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Trajectory Generation for Minimum Closed-Loop State Sensitivity

Paolo Robuffo Giordano1, Quentin Delamare1 and Antonio Franchi2

Abstract— In this paper we propose a novel general method
to let a dynamical system fulfil at best a control task when the
nominal parameters are not perfectly known. The approach
is based on the introduction of the novel concept of closed-
loop sensitivity, a quantity that relates parameter variations to
deviations of the closed-loop trajectory of the system/controller
pair. This new definition takes into account the dependency of
the control inputs from the system states and nominal param-
eters as well as from the controller dynamics. The reference
trajectory to be tracked is taken as optimization variable, and
the dynamics of both the sensitivity and of its gradient are
computed analytically along the system trajectories. We then
show how this computation can be effectively exploited for
solving trajectory optimization problems aimed at generating a
reference trajectory that minimizes a norm of the closed-loop
sensitivity. The theoretical results are validated via an extensive
campaign of Monte Carlo simulations for two relevant robotic
systems: a unicycle and a quadrotor UAV.

I. INTRODUCTION

One of the major challenges for automatic/intelligent
machines is the need to operate in uncertain real world
conditions, with robotics being perhaps the discipline mostly
concerned by this (unavoidable) issue. Indeed, robot deci-
sions and control actions are, directly or indirectly, based
on some model of the ‘world’ which is, unavoidably, only
an approximation of the reality. A classical example is that
of parametric uncertainty in the context of execution of
a motion task (e.g., a mobile robot needing to reach a
location, or a manipulator needing to grasp an object). In
these cases, a valid model of the robot may be available, but
the parameters may be uncertain, thus potentially generating
a substantial discrepancy between the ideal and real behavior
of the controlled, i.e, closed-loop, system.

The main design philosophy in tackling this fundamental
issue has in general been to devise controllers tailored to
the specific system at hand, and able to ensure a stable and
satisfactory behavior also in presence of model uncertainty.
A first classical way, which stems from the adaptive control
paradigm [1], is to estimate the nominal parameters online
while the system is performing the control task. This is ob-
tained by introducing an additional dynamics in the controller
devoted to the parameter estimation. However, estimating
the parameters online may not be an easy task, since it
typically requires to determine, and follow, trajectories that
are ‘exciting’ enough: these trajectories may be cumbersome
or even in conflict with the main control task. Furthermore,
the parameters estimation dynamics may introduce unwanted
transient behaviors, and in general guaranteeing stability (and
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satisfactory performance) of the coupled system/estimation
dynamics is far from trivial.

Another classical approach has been the use of robust
controllers [2]: these are typically static control laws that
ensure a certain degree of insensitivity to a bounded model
uncertainty (e.g., H-infinity loop shaping, valid only for
linear systems, or sliding mode control, applicable also to
nonlinear systems, but only with a sufficiently fast actuator
dynamics). However, such controller needs to be specifically
tailored for each considered system by exploiting the para-
metric uncertainty upper bound. Passivity-based methods [3]
can also be considered as a robust control action exploiting
some structural energetic properties of the system invariant to
variations in the parameters. However, in most (if not all) of
the aforementioned cases, and especially the last one, robust-
ness is obtained at the expense of accuracy/performance in
the execution of the control task. A tradeoff is indeed always
present: controllers that can “exactly realize” a generic
motion task must also rely on the assumption of perfect
knowledge of the nominal parameters, while controllers that
can provide some degree of robustness cannot then guarantee
an exact/accurate execution of the control task, but, in many
cases, only the so-called ‘practical stabilization’.

The goal of this paper is to propose a new point of view
that reverses the perspective on tackling motion control tasks
under parametric uncertainties: rather than striving to design
a sophisticated controller with some robustness guarantees
for a specific system, we propose to attain robustness (for any
choice of the control action) by suitably shaping the reference
motion trajectory so as to minimize the state sensitivity to
parameter uncertainty of the resulting closed-loop system.
Indeed, we believe that a shift of focus from classical control
design to a control-aware trajectory generation can result in
a much more general approach compared to those focusing
on the design of a specific controller performing well only
for a restricted class of systems.

The proposed approach belongs to a recent trend whose
goal is to improve, by means of trajectory optimization
algorithms, the performance of a control task for uncertain
dynamical systems. For instance, a large number of works
has focused on the observability of the system states or
the parameters of the model. In these works the typical
goal is to find trajectories that enhance the state/parameter
estimation convergence speed or accuracy, see, e.g., [4]–[12]
and reference therein. However, estimating the parameters
online can, again, introduce undesired transients and coupled
estimation/system dynamics that can be hard to analyze.
Other interesting recent works have instead focused on the
generation of feedforward trajectories meant to minimize
the state sensitivity of a system, see, e.g., [13]–[15] and
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references therein. However, the main limitation of these
approaches is in their ‘open-loop’ nature, as they do not
fully take into account the effects of parametric uncertainty
on the coupled system/controller pair (i.e., the ‘closed-loop’
system).

The aim of this work is to extend the latter approaches
for generating desired trajectories able to minimize the sen-
sitivity of the closed-loop system to parametric uncertainties.
The presented machinery (and associated optimization) is
agnostic of the particular choice of control strategy in the
sense that, given any choice of the control action, the
proposed sensitivity minimization will optimize the tracking
performance for the chosen system-controller pair. One can
then, for instance, choose and fine tune a control law for a
nominal model of the system, and then generate optimized
trajectories that fulfill some given task and whose realization
by the chosen controller results as insensitive as possible to
variations in the nominal parameters. This is achieved by ex-
tending the ‘open-loop’ optimization proposed in [15] to the
‘closed-loop’ case, in which the coupling system/controller,
and the dependency of the controller (in both its feedforward
and feedback terms) on the (possibly uncertain) parameters,
is fully taken into account.

The paper is structured as follows: in Sect. III we derive
the closed-loop state sensitivity w.r.t. parametric variations
along the system trajectories. This sensitivity is then ex-
ploited in Sect. IV for proposing two optimization problems
for two representative cost functions, namely the terminal
and the integral sensitivity. This machinery is then tested in
two case studies involving a ground and aerial robot tasked to
track a reference trajectory for their position (Sect. V). The
proposed sensitivity optimization framework is validated via
extensive Monte Carlo simulations in Sect. VI: the results
fully support the ability of the sensitivity optimization to
improve the closed-loop performance of the chosen tracking
tasks. Finally, Sect. VII concludes the paper.

II. PROBLEM STATEMENT

Consider a generic class of nonlinear system

q̇ = f(q, u, p) (1)

where q ∈ Rnq is the state, u ∈ Rnu is the input vector, and
p ∈ Rnp the vector of system parameters of the class, whose
real value is general not precisely known. With reference
to a robot, these can include, for instance, mass, inertia,
location of the center of mass, calibration parameters such
as lengths, relative poses between sensors and actuators,
actuator characteristics, and so forth.

Consider now a desired trajectory rd(t) ∈ Rnr , t ∈
[t0, tf ], which should be followed by a nr-dimensional out-
put function of the state r(q), where nr ≤ nq . For example,
r(q) could be the end-effector pose of a manipulator arm
or the pose of a mobile robot. We assume that a tracking
controller exists for solving the tracking problem e(t) =
rd(t) − r(q(t)) → 0, This control action can, in general,
also have internal states (e.g., an integral action, or dynamic
extensions). The general form of the tracking controller can

be written then as{
ξ̇ = g(ξ, q, rd(t), pc)

u = h(ξ, q, rd(t), pc)
, (2)

where ξ ∈ Rnξ are the controller internal states. Here pc ∈
Rnp represents the vector of nominal parameters used in the
control loop which, in general, may differ from the ‘real’
value of p because of poor knowledge of the system model.

If p = pc, then the controller is assumed to be able to
perfectly realize the tracking task, in the sense that if e(t0) =
ė(t0) = ë(t0) = . . . = 0, then e(t) ≡ 0 ∀t ∈ [t0, tf ].
We then call this case the nominal one: the controller has
perfect knowledge of the real system parameters and the
tracking task can be exactly realized (i.e., the tracking error
can remain identically zero under the correct choice of initial
conditions for ξ(t0)). If, on the other hand, p 6= pc, then
the tracking task cannot (in general) be perfectly realized:
the tracking error e(t) may not converge to zero or it may
have unwanted transient phases (by first growing and then
reducing again) because of the wrong value of the nominal
parameters pc w.r.t. the real value of p. We call all these
cases the perturbed ones.

The goal of this paper is to consider the optimization of
the closed-loop performance of (1–2) in terms of minimizing
the tracking error e(t) under possible parametric uncertain-
ties, that is, discrepancies between the real (but possibly
unknown) value of p and its nominal value pc used in the
control action. We note that, once a particular controller (2)
is chosen, the optimization variables (free parameters) upon
which one could still act for optimizing the closed-loop
performance of system (1–2) are (i) the shape of the desired
trajectory rd(t) (possibly under constraints), (ii) the initial
condition ξ(t0) of the controller states, (iii) the control gains
or other control parameters. Nevertheless, we consider here
that the initial condition ξ(t0) and the control gains are
‘given’ (e.g., because they have already been tuned for the
nominal case). The only optimization variables left in our
context are then the parameters describing the shape of rd(t):
therefore the problem addressed in this paper becomes the
one of finding the optimal desired trajectory rd(t) whose
tracking by (1–2) will be most insensitive to discrepancies
between p and pc.

We now detail the machinery needed to perform the sought
optimization. For obtaining a finite-dimensional problem, we
consider the desired trajectory rd(t) to belong to a parametric
class of curves rd(t) = rd(a, t), where a ∈ Rna represents
the parameter vector describing a particular member in the
chosen class of curves. Therefore, vector a becomes the
optimization variable.

III. CLOSED-LOOP STATE SENSITIVITY
A. Definition

Consider the quantity

Π(t) =
∂q(t)

∂p

∣∣∣∣
p=pc

∈ Rnq×np (3)

evalauted along the closed-loop trajectories of (1–2). This
represents the sensitivity of the state evolution w.r.t. changes

Preprint version, final version at http://ieeexplore.ieee.org/ 2 2018 IEEE ICRA



in the parameter vector p evaluated on the nominal value
p = pc. Intuitively, minimization of some norm of Π(t)
w.r.t. the optimization variables a would then result in a
desired trajectory rd(a, t) whose tracking makes the closed-
loop state evolution q(t) in the perturbed case (p 6= pc) to
be as close as possible to the evolution in the nominal case
(p = pc), assuming the perturbation is small enough. Since
the nominal case implies a perfect tracking of the desired
trajectory rd(a, t) by assumption, one would then obtain an
improved tracking of rd(a, t) in the perturbed case too.

The quantity Π(t) cannot be, in general, computed in
closed-form, but its dynamics can be given a closed-form
expression. This has, for instance, been detailed in [15] for an
open-loop version of the problem considered in this paper, in
which the (indirect) dependency of the control inputs u(·) on
the system parameters is not taken into account. In this case,
since u(·) is considered independent from p, the dynamics
of Π takes the expression

Π̇ =
∂f

∂q
Π +

∂f

∂p
, Π(t0) = 0, (4)

where f(·) is the system dynamics (1).
Evaluation of the closed-loop sensitivity considered in this

paper is, however, more involved since the control input u(·)
is a function of both the system states q and the control
states ξ, see (2), which are, in turn, indirectly affected by
variations in p. Therefore, (4) must be suitably extended for
considering this dependency. To this end, let

Πξ(t) =
∂ξ(t)

∂p

∣∣∣∣
p=pc

∈ Rnξ×np (5)

represent the sensitivity of the controller states w.r.t. the
parameter vector, again evaluated for p = pc. By exploiting
the fact that

d

dt

(
∂q

∂p

)
=

∂

∂p
q̇ and

d

dt

(
∂ξ

∂p

)
=

∂

∂p
ξ̇ (6)

and by leveraging (1–2), after some derivations one can
obtain the following system of matrix differential equations1

Π̇ =
∂f

∂q
Π +

∂f

∂p
+
∂f

∂u

(
∂h

∂q
Π +

∂h

∂ξ
Πξ

)
, Π(t0) = 0

Π̇ξ =
∂g

∂q
Π +

∂g

∂ξ
Πξ, Πξ(t0) = 0

.

(7)
Therefore the evolution of Π(t) (and of Πξ(t)) can be
obtained by forward integration of (7) over the time interval
of interest. Note that the terms ∂h/∂p = 0 and ∂g/∂p = 0
since ∂pc/∂p = 0: the sensitivity is evaluated w.r.t. varia-
tions in the system parameters p, and the nominal parameters
pc are constant2 w.r.t. variations in p.

B. Gradient

Having addressed the evaluation of the (closed-loop) state
sensitivity Π(t), we now discuss how to obtain an expression
for the gradient of Π w.r.t. the optimization variables a,

1Note how (4) can be seen as a special case of (7) when ∂u(·)/∂p = 0.
2If the nominal parameters pc were updated online, they would appear

as additional control states in vector ξ.

that is, the quantity ∂Π/∂a. Indeed, this gradient will be
generally needed by any optimization procedure, such as the
one detailed in the next Sect. IV. Note that ∂Π/∂a is a tensor
quantity: for simplifying the derivations we then work out the
expression for the gradient ∂Π/∂ai w.r.t. each individual i-th
component of a.

Let then

Πai(t) =
∂Π(t)

∂ai

∣∣∣∣
p=pc

∈ Rnq×np (8)

be the sought (matrix) gradient of the system state sensitivity
w.r.t. the optimization variable ai, and let also

Πξai
(t) =

∂Πξ(t)

∂ai

∣∣∣∣
p=pc

∈ Rnξ×np (9)

be the (matrix) gradient of the controller state sensitivity
w.r.t. ai. Analogously to Πξ, the quantity Πξai

is introduced
since it is needed for evaluating Πai .

We also define the following quantities

Γi(t) =
∂q(t)

∂ai

∣∣∣∣
p=pc

∈ Rnq (10)

Γξi(t) =
∂ξ(t)

∂ai

∣∣∣∣
p=pc

∈ Rnξ (11)

as the gradients of the system/control states w.r.t. changes
in the optimization variables ai. These quantities are also
needed for evaluating Πai . By adopting the same reasoning
leading to (7), one can show that the dynamics of Γi and
Γξi (along the system trajectories) takes the expression

Γ̇i =
∂f

∂q
Γi +

∂f

∂u

(
∂h

∂q
Γi +

∂h

∂ξ
Γξi +

∂h

∂ai

)
, Γi(t0) = 0

Γ̇ξi =
∂g

∂q
Γi +

∂g

∂ξ
Γξi +

∂g

∂ai
, Γξi(t0) = 0

,

(12)
which allows evaluating Γi(t) and Γξi(t) by forward inte-
gration analogously to Π(t) and Πξ(t) in (7).

For ease of notation we finally introduce several terms of
interest: we first rewrite (7) in the more compact form{

Π̇ = fqΠ + fp + fu (hqΠ + hξΠξ) , Π(t0) = 0

Π̇ξ = gqΠ + gξΠξ, Πξ(t0) = 0
, (13)

and then define vector uai ∈ Rnu as

uai =
∂h

∂q
Γi +

∂h

∂ξ
Γξi +

∂h

∂ai
(14)

from (12). Finally let A(x) ∈ Rn1×n2 be a matrix function
of a vector quantity x ∈ Rn3 : we will use the shorthand
∂A

∂x
◦ b, with b ∈ Rn3 , to denote the tensor product

∂A

∂x
◦ b =

n1∑
i=1

n2∑
j=1

(
∂[A(x)]ij

∂x
b

)
ιiκ

T
j ∈ Rn1×n2

where [A(x)]ij is the (i, j)-th element of matrix A, and ιi
and κi are the i-th canonical basis vectors of Rn1 and Rn2 ,
respectively.
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With all these settings, differentiating (7) w.r.t. ai yields
the following system

Π̇ai =

(
∂fq

∂q
◦ Γi +

∂fq

∂u
◦ uai

)
Π + fqΠai +

∂fp

∂q
◦ Γi+

∂fp

∂u
◦ uai +

(
∂fu
∂q

◦ Γi +
∂fu
∂u

◦ uai
)(
hqΠ + hξΠξ

)
+

fu

((
∂hq

∂q
◦ Γi +

∂hq

∂ξ
◦ Γξi +

∂hq

∂ai

)
Π+(

∂hξ

∂q
◦ Γi +

∂hξ

∂ξ
◦ Γξi +

∂hξ

∂ai

)
Πξ + hqΠai + hξΠξai

)
Π̇ξai

=

(
∂gq

∂q
◦ Γi +

∂gq

∂ξ
◦ Γξi +

∂gq

∂ai

)
Π+(

∂gξ

∂q
◦ Γi +

∂gξ

∂ξ
◦ Γξi +

∂gξ

∂ai

)
Πξ + gqΠai + gξΠξai

(15)
with initial conditions Πai(t0) = 0 and Πξai

(t0) = 0.
Summarizing, in order to optimize some function of the

state sensitivity matrix Π, one can benefit from an expression
of its gradient Πai w.r.t. the optimization variables ai. This
gradient can be obtained by forward integrating (15) together
with system (12) for obtaining Γi and Γξi , and system (7) for
obtaining Π and Πξ. Note that, as explained, one also needs
to propagate the gradient of the controller state sensitivity
Πξai

for correctly evaluating Πai .

IV. SENSITIVITY OPTIMIZATION

For the sake of illustrating how one can exploit the
closed-loop state sensitivity (and its gradient) introduced
so far, we consider two possible optimization problems of
interest: given the system dynamics (1), a reference trajectory
rd(a, t) defined over a given time interval t ∈ [t0, tf ], and
the tracking controller (2), find the optimal parameter vector
aopt such that

aopt = argmin
a∈A
‖Π(tf )‖ (16)

or
aopt = argmin

a∈A

∫ tf

t0

‖Π(τ)‖dτ (17)

where ‖ · ‖ is a suitable norm for the state sensitivity matrix
Π, and A is the set of possible values for the optimization
variables a. The first problem (16) focuses on optimizing
the (perturbed) tracking performance of rd(a, t) at the final
time tf : this may be relevant when, for instance, needing
to reach or grasp a specific object/location at tf with high
accuracy. The second problem aims at optimizing the average
(perturbed) tracking performance of rd(a, t) during the
whole trajectory duration: this may be relevant when one
wants to minimize deviations from the desired trajectory for
all t ∈ [t0, tf ] (e.g., in order to avoid obstacle collisions).

Problems (16–17) are constrained minimization problems
that can be addressed with any suitable off-the-shelf solver.
In this work we adopt a simple gradient-based optimization
algorithm for the sake of illustrating how to exploit the
various quantities introduced in Sect. III. To this end, we
consider a scenario in which initial and final values are given
for rd(a, t) and a number of its time derivatives (e.g., given
initial/final position, velocity, acceleration, and so on). These
constraints, defining the admissible set A, can be written in

matrix form as Ma = d, where d is the given set of initial
and final values for rd(a, t). Vector a can then be optimized
with a null-space approach by starting from an initial guess
satisfying the constraint and implementing the update law3

ȧ = k1M
†(d−Ma) + k2(I −M†M)ν (18)

with vector ν ∈ Rna being the negative gradient of the cost
functions in (16–17), and k1 > 0, k2 > 0 suitable gains.

As for the choice of an appropriate matrix norm ‖ · ‖,
many possibilities exist (e.g., determinant, trace, condition
number). In this work we chose the trace operator of the
‘squared’ version of matrix Π, that is, ‖Π‖ = 1

2Tr(Π
TΠ)

as matrix norm, thus resulting in

νi = −
1

2

∂Tr(ΠT (tf )Π(tf ))

∂ai
= −Tr(ΠT (tf )Πai(tf ))

for Problem (16) and

νi =− 1
2

∂
∫ tf
t0

Tr(ΠT (τ)Π(τ))dτ

∂ai
= − 1

2

∫ tf

t0

Tr
(
∂ΠT (τ)Π(τ)

∂ai
dτ
)
=

=− Tr

(∫ tf

t0

ΠT (τ)Πai(τ)dτ

)
for Problem (17).

V. CASE STUDIES
We have considered two case studies for illustrating the

results of the optimization problems (16–17): a unicycle
(differential drive) and a planar quadrotor. This section
discusses the detailed expressions of (1–2) for both robots,
and the next section presents a number of simulation results.

A. Unicycle
Let q = [x y θ] ∈ R3 be the unicycle state in a world

frame FW = {OW ; xW , yW }, with (x, y) being the planar
position in FW and θ the unicycle heading, see Fig. 1(right).
Let also (v, ω) be the unicycle linear/angular velocities and
(ωR, ωL) the right/left wheel spinning velocities: as well-
known, these are related by

[
v
ω

]
=


r

2

r

2
r

2b
− r

2b

[ ωR
ωL

]
= S

[
ωR
ωL

]

where r stands for the wheel radius and b for the distance
between the wheels. The actual inputs of a unicycle (in the
differential drive configuration) are (ωR, ωL): we thus set
u = [ωR ωL]

T as the unicycle control inputs. Because of
this choice, any uncertainty in the calibration parameters r
and b directly affects the system dynamics. Therefore we take
p = [r b]T as the vector of system parameters w.r.t. which
the closed-loop state sensitivity will be evaluated With these
settings, the unicycle dynamics has the expression

q̇ =

[
cos θ 0
sin θ 0
0 1

]
Su = f(q, u, p).

The chosen control task is that of letting the output
r(q) = [x y]T ∈ R2 (the unicycle planar position) tracking

3Since Problems (16) and (17) are in general non-convex, the update
law (18) can only guarantee convergence towards a local minimum.
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fzB

τ

θ

ωv

xW

zW
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r

xBzB ωL

ωR

θ

ω

vxB

r

xB
yB

OW xW

yW

Fig. 1: Illustration of the main quantities characterizing the unicycle
model (right) and quadrotor model (left)

a reference trajectory rd(t) ∈ R2. We solve this tracking
control task by implementing a dynamic feedback lineariza-
tion (DFL) controller (with integral action), with the aim of
guaranteeing the best possible tracking performance in the
nominal case (pc = p), see, e.g., [16]. This control strategy
can be summarized as follows: let ξ = [ξv ξx ξy]

T ∈ R3

be the controller states, where ξv represents the dynamic
extension of the unicycle linear velocity v, and (ξx, ξy) the
states of the integral action. Differentiating twice the unicycle
position r(q) yields

r̈ =

[
cos(θ) −ξv sin(θ)
sin(θ) ξv cos(θ)

] [
v̇
ω

]
= A(q, ξ)

[
v̇
ω

]
Define the following vectors

ṙξ = [cos(θ)ξv sin(θ)ξv]
T

ξxy = [ξx ξy]
T

η = r̈d + kv(ṙd − ṙξ) + kp(rd − r) + kiξxy

(19)

where kv > 0, kp > 0 and ki > 0 are suitable control gains.
Following [16], the dynamics of control states can then be
written as

ξ̇ =

[
[ 1 0 ]A−1η

rd − r

]
= g(ξ, q, rd(t)) (20)

and the unicycle control inputs as

u = S−1
c

[
ξv

[ 0 1 ]A−1η

]
= h(ξ, q, rd(t), pc), (21)

Note that in (21) the ‘calibration’ matrix Sc is (correctly)
evaluated on the nominal parameters pc.

B. Planar quadrotor

Let FW = {OW ; xW , zW } be a world frame and FB =
{OB ; xB , zB} the body frame attached to the quadrotor
center of mass, with zB aligned with the thrust direction, see
Fig. 1(left). In the planar quadrotor case the state consists of
the quadrotor position r = (x, z) and linear velocity v =
(vx, vz) in FW , and of the quadrotor body orientation θ
and angular velocity ω with, thus, q = [rT vT θ ω]T ∈
R6. Similarly to the previous unicycle case, one can define
the ‘ideal’ inputs (f, τ) (total thrust and torque) and the
‘actual’ inputs (wR, wL) (right/left propeller speeds): these
are related by[

f
τ

]
=

[
kf kf
kτ −kτ

] [
wR
wL

]
= T

[
wR
wL

]
, (22)

where kf and kτ are, in first approximation, calibration
parameters depending on the propeller characteristics, see,
e.g., [17]. Throughout the following developments, we will
then take u = [wR wL]

T as the quadrotor control inputs.
The quadrotor dynamical model considered in this work

is 

ṗ = v

v̇ =

[
0
−g

]
+
f

m

[
− sin(θ)
cos(θ)

]
−B(θ)v

θ̇ = ω

ω̇ =
τ

I

(23)

with m and I being the quadrotor mass and inertia, and
g the gravity acceleration magnitude. Note that the con-
trol inputs u = [wR wL]

T enter in (23) via (22). This
then induces a dependency on the propeller characteristics
(kf , kτ ). Furthermore, the term B(θ)v is meant to model a
body-frame air drag with possible different magnitudes along
the horizontal/vertical quadrotor axes xB and zB . Letting
R(θ) ∈ SO(2) be the 2D rotation matrix from FW to FB ,
matrix B(θ) is defined as

B(θ) = R(θ)

[
bx 0
0 bz

]
RT (θ) (24)

where bx ≥ 0 and bz ≥ 0 are the body-frame drag coef-
ficients along xB and zB , respectively. Finally, the system
parameter vector considered for the closed-loop sensitivity
optimization is taken as

p =

[
kf
m

kτ
I

bx bz

]T
∈ R4.

Indeed, as clear from (22–23), the quadrotor dynamics is
only affected by the ratios kf/m and kτ/I and not by the
individual values of these parameters.

The control task is, again, tracking of a reference trajectory
rd(t) for the quadrotor position r. Analogously to the uni-
cycle case, we implemented a DFL controller (with integral
term) for obtaining the best possible tracking performance
of rd(t) in the nominal case (pc = p), see, e.g., [18]. In the
quadrotor case, the controller states are ξ = [ξf ξdf ξx ξz] ∈
R4, where ξf and ξdf represent the two dynamic extensions
of the thrust input f , and (ξx, ξz) are again the states of the
integral action.

The proposed controller can be briefly described as fol-
lows: differentiating four times the quadrotor position r
yields

....
r = A(q, ξ, pc)

[
f̈
τ

]
+ b(q, ξ, pc) (25)

where the detailed expressions of A(q, ξ, pc) ∈ R2×2 and
b(q, ξ, pc) ∈ R2 can be found in [18]. Let now

r̈ξ =

[
0
−gc

]
+
ξf
mc

[
− sin(θ)
cos(θ)

]
−B(θ)v

...
r ξ =

ξdf
mc

[
− sin(θ)
cos(θ)

]
− ξf
mc

[
cos(θ)
sin(θ)

]
ω − Ḃv −Br̈ξ

ξxz = [ξx ξz]
T

η =
....
r d + kj(

...
rd −

...
r ξ) + ka(r̈d − r̈ξ) + kv(ṙd − v)+

+kp(rd − r) + kiξxz
(26)
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where kj > 0, ka > 0, kv > 0, kd > 0, kp > 0 and ki > 0
are suitable control gains. The dynamics of the control states
can be written as

ξ̇f

ξ̇df

ξ̇xz

 =

 ξdf

[ 1 0 ]A−1(η − b)
rd − r

 = g(ξ, q, rd(t), pc)

(27)
and the quadrotor control inputs are given by

u = T−1
c

[
ξf

[ 0 1 ]A−1(η − b)

]
= h(ξ, q, rd(t), pc).

(28)

VI. RESULTS

We now discuss a statistical analysis in which we consid-
ered four possible state sensitivities:

1) Unicycle — sensitivity of the state q w.r.t. the two
wheel parameters (r, b);

2) Quadrotor — sensitivity of the state q w.r.t. the two
drag parameters (bx, by);

3) Quadrotor — sensitivity of the state q w.r.t. the ‘mass’
parameter kf/m;

4) Quadrotor — sensitivity of the state q w.r.t. the ‘iner-
tia’ parameter kτ/I .

Other combinations are clearly possible, e.g., state sensitivity
w.r.t. all the parameters p at the same time.
For each of these cases we further considered four subcases:
DFL controller with or without integral action (denoted as I
and NI), and optimization of problem (16) or of problem (17)
(denoted as TF and TI). For the ease of exposition we will
then refer to an individual subcase with the code i-A-B,
where i = 1 . . . 4 refers to the four considered state sensitiv-
ities, A∈{I, NI} to the presence/absence of the integral term
in the DFL controller, and B∈{TF, TI} to the optimization
problem (16) or (17). Therefore, as illustration, 3-I-TF will
denote the quadrotor state sensitivity w.r.t. kf/m evaluated
for the DFL controller with integral action and optmized at
tf as in (16).

Each of the sixteen combinations i-A-B was tested by
running N = 1000 simulations in which the system under
consideration (unicycle or quadrotor) was either tracking a
non-optimal reference trajectory rd(t, an opt), where an opt
was simply taken as an opt =M †d (see (18)), or the optimal
one rd(t, aopt) obtained by the solution of problem (16)
or (17) (depending on the subcase) with initial guess a =
an opt. In all cases, a polynomial of order 15 in the variable
t was considered for each component of rd(t, a).

In each run the model parameter(s) under consideration
were generated by randomly perturbing the (true) system
values. In particular, all nominal parameters except the drag
coefficients were drawn from a uniform distribution with
range 80% to 120% of the true system values. The drag
parameters were instead drawn from a uniform distribution
with range [0 0.2].
The non-optimal reference trajectory rd(t, an opt) was al-
ways the same across all subcases i-A-B: a rest-to-rest
motion with initial/final zero velocities, accelerations, jerks

and snaps (the latter two only for the quadrotor case),
and lasting 5 [s]. The optimized trajectory rd(t, aopt) was,
instead, different for each subcase i-A-B because of the
different conditions tested, but it was obviously the same
across the 1000 runs of each subcase. Finally, the DFL
control gains were the same across all subcases (one set for
the I condition with ki > 0, and another set for the NI
condition with ki = 0), and chosen so as to obtain real and
negative closed-loop poles.

Consider now a particular subcase i-A-B tested over the
N runs and let:
• qn optnom (t) represent the (closed-loop) state evolution in

the nominal case (pc = p) when tracking the non-
optimal reference trajectory rd(t, an opt) (qn optnom (t) is
the same for all N runs);

• qn optpert, k(t) represent the (closed-loop) state evolution
in the k-th perturbed run (pc 6= p), k = 1 . . . N ,
when again tracking the non-optimal reference trajec-
tory rd(t, an opt);

• qoptnom(t) represent the (closed-loop) state evolution in
the nominal case (pc = p) when tracking the optimal
reference trajectory rd(t, aopt) (qoptnom(t) is the same
for all N runs);

• qoptpert, k(t) represent the (closed-loop) state evolution
in the k-th perturbed run (pc 6= p), k = 1 . . . N ,
when again tracking the optimal reference trajectory
rd(t, aopt).

Finally, define the state evolution errors en optk (t) =
qn optnom (t)−qn optpert, k(t) in the non-optimal case and eoptk (t) =

qoptnom(t) − qoptpert, k(t) in the optimal case, and consider the
quantities 

En optTF, k = ‖en optk (tf )‖
En optTI, k =

∫ tf
t0
‖en optk (τ)‖dτ

EoptTF, k = ‖eoptk (tf )‖
EoptTI, k =

∫ tf
t0
‖eoptk (τ)‖dτ

(29)

Let us focus on problem (16) (the other one being equiv-
alent): if tracking the optimized trajectory rd(t, aopt) ob-
tained from (16) results in a smaller sensitivity norm
‖Π(tf )‖ at tf (as claimed), then one should expect the non-
optimal state error norm En optTF, k to be ‘statistically larger’
than the optimal EoptTF, k over the N runs. In other words,
the perturbed state evolution should consistently deviate less
at tf from the nominal one when following the optimal
reference trajectory rd(t, aopt). Analogous considerations
clearly hold for problem (17) and the quantities En optTI, k ,
EoptTI, k as well.

Figures 2–5 illustrate the results of this statistical analysis
for all the considered subcases across the N runs4. In
particular, Fig. 2 reports the normalized histograms of EoptTF, k

(blue) vs. En optTF, k (orange) for the cases 1-NI-TF (top left) and
1-I-TF (top right), and of EoptTI, k (blue) vs. En optTI, k (orange)
for the cases 1-NI-TI (bottom left) and 1-I-TI (bottom
right). The following Figs. 3–5 follow exactly the same

4A selection of some representative runs are shown in the attached video.
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Case 1 µopt µn opt % σopt σn opt %

1-NI-TF 0.011 0.162 1373.8% 0.008 0.1065 1237.3%
1-I-TF 0.0077 0.097 1150.2% 0.0053 0.053 910%
1-NI-TI 0.119 0.138 16% 0.064 0.078 21.5%
1-I-TI 0.049 0.075 54.1% 0.026 0.044 66.1%

Case 2 µopt µn opt % σopt σn opt %

2-NI-TF 0.035 0.138 290.6% 0.016 0.048 192.4%
2-I-TF 0.022 0.086 292% 0.011 0.034 209.4%
2-NI-TI 0.40 0.462 15.2% 0.155 0.176 13.6%
2-I-TI 0.192 0.264 37.2% 0.0759 0.102 34%

Case 3 µopt µn opt % σopt σn opt %

3-NI-TF 1.286 1.332 3.4% 0.752 0.781 3.7%
3-I-TF 0.046 0.103 119.5% 0.032 0.06 87.9%
3-NI-TI 4.96 5 0.91% 2.97 3 0.98%
3-I-TI 1.572 1.575 0.18% 0.941 0.942 0.17%

Case 4 µopt µn opt % σopt σn opt %

4-NI-TF 0.001 0.007 523.8% 0.0007 0.0045 515.8%
4-I-TF 0.0013 0.007 449.3% 0.0008 0.004 396%
4-NI-TI 0.0193 0.029 49.8% 0.0113 0.017 49.6%
4-I-TI 0.012 0.017 41% 0.0065 0.001 53%

TABLE I: Mean/standard deviations (µopt, σopt) and (µn opt, σn opt) of the various histograms shown in Figs. 2–5 together with the
relative improvements in the optimal vs. non-optimal cases.

Fig. 2: Case 1: unicycle – sensitivity of q w.r.t. (r, b). Top row:
EoptTF, k (blue histogram) vs. En optTF, k (orange histogram) for the
cases 1-NI-TF (left) and 1-I-TF (right). Bottom row: EoptTI, k (blue
histogram) vs. En optTI, k (orange histogram) for the cases 1-NI-TI
(left) and 1-I-TI (right).

Fig. 3: Case 2: quadrotor – sensitivity of q w.r.t. (bx, by). Top
row: EoptTF, k (blue histogram) vs. En optTF, k (orange histogram) for
the cases 2-NI-TF (left) and 2-I-TF (right). Bottom row: EioptTI, k

(blue histogram) vs. En optTI, k (orange histogram) for the cases 2-NI-
TI (left) and 2-I-TI (right).

pattern for the remaining cases 2, 3, 4. These histograms
are normalized so that the height of each bin represents

Fig. 4: Case 3: quadrotor – sensitivity of q w.r.t. kf/m. Top
row: EoptTF, k (blue histogram) vs. En optTF, k (orange histogram) for
the cases 3-NI-TF (left) and 3-I-TF (right). Bottom row: EoptTI, k

(blue histogram) vs. En optTI, k (orange histogram) for the cases 3-NI-
TI (left) and 3-I-TI (right).

Fig. 5: Case 4: quadrotor – sensitivity of q w.r.t. kτ/I . Top row:
EoptTF, k (blue histogram) vs. En optTF, k (orange histogram) for the
cases 4-NI-TF (left) and 4-I-TF (right). Bottom row: EoptTI, k (blue
histogram) vs. En optTI, k (orange histogram) for the cases 4-NI-TI
(left) and 4-I-TI (right).

the probability of having a tracking error norm that falls
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within the bin bounds5. Furthermore, Table I reports for all
tested conditions the mean/standard deviations (µopt, σopt)
and (µn opt, σn opt) of the various histograms shown in
Figs. 2–5, together with the relative improvements in the
optimal vs. non-optimal cases.

We can then note the following facts: the state error norms
in the optimal cases always resulted smaller (in both the
mean and variance) w.r.t. the non-optimal cases in all the
tested conditions. Therefore, the proposed optimization of
the reference trajectory rd(t, a) was able to reduce the
average tracking error (at tf or over the whole trajectory) by
also making it more predictable (by reducing its variance).
Note that this is true not only for all conditions NI (no
integral term), as one could have expected, but also for all
conditions I (integral term): therefore, despite the beneficial
action of an integral term in compensating for parametric
uncertainties, the proposed optimization is still able to further
improve the overall tracking performance. Furthermore, one
can also note how the improvements in the tracking error
performance (both mean and variance) are always larger in
the TF conditions than in the TI conditions. This can be
explained as follows: in the TF conditions, the optimization
has the possibility to generate a suitable ‘maneuver’ for
eventually recovering the tracking error norm at the final
time tf (while possibly accepting an increased tracking error
before tf ). On the other hand, the TI conditions weight the
tracking error norm over the whole trajectory, thus leaving
less room for the optimization to improve the tracking
performance (e.g., contrarily to the TF cases, a maneuver
that temporarily increases the tracking error would result in
a poor final performance).

Coming to the individual cases, we can note that in cases
1, 2 and 4 the sensitivity optimization is quite consistently
able to produce a significant improvement in the tracking
error norm performance in all conditions (with higher/lower
improvements depending on the specific cases). The same is
not true, however, for case 3: here, only the I-TF condition
resulted in a significant improvement of the tracking error
norm (119% in mean and 87% in variance), while the
other conditions had negligible improvements. This result
can be explained by considering that case 3 involved the
quadrotor state sensitivity w.r.t. the ‘mass’ parameter kf/m,
and variations in this parameter directly affect the possibility
for compensating for the gravitational acceleration [0 g]T

in (23) (a constant drift term). In the NI conditions the DFL
controller cannot compensate for [0 g]T whatever the shape
of the reference trajectory. On the other hand, in the I-TF
condition the optimization has the possibility to produce a
‘maneuver’ that suitably slows down the quadrotor before
reaching the final pose at tf : this maneuver grants enough
time to the integral term for compensating from the wrong
kf/m and, thus, allow to subsequently reach the correct
pose at tf . Indeed, note that in case 4 (sensitivity w.r.t. a
similar parameter, the ‘inertia’ kτ/I), the optimization can

5Therefore, the histograms can be seen as an approximation of the
‘probability distribution’ of the tracking error norms resulting from the
parameters being drawn from a uniform distribution.

significantly improve the performance in all conditions since,
in this case, no drift term is present in the states directly
affected by kτ/I .

VII. CONCLUSIONS
We believe that the reported results provide a strong and

successful validation of the proposed closed-loop sensitivity
minimization for the sake of rendering a given system/control
pair as insensitive as possible to parametric uncertainties.
Future developments will involve considering optimization
problems more complex than (16–17) by, e.g., taking also
into account limited actuation or other concurrent objectives
(e.g., minimize energy or time). We are also working towards
an experimental validation of the approach.
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