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Abstract

Devy, M., Orteu, J.J., Fuentes-Cantillana, J.L., Catalina, J.C., Rodriguez, A., Dumahu, D. and Villeneuve de Janti, P.,
Mining robotics: Application of computer vision to the automation of a roadheader, Robotics and Autonomous Systems, 11

(1993) 65-74.

Automation of mining operations involves the use of sensing, remote monitoring and control systems in order to confront
a variety of situations and environmental conditions. The need of profitability of a mine sometimes requires that selective
cutting be performed in order to separate rich ore from waste at the cutting stage. Basically, the problems to be solved are
those of modelling an uncontrolled, changing mine environment and programming the machine to cut a pattern accordingly.
We present in this paper how image segmentation and classification, 3-D scene perception and path planning can cooperate

to solve such a complex problem as selective cutting.
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1. Introduction

This work has been performed in the frame-
work of a collaborative program, funded by the
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Commission of the European Communities;
AITEMIN, LAAS-CNRS and INERIS have un-
dertaken a research project to automate the cut-
ting operation of a roadheader for selective cut-
ting in an underground potash mine near
Barcelona in Spain [7,12].
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Many types of mining require cutting to be
performed in a selective manner for several rea-
sons: different unloading points for rich ore and
waste, cutting efficiency, roof support, and safety.
The possibility of automating selective cutting is
very interesting for the economic benefits, but
requires an accurate and reliable ‘face mapping’.

The system we describe is based on the use of
computer vision to discriminate the different ore
types found in the face (sylvinite, carnalite and
salt). Using the information about the ore distri-
bution, paths are then planned for the computer-
controlled cutting tool.
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We present in this paper the solutions that
have been chosen to perform selective cutting
automation. These solutions go beyond the
framework of our application and can be ex-
tended to any automation problem involving im-
age processing. In the next section, we briefly
describe the application. Then we focus on the
new methods we have developed for computer
vision in unstructured and hostile environments.
Two problems have been particularly studied: the
ore identification from color and texture at-
tributes extracted from images of the face, and
the calibration of cameras mounted on the road-
header. Finally, we give information about the
cutting planification needed to optimize the re-
sult of the selective cutting.

2. Description of the application

In Fig. 1 we show a typical cross-section of the
different seams. The selectivity in the cutting
operation is based on cutting and separately load-
ing the sylvinite A and B seams (rich ore) and the
intermediate salt (waste), cutting as little as possi-
ble from the carnalite roof (for roof support
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Fig. 1. Typical cross-section of the seams.

reasons) and the floor salt. The system must be
able to recognize the mineral distribution at the
face, producing a ‘face map’ which is used to
determine the optimal cutting trajectory that
should be performed in an automatic mode under

the system control. The objective is to fit a road-

header (see Fig. 2) with all of the sensors

(cameras, angle sensors, etc.), actuators, control

equipment and data processing capacity, and then,

to automatically perform selective cutting opera-
tions at a typical face of the mine; the general

organization of the system is shown in Fig. 3.

A precise description of the overall goals of
the project and the test site can be found in [6].
During the current phase of the project we have
two main objectives:

e on the one hand, show the feasibility and effi-
ciency of computer vision as a tool for mineral
recognition and face mapping [12];

e on the other hand, plane a strategy (path plan-
ning, job scheduling, etc.) to optimize the cut-
ting operation, and control its execution by the
use of the 2-dof arm which supports the cutting
tool, the boom [7].

The problems of machine positioning and align-

ment in relation to the face have not been cov-

ered by this project; nevertheless, we want to

Fig. 2. Roadheader Alpine AM-100 in action.
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Fig. 3. System configuration.

automate the cutting operation, at least at a basic
level, to evaluate the mapping efficiency and to
detect operational requirements and problems
that could be studied during another phase of the
project,

This automatic selective cutting operation will
be as follows. Once the machine has been put
into position in front of the face (the cutting head
just touching the face), the system will perform
the image acquisition and processing tasks: geo-
metric distortion correction, image fusion, ore
recognition and face mapping. Then the cutting
plan is generated; at first, the machine will move
forwards, in order to cut the penetration slot
from side to side. Geometrical transformations
will be applied based on angle and distance sen-
sors values to take into account the new position
and attitude of the machine, and to correct the
cutting plan. Then the system is ready to start
cutting, from the penetration slot to the limit of
the face, in a sequence computed previously in
the plan in order to optimize selectivity. Note
that the presence of dust during the cutting oper-
ation makes it impossible to obtain any image
after the cutting has started.

3. Ore recognition

Human workers seem to achieve the recogni-
tion of the different ores present in the face by
using the color information (sylvinite has a more
‘red’ aspect than salt, which is rather orange or
white) and the texture information (the seams of
sylvinite present an important stratification).

We have tackled the problem as a pattern
recognition one. Each pixel of the image is repre-
sented by a set of features (vector X) and the
classification is obtained using a Bayes classifier.
If we assume that the class conditional probabil-
ity density for class C, is multivariate Gaussian
with mean #i, and covariance matrix ¥, and the
a priori probabilities are equal for all classes,
then the classification can be achieved by use of
the discriminant functions:

flB) = (T- ) 37 (X - ) +log 5, .

For each class C,, a set of training observations
whose class membership is known allows to de-
termine parameters for the discriminant function
f(X); the Bayes decision rule classifies a point to
class C, if and only if:

fi(X) <f(X) forall k #s.

The key point of such an approach lies in the
choice of the features which must be as discrimi-
nant as possible to lead to a good classification
result, We extract color and texture features by
the following methods:
e Color features
In order to design the most effective image
processing based on color characteristics, a
preliminary spectral analysis has been imple-
mented on a set of mineral samples requested
from the mine [6].
The study concluded that a discrimination
between the ores could be achieved by comput-
ing at every point of the face the ratio:

reflectance at 625 nm + 25 nm

" reflectance at 525 nm + 25 nm

To put this analysis into practice, since 525 nm
and 625 nm match closely the green and red
filters of a color CCD camera, we have appiox-
imated the k ratio by dividing point by point
the red and green planes of a color image
(image called ‘R/G’). Fig. 4 shows a color
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Fig. 4. A color image of the face.

image of the face and Fig. 5 shows the corre-
sponding red /green image.

The R/G feature has been added to more
classical color features such as (R, G, B, r,
g, b, I, H,S)! and a discriminant analysis has
shown that (r, g, R/G) were the best features
for discrimination [11].

e Texture features
We use an easy to compute texture extraction
technique inspired by Laws’ method [9]. First,
microtexture features are obtained by filtering
the input image with Laws’ convolution masks,
one for detection of horizontal stratifications,
which are the most frequent in the mine, and
the two others for detection of slanted stratifi-
cations. The relevant information for texture
discrimination is present as the image variance
of the microtexture features, computed over a
15 X 15 moving-window. Fig. 6 shows the tex-
ture image obtained from Image 5.

As a method of classification we have chosen a

‘region classification’ approach, which needs a

preliminary region segmentation algorithm, per-

formed with the well-known split-and-merge al-

gorithm [8] using color uniformity predicates [1].

!'r, g and b denote normalized color. I, H, and S denote
intensity, hue and saturation.

Fig. 5. R /G image from Image 4.

A region classification algorithm is applied to
each region provided by the initial segmentation;
each pixel of a given region is classified thanks to
a Bayes classifier applied to the estimated feature
vector X of this pixel; the label of the most fre-
quently occurring class is assigned to that region.

Such a labelling process can cause the merging
of adjacent regions if they are given the same
label; so, we provide significant improvements of
the initial segmentation, like in a split-merge—
merge approach [4,10].

. 6. e texture information from Image 5.



Fig. 7. Split and merge on Image 4.

In a first step, we have discarded texture infor-
mation because: (i) texture is known to be time
consuming, (ii) stratification detection requires
high resolution cameras. Nevertheless, with an
‘only color approach’ (results reported in [11]),
numerous problems of missclassification can oc-
cur. Figure 7 shows the result of applying the
split and merge algorithm on Image 4 and Fig. 8
shows the result of classifying the regions on
color attributes. Taking into account the texture

Flg 8. Claasiﬁcéticm- of the feg’iﬁns of Image 7 on color
features.

Fig. 9. Classification of regions of Image 7 after adding the
texture feature.

feature has brought a significant improvement, as
shown in Fig. 9.

As can be seen in this figure, a seam of car-
nalite has been identified at the bottom of the
image which is impossible according to the com-
position of the deposit. Such a mistake can be
easily identified, using contextual information in
order to guide the segmentation process.

An important problem we must cope with in
order to apply this approach, is the choice of
good cameras, To detect stratification, thin seams
(only a few centimeters thick) have to be isolated
from each other, on a broad face (7 m high, 7 m
wide). This simultaneously requires a large view
field and high resolution cameras. We cannot use
3-CCD color cameras in a hostile environment
such as a mine. So, we must use 1-CCD cameras:
they will be equipped with larger lenses to pro-
vide a better resolution. As the view field is
reduced by such a choice, we must mount on the
roadheader a set of cameras providing overlap-
ping images that will be fused using the method
proposed hereafter to provide a single view of the
whole face.

4. 3-D scene perception

Once the image is segmented, we must pro-
duce a ‘face map’ that can be used to control the



cutting boom as determined by the ore distribu-
tion; the aim of the ‘face map’ is to give the face
mineral’s map in a coordinate system fixed to the
roadheader. First of all, we must be able to
determine the relationship between the 3-D coor-
dinates of a point in the face and the correspond-
ing 2-D coordinates of its image; the modelling of
the perspective transformation of the camera is
required.

4.1. Model of camera

We have chosen a camera model derived from
the classical pinhole model to which we have
added quadratic terms related to radial distor-
tion. Calling (u,, v,) the distorted image coordi-
nates and (X, Y,, Z,) the 3-D coordinates, >
the camera model can be written:

ud=f(Xm! Ym’ Zm); Ud=g(Xm’ Ym’ Zm) (1)

The estimation of f() and g() requires the cali-
bration of 11 parameters: 5 intrinsic parameters
that characterize the inherent properties of the
camera and optics, 6 extrinsic parameters (3 for
the rotation and 3 for the translation) that indi-
cate the position and orientation of the camera
with respect to the machine coordinate system.

We have tackled the problem as a non-linear
constrained optimization problem which we have
solved using the algorithm of Levenberg-Mar-
quardt; a set of (2-D position, 3-D position) pairs
is used to estimate the f() and g() functions that
match best Eq. (1). Our calibration method re-
quires the knowledge of a set of non-coplanar
points [3,5] in a reference coordinate system, here
the roadheader frame.

4.2. Calibration using two optical theodolites

Usually, those points are obtained from a cali-
bration target, but in a mine it seems very diffi-
cult to use such a method. So, an important point
is to design an experimental method of calibra-
tion adapted to the hostile conditions of the
mine. We have decided to create artificial marks
on the machine that can be easily detected in an

2 The 3-D coordinates are expressed in the 3-D coordinate
system fixed to the roadheader.

Zm

Fig. 10. The machine coordinate system.

image. The problem is to locate those points in

the roadheader frame (see Fig. 10).

The marks on the machine could be located in
this frame according to the mechanical drawings
supplied by the manufacturer of the roadheader.
We preferred to measure the Cartesian position
of the marks in the roadheader frame by means
of two optical theodolites; we do not use theodo-
lite with associated distancemeter because the
accuracy of the depth measure using the dis-
tancemeter relies on the nature of the surface
which is aimed; we could use specific targets
(prism provided by the theodolite manufacturer,
or special material designed to perform omnidi-
rectional reflections), but it seems very difficult to
mount such specific targets on the roadheader for
the experiment in situ.

The solution we propose [12] does not use
on-the-shelf procedures to compute 3-D position
of points (like in [2]), but takes into account the
characteristics of the system we have to model:
cameras on a roadheader. We describe hereafter
the three steps of the calibration experiment:

e first of all, the system composed of the two
theodolites is calibrated in order that the four
angles measured by the theodolites permit to
calculate the 3-D position coordinates of all
desired points with respect to a theodolite
frame;

e then, to locate those same points in the road-
header frame, we need to obtain the location of
this frame with respect to the theodolite frame;
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e last, to perform the calibration method for the
estimation of the camera parameters, we re-
quire a set of matchings between pixels located
in the image frame and non-coplanar points
located in the roadheader frame, using the
theodolites’ measures.

We show hereafter results provided by an experi-

ment in situ; in order to calibrate the four cam-

eras mounted on the machine, we require two
separated series of measurements from each side
of the roadheader. For each one we calibrate the
theodolite system and the transform between the
theodolite frame and the roadheader frame (see

Fig. 11). Then we cope with the cameras’ calibra-

tions which are obtained with the matching of

3-D points in the roadheader frame and their 2-D

images by the different cameras.

Fig. 12 represents the 3-D results computed in
the roadheader frame which are obtained with
the two series of measurements. In this figure we
have represented the roadheader frame, the ref-
erence theodolite frames for each experiment,
two camera frames, and the 3-D data points.

4.3. Face mapping and image fusion

Once the cameras are calibrated, we can trans-
form a face image into a face map in the road-
header machine coordinate system. All interest-
ing 3-D points lie on the face; the most conve-
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Fig. 12. Final result of the experiment in situ.

nient choice to refer to each one are the joint
coordinates (8,, 8,) of the roadheader boom (see
Fig. 13). This system would make trajectory plan-
ning easier, as the boom is controlled using these
coordinates.

We know that the face is a portion of a torus,
and the equation of the torus

(Xms Your Z) = F (04, 6,) (2)

is known in a coordinate system fixed to the
roadheader. We discretize the values that (8, 6,)
can take (sampling interval is 0.2 degrees); for
each 3-D point obtained, we compute, using Egs.
(2) and (1), the corresponding (u,, v,) image
point and put in position (6, 8,) of the ‘face
map’ we are constructing the pixel value located
in (uy, vy).

In order to cope with image resolution, it is
necessary to set up many cameras at different
safe locations in such way that they cover areas

= b Sicanaes o 81 max
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Fig. 13. The face is a portion of a torus.



Fig. 14. Left image.

which complement each other. As a result, the
data from many cameras, located at different
positions, has to be combined into a single face
map.

The problem of image fusion is solved natu-
rally from the construction of the face map; from
a given point of the face, corresponding to a
discrete value (6,, 6,), we compute, using Egs. (2)
and (1) for each camera c; mounted on the
machine, the corresponding image coordinates
(uy, v,); if this point is seen from more than one
camera, the pixel value we put in the face map is

Fig. 15. Right image.

Fig. 16. Fused image.

the mean of the pixel values found in the corre-
sponding image coordinates.

Figures 14 and 15 show two parts of the same
scene taken by two cameras and Fig. 16 shows
the result of combining them into a single image.
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Fig. 17. Example of cutting planification.



5. Cutting planification

Once the face map is produced, a module
generates the most adequate cutting trajectory,
which is in principle different for every new cut.
This module takes into account the desired final
profile, roadheader operational limitations, and
requirements of the loading procedure (shuttle
car capacity). By now, no optimization criteria
have been introduced in the operational plan-
ning, although the produced trajectory is in-
tended to be an ‘efficient’ one. As an example,
Fig. 17 shows a face map, boundaries redefinition
according to the boom limitations and cutting
plan generated for waste and for rich ore; the
penetration slot is not taken into account in this
example.

6. Conclusions

In this paper, we have presented an applica-
tion of computer vision for the automation of
cutting operations in a potash mine. We have
shown that color and texture information is im-
portant for mineral identification. The two kinds
of information cooperate in an automatic image
classification algorithm which has been validated
on many images of the mine face.

At this point of our work on the ‘ore identifi-
cation’ problem, many improvements can be done
to make the process more robust: particularly, the
segmentation should be directed by the a prion
knowledge we have on the application. For in-
stance, we know that from roof to floor, the
sequence of minerals is always carnalite, sylvinite
B, intermediate salt, sylvinite A and salt. A new
segmentation method has been developed by the
Spanish partners (AITEMIN) using the contex-
tual knowledge.

We have also presented a general method of
calibrating cameras in difficult environmental con-
ditions by means of two optical theodolites used
as a triangulation system to perform 3-D mea-
surements. This method has been successfully
applied in situ, but we are sure that the solution
we propose goes beyond the framework of our
application and can be used for any camera cali-
bration problem.

An integrated experiment involving vision, path
planning for the boom trajectory and cutting op-

eration will be done during the next months in
order to demonstrate the validity of such technol-
ogy in very hostile environments.
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