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ARTICLE

Andreev molecules in semiconductor nanowire
double quantum dots
Zhaoen Su1, Alexandre B. Tacla2, Moïra Hocevar3,4, Diana Car5, Sébastien R. Plissard 6,

Erik P.A.M. Bakkers 5,7, Andrew J. Daley2, David Pekker1 & Sergey M. Frolov1

Chains of quantum dots coupled to superconductors are promising for the realization of the

Kitaev model of a topological superconductor. While individual superconducting quantum

dots have been explored, control of longer chains requires understanding of interdot coupling.

Here, double quantum dots are defined by gate voltages in indium antimonide nanowires.

High transparency superconducting niobium titanium nitride contacts are made to each of

the dots in order to induce superconductivity, as well as probe electron transport. Andreev

bound states induced on each of dots hybridize to define Andreev molecular states. The

evolution of these states is studied as a function of charge parity on the dots, and in magnetic

field. The experiments are found in agreement with a numerical model.
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Quantum simulation is a way to study unexplored
Hamiltonians by mapping them onto assemblies of
well-understood quantum systems1 such as ultracold

atoms in optical lattices2, trapped ions3 or superconducting
circuits4. Semiconductor nanostructures which form the back-
bone of classical computing hold largely untapped potential for
quantum simulation5–7. In particular, chains of quantum dots in
semiconductor nanowires can be used to emulate the ground
states of one-dimensional Hamiltonians such as the toy model of
a topological p-wave superconductor8–11. In this case semi-
conductor quantum dots need to be coupled to superconducting
reservoirs, a coupling which induces Andreev bound states. These
states are well established for single quantum dots12–18.

Here, we realize a building block of a p-wave chain model, a
double quantum dot with niobium titanium nitride super-
conducting contacts, in an indium antimonide nanowire19. In
each dot, tunnel coupling to a superconductor induces Andreev
bound states. We demonstrate that these states hybridize to form
the double dot Andreev molecular states. We establish the parity
and the spin structure of Andreev molecular levels by monitoring
their evolution in electrostatic potential and magnetic field.
Understanding Andreev molecules is a step toward building
longer chains which are predicted to generate Majorana bound
states at the end sites20, 21. Two superconducting quantum dots
are already sufficient to test the fusion rules of Majorana bound
states, a milestone towards fault-tolerant topological quantum
computing22–25.

Results
Devices. In order to realize Andreev molecules, we fabricate a
device depicted in Fig. 1a. Superconductivity in the InSb

nanowire is induced by two NbTiN contacts placed on top of the
nanowire26, the segments of the wire below the contacts labeled
SL and SR act as superconducting reservoirs for the left and right
dots. The reservoirs are characterized by the induced gap Δ ~ 400
μeV. We use voltages on five electrostatic gate electrodes placed
under the nanowire to define the two quantum dots. Voltages on
the two outer gates set the couplings ΓL and ΓR to the
superconducting reservoirs. Gate voltages VL and VR control the
chemical potentials on the left and right dots. The middle gate
labeled Vt controls the coupling t between the dots. While all
couplings are tunable in a wide range, here we focus on the
regime where the system is approximately left/right symmetric,
and with ΓL, ΓR> t. In this regime the two dots are strongly
coupled to their respective superconducting reservoirs and weakly
coupled to each other. The charging energy on each dot U ~ 1 − 2
meV>Δ thus the dots can be filled by electrons one at a time
rather than in Cooper pairs.

Andeev molecules. In superconductor-semiconductor hybrid
structures, electrons arriving from a semiconductor with energies
below the superconducting gap are prohibited from entering the
superconductor and are reflected back into the semiconductor as
quasiholes via Andreev reflection27. Through this mechanism, an
electron-hole standing wave, known as an Andreev bound state,
can form in the semiconductor. In a single quantum dot, Andreev
bound state spectrum consists of a spin-singlet state (S) which is a
superposition of 0 and 2 electrons on the quantum dot, and two
doublet states D↑ and D↓, both of which correspond to a single
electron on a quantum dot either in the spin up or spin down
state. In Fig. 1b, we depict the Andreev spectra of two decoupled
quantum dots along the energy level detuning axis, meaning that
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Fig. 1 Superconducting double dot and its energy levels. a Scanning electron micrograph of the InSb nanowire device, green circles indicate positions of the
two quantum dots. The two superconducting leads are SL and SR. The double dots are defined and tuned by five local gates: VSL, VL, Vt, VR, and VSR. The
direction of magnetic field B is indicated by arrow. b Spectrum of Andreev states in two quantum dots separated by a large barrier as a function of detuning
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with dot occupations 2, 1, 0 (0, 1, 2), respectively. Vertical lines connect levels that
hybridize to form molecular states plotted in d. c Molecular Andreev spectrum of a double quantum dot as a function of detuning (main panel) and energy
level shift (inset). S(2,0) denotes singlet (2,0) configuration and similar for others. Charge configurations in b, c are labeled in b and separated by
dashed lines. d Transport resonance at positive bias occurs when Andreev chemical potentials −ζL(VL, μS), and ζR(VR, μD) are aligned and bias (Vbias)
compensates relaxation energies. The hashed bars depict subgap states included in the numerical model
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the electrostatic energies on the two dots are changed in the
opposite directions. From negative to positive detuning, the left
dot is occupied with 2, 1, and 0 electrons, while the right dot is
occupied with 0, 1, and 2. In the (2,0) and (0,2) double dot
configurations, singlet states on both dots are lower in energy
than doublets. In the (1,1) configuration, doublets are the ground
states. We note that in the experimental system the charge
occupations of the dot are unknown but the discussion is
provided in terms of 0, 1, 2 electrons on each dot for clarity and
because in superconducting systems properties most strongly
depend on parity (even or odd) of the charge occupations.

When the two dots are tunnel-coupled, each of the states on
one dot will hybridize with each of the states on the other dot
(Fig. 1c). The new singlet states are S(0,2), S(2,0), and S(1,1): these
three states hybridize at their degeneracy points due to tunnel
coupling. The four doublet states hybridized of D(0,1) and D(1,0),
D(2,1) and D(1,2) are nearly degenerate at zero field and are
designated as D in Fig. 1c and are always the excited states. When
the chemical potentials μL and μR on the left and right dots are
tuned along the energy shift axis, such that μL= μR= μ the double
dot can transition from (0,0) to (1,1) configuration. In this case,
S(0,0) and S(1,1) are hybridized by superconducting correlations
(Fig. 1c, inset). A new type of levels appears below the gap in a
double quantum dot: the three triplet states T+(1,1)= (↑,↑),
T−(1,1)= (↓,↓) and T0(1,1)= (↑,↓) + (↓,↑) trace back to the
symmetric combinations of single dot doublet states. T(0,2) and
T(2,0) are above the induced gap due to the large orbital energy
and thus they do not correspond to bound Andreev states.

In experiment, source-drain voltage bias Vbias is applied
between SL and SR to tune the chemical potentials in the source
and drain superconductors μS and μD (Fig. 1d and see more in
Supplementary Fig. 12). On the left and right quantum dots,
chemical potentials that correspond to transitions between

ground and excited Andreev bound states, ±ζL and ±ζR, are
arranged symmetrically around the chemical potential of the left
(right) superconductor. The splitting between particle-like and
hole-like Andreev resonances +ζ and −ζ on each dot is tunable
with gate voltages on that dot. A resonance in conductance
through the double dot occurs when μS − μD= ζL + ζR, and thus
for each setting of gates VL and VR the transport resonance
corresponds to a unique value of |Vbias|.

Measurements. Measurements below are focused on a double dot
stability diagram presented in Fig. 2a (see Supplementary Fig. 1
for an expanded diagram). Four degeneracy points are observed
at which the current has a local maximum. The upper-left
maximum of current is lower than the other three. In reverse
Vbias, the lower-right maximum has the lowest current. This is
due to spin blockade which occurs between (1,1) and (0,2), or
(2,0) double dot states due to Pauli exclusion (see Supplementary
Figs. 2 and 3 for further evidence)28. Spin blockade is a mani-
festation of hybridized quantum states on the two dots, and it
allows us to identify and label the parity of nine configurations in
Fig. 2a. The regime is closely reproduced by a numerical model of
the superconducting double dot discussed below, including the
spin blockade regime (Fig. 2b). In differential conductance the
double dot stability diagram is defined by arc-shaped resonances
that connect the degeneracy points (Fig. 2c–f).

The arcs in double dot stability diagrams originate from
loop-like resonances in gate vs. bias scans (Fig. 3 and see more in
Supplementary Figs. 4 and 13). The loop resonances appear most
clearly when one dot is fixed at a degeneracy point and the other
dot is swept (Fig. 3a, b). Loop-like resonances are also observed
when the energy levels on the two dots are tuned simultaneously
(Fig. 3c-f), though deep within the (1,1) region the interdot tunnel
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coupling is reduced and the current is suppressed. The loop
resonances are accompanied by copies in negative differential
conductance. This is because on resonance (Fig. 1d) current has a
maximum, hence differential conductance changes from positive
to negative. The origin of arcs in Fig. 2 can now be understood:
indeed, if Andreev resonances are loop-like in Vbias for any cut
through the double dot stability diagram, a scan at fixed Vbias

would reveal arc resonances when Vbias matches the interdot
Andreev resonance condition.

The observed Andreev loops are closed, i.e., the conductance
resonances reach zero bias. This is counter-intuitive given that
both leads of the system are superconductors and thus an energy
gap is expected around zero bias (see Supplementary Fig. 11 for
bias spectroscopy plots of single dots)13, 15. We ascribe this to
subgap quasi-particles that enable single-particle transport
through the Andreev molecular states. When this effect is
included in the numerical model, simulations reproduce the
closed loops and negative differential conductance, as well as bias
asymmetries due to spin blockade (Fig. 3b, d, f). We model each
lead as being composed of two parts: a conventional super-
conductor with a hard superconducting gap and a normal Fermi
gas with gapless excitations. The electrochemical potentials of the
normal and the superconducting parts are pinned together at the
value set by the voltage applied to the physical lead. In our
model, Andreev reflection off the superconducting part results in
the formation of Andreev molecules. The normal part induces
transitions between the Andreev molecular states (see
Supplementary Note 2 for details). For simplicity, the model
assumes leads with a superconducting gap much larger than the
single dot energy U29.

We investigate the spin structure of Andreev molecular states
by monitoring the evolution of subgap transport features in
magnetic field. In Fig. 4a we plot differential conductance as a
function of magnetic field and source-drain bias for a double
quantum dot in the (2,2) configuration. At zero magnetic field, we
observe two peaks, one at positive bias and one at negative bias.
The application of magnetic field results in the splitting of both

peaks. Two of the peaks move to higher bias toward the gap edge,
while the other pair meets at zero bias. The two merged
resonances stick to zero bias at finite field. This effect has been
investigated as a signature of Majorana fermions20. Here, given
the narrow range of field over which the zero bias peak is
observed, we associate it with level repulsion from the gap edge or
from other subgap states18. By comparing measurements to
numerical spectra and transport calculations, we assign the peaks
to the transitions between the S(2,2) ground state and the D(↑,2)
and the D(↓,2) excited states (Fig. 4b, c). Magneto-transport
of the double quantum dot system in the (0,0), (0,2), and (2,0)
configurations is qualitatively the same as in the (2,2) configura-
tion (see more Supplementary Figs. 5–7 and 14 and measure-
ments in strong coupling regimes in Supplementary Figs. 8–10).

In the (1,1) configuration only a single pair of differential
conductance peaks is observed at all fields, one at positive and one
at negative bias (Fig. 4d). Both peaks shift to higher bias at higher
magnetic fields. The explanation for this behavior originates in
the Andreev molecular level structure depicted in Fig. 4e. The low
energy manifold consists of S(1,1) ground state that is almost
degenerate with the three triplet states T+, T0, T−. At finite field T+
plunges below the S(1,1) and becomes the ground state.
Transitions from this triplet state are allowed only to the doublet
states D(↑,0), while transitions to D(↓,0) are strongly suppressed
because they involve an additional spin flip. Both states T+ and
D(↑,0) shift to lower energies with magnetic field, but the triplet
states shifts with gμBB while the doublet states shifts with gμBB/2,
thus the energy difference between them grows with field.
Transport calculations using our detailed model confirm this
picture (Fig. 4f).

Odd total parity configurations (0,1), (1,0), (2,1), and (1,2)
offer a richer variety of transport behavior (Fig. 4g, and
Supplementary Figs. 5 and 6). The common features include
asymmetry with respect to bias and kinks in the conductance
peaks at which the effective g-factor increases. In some regimes
we also observe the magnetic field induced splitting of
conductance peaks into as many as three sub-peaks. In Fig. 4h
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we plot the Andreev molecular spectrum in the (0,1) configura-
tion as a function of magnetic field at zero bias. While D(0,↑) is
the well-separated ground state at finite field, there are two singlet
states (S(0,2) and S(1,1)) and two triplet states (T+ and T0) that
can contribute to transport (transport via the state T− requires a
spin flip and is therefore suppressed). Numerically computed
transport demonstrating both a kink feature as well as the
asymmetry with respect to bias, is plotted in Fig. 4i. The model
indicates that the origin of the kink feature is that as B increases
the D(↑,0) → T+(1,1) transition (labeled 2 in Fig. 4h, i) becomes
dimmer while the D(↑,0) → S(2,0) transition (labeled 1 in Fig. 4h,
i) becomes brighter. In the model, the dimming and brightening
of the transitions is associated with proximity to the interdot
resonances that occur at higher bias. The bias asymmetry is
associated with the different parities of the left and right dots, the
asymmetry flips if the parities are switched (Supplementary
Note 2).

Discussion
The elucidation of Andreev molecular spectra and of their
evolution in magnetic field opens several avenues for future
research. Andreev molecule is a building block for the emulation
of the Kitaev chain model9, 10, in which tuning of longer quantum
dot chains is to be performed pairwise along the chain. This taps
into the largely unexplored potential of semiconductor systems
for quantum simulation research30. Simulations of quantum
dynamics of Andreev states in quantum dots chains can be

attempted in hard gap nanowires26, 31, 32. In topological qubits,
double quantum dots have been proposed for fusion and readout
of Majorana quantum states22. These operations transmute
topologically protected Majorana states into Andreev molecular
states. Andreev molecules with topologically superconducting
reservoirs will become building blocks of topological quantum
circuits, and can be realized in the same nanowires with longer
quantum dots (200 nm or longer) subjected to higher magnetic
fields (0.5 Tesla)26, 33.

Methods
Fabrication. The nanowires (diameter 100 nm) are grown in the 111 crystal
orientation by metalorganic vapor phase epitaxy from gold catalysts, as described
in ref. 12. Local gate electrodes (pitch 60 nm) are defined by electron beam
lithography and electron beam evaporation of Ti(5 nm)/Au(10 nm) on thermal
silicon oxide. The gate electrodes are then covered by atomic layer deposition
(ALD) grown HfO2 (10 nm). Single InSb nanowires are transferred by a micro-
manipulator. The superconducting contacts are Ti/NbTi/NbTiN (5/5/150 nm).
Prior to sputtering the nanowires are passivated in ammonium sulfide to remove
the native oxide.

Measurement techniques. The measurements are performed at 35 mK in a
dilution refrigerator. A d.c. voltage bias is applied to the left superconducting lead
(SL) and the current from the right superconducting lead (SR) to the ground is
measured by a current amplifier. To measure the differential conductance, a
standard lock-in technique is used (77 Hz, 5 μV).

Data availability. The data sets generated during and/or analyzed during the
current study are available in the 4TU data center repository, http://data.4tu.nl/
repository/uuid:e99d1ab7-2e82-447e-a314-f230a0da4a95.
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