig. 4. Sixteen perturbed time responses of the uncertain closed-loop
system with different configurations of the anti-windup architecture: uncon-
strained system (upper-left), saturated system without anti-windup compen-
sator (upper-right), saturated system with nominal anti-windup Dnom

aw (lower
left) and saturated system with robust anti-windup Drand

aw (lower right).

It should be here remarked that, if the approach in [16]
is employed, the optimization problem for the design of the
anti-windup compensator becomes infeasible. This is due to
the conservativeness of the formulation in [16], which requires
a single Lyapunov function for all the possible uncertain
instances of the system.

B. Uncertain disturbance energy

We use the example of the previous section to illustrate
the synthesis of Section III-B aimed to (probabilistically)
minimizing the area spanned by the nonlinear L2 gain curve
within a given interval. Specifically, we consider the case
where the system parameters are fixed, but s is unknown
and has a uniform distribution between s = 0.003 and
s = 0.01. To this end, we use a cubic upper bound for
the curve (namely, we fix nγ = 3 in (28)). Notice that now
nθ = 8, because γ2 is no longer needed, but the parameters
Γk, k = 0, . . . , 3 in (27) have to be designed. In this way,
the scenario bound (4) raises up to N = 3293. However, the
sequential algorithm of Section II-C with kt = 10 allows
us to find the desired solution with “only” 2306 samples.
The corresponding anti-windup compensator reads Drand

aw =
[−0.0003554, 0.0000021, 0.9987978]T . The nonlinear L2 gain
of the closed-loop system with such a compensator corre-
sponds to the red curve represented in Fig. 5. To better assess
the performance with this anti-windup gain, we also show
the nonlinear L2 gain curves obtained from the determinis-
tic design of Proposition 3 corresponding to the minimum
s = s = 0.003 (blue curve) and the maximum s = 0.01
(green curve). The corresponding compensators are, respec-
tively, Dnom,min

aw = [−0.022124, 0.000276, 0.999904]T and
Dnom,max

aw = [−0.073639, 0.000920, 0.999999]T . In the lower
subplot of Fig. 5, the same nonlinear gains are normalized in
terms of percentage of the red curve.

Fig. 5 shows that the minimization of the area underlying
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Fig. 5. Randomized minimization of the L2 gain considering s = 0.003
(blue solid, Dnom,min

aw ) and s = 0.01 (green solid, Dnom,max
aw ), against

randomized minimization of the area underlying the curve (red solid, Drand
aw ).

the curve may be a good trade-off. Indeed, while at s the
blue curve provides a smaller gain, that blue curve blows
up to infinity even before reaching s = s, thereby providing
an optimal behavior at s and not even guaranteeing stability
at s. Similarly, the green curve provides desirable optimal
performance at s but sacrifices the performance at s. The
red curve clearly shows a trade-off that somewhat sits in the
middle between the two extreme green and blue solutions.
Such a result is obtained at the price of some additional
computational cost, in that more free parameters are involved
(recall the parameterization of the curve in (27)). The elapsed
time for designing such a compensator is then about 6 hours
(with an increase of 20% with respect to the SwC design of
the previous section).

C. Reachable set and domain of attraction

In this section, we illustrate the effectiveness of the proposed
randomized anti-windup design approach when the control
objective is the minimization of the reachable set or the
maximization of the domain of attraction (see Section III-C).
To this aim, a simple example with a planar closed loop is
considered to easily visualize the obtained sets in proper phase
planes.

Consider the first-order plant Ap Bp,u Bp,w
Cp,z Dp,zu Dp,zw

Cp,y Dp,yu Dp,yw

 =

 a b 0
−1 0 1
1 0 0

 ,
where a and b are stochastic variables with Gaussian distribu-
tion. Specifically, let E[a] = −1, E[b] = 1 and their standard
deviation be of 20%.

The integral controller with unitary gain[
Ac Bc,y Bc,w
Cc Dc,y Dc,w

]
=

[
0 −1 1
1 −1 1

]
is employed, so that the stability of the nominal unconstrained
closed-loop system is guaranteed. Suppose now that the input
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Fig. 6. Reachable sets for the closed-loop system with 50 different uncertainty samples (blue lines) and estimates of the reachable set given by the deterministic
design (black line, left, Dnom

aw ) and SwC design (black line, right, Drand
aw ).
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Fig. 7. Domain of attraction for the closed-loop system with 50 different uncertainty samples (blue lines) and estimates of the domains given by the
deterministic design (black line, left, Dnom

aw ) and SwC design (black line, right, Drand
aw ).

u is bounded below and above by u = −1 and ū = 1, respec-
tively. For both the following probabilistic design procedures,
we set ε = 0.01 and δ = 10−6. Since nθ = 6, the resulting
scenario bound, according to (4), turns out to be N = 2977.
The sequential algorithm of Section II-C is run with kt = 10.

A robust anti-windup compensator minimizing the reachable
set can be designed according to Theorem 6. The resulting
anti-windup compensator is Drand

aw = [−0.0212, 0.9902]T and
is obtained with N = 596 samples instead of N = 2977,
thanks to the sequential algorithm. Fig. 6(b) shows that the
reachable set obtained with such an approach (black thick
line) can be considered as an upper bound for the reachable
sets of the uncertain closed-loop system with 50 random
samples of the uncertain parameters (blue thin lines). It should
be remarked that, being the samples drawn independently
from the samples used for design, one reachable set actually

crosses the black line (the robust design gives only probabilis-
tic certificates). A different conclusion can be drawn when
the compensator is designed based on the nominal model
only, according to Proposition 5, as illustrated in Fig. 6(a).
In this case, the anti-windup compensator reads Dnom

aw =
[−0.00001, 0.99998]T , which evidently does not guarantee
that the reachable sets achievable with different uncertainty
samples (blue thin lines) are included in the estimated set
(black thick line). Notice that the samples used to plot the
50 instances of the uncertain system in Fig. 6(a) and Fig. 6(b)
are the same.

The same comparison, with analogous conclusions, can
be made when the goal of the anti-windup design is the
maximization of the domain of attraction. In particular,
Proposition 4 and Theorem 5 yield, respectively, Dnom

aw =
[−2.3475,−1.0063]T and Drand

aw = [−3.2036,−0.9998]T ,
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using N = 1191 samples with the sequential algorithm.
Fig. 7(a) clearly shows - also in this case - the limits

of the deterministic approach, which takes into account only
the nominal values of the system parameters, thus leading to
an unreliable estimate of the minimum domain of attraction
(black thick line), crossed by many of the uncertain domain
samples (blue thin lines). Conversely, in Fig. 7(b), the random-
ized compensator guarantees that most (in probability) of the
uncertain domains (blue thin lines) contain the estimate of the
domain of attraction obtained using the randomized approach
(black solid line).

For such a simple example, the elapsed time to compute the
robust compensator (for both the domain of attraction and the
reachable set) is smaller than in the electrical network example
and is about 53 minutes. This is still significant if compared to
the amount of time required for the simple compensator, which
is approximately 5 seconds, but on the other hand, such a
tuning provides robustness guarantees otherwise unobtainable
with a classical deterministic approach. Moreover, it should be
recalled here that the design time has no effect of the on-line
computational time for the anti-windup compensation, since
the robust compensator is characterized by the same structure
of the nominal one.

V. CONCLUSIONS

In this paper we proposed a novel paradigm for approaching
static linear anti-windup design for linear saturated control
systems in the presence of probabilistic uncertainties. The pro-
posed paradigm relies on randomized approaches and provides
a successful tool to tackle this challenging robust analysis and
design problem. The peculiar structure of static linear anti-
windup design is particularly suited as a promising exten-
sion of the typical scenario approach to randomized design.
In particular, since the design variable is decoupled from
the Lyapunov certificate, we introduce a so-called “scenario
with certificates” paradigm to provide a dramatically reduced
conservatism, as compared to typical approaches, based on
common quadratic certificates. The randomized approach to
anti-windup design may be formulated using a wide range of
optimality goals that we study in this paper and for which we
illustrate the advantages by way of numerical results.
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