
HAL Id: hal-01717293
https://laas.hal.science/hal-01717293

Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Brute-Force Schedulability Analysis for Formal Model
under Logical Execution Time Assumption

Pierre-Emmanuel Hladik

To cite this version:
Pierre-Emmanuel Hladik. A Brute-Force Schedulability Analysis for Formal Model under Logical
Execution Time Assumption. The 33rd ACM/SIGAPP Symposium On Applied Computing (SAC),
Apr 2018, Pau, France. 13p. �hal-01717293�

https://laas.hal.science/hal-01717293
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Brute-Force Schedulability Analysis for Formal Model under Logical
Execution Time Assumption

PIERRE-EMMANUEL HLADIK, LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

This article presents a schedulability analysis for real-time systems designed under the Logical Execution Time (LET) assumption.
This assumption increases the predictability of real-time systems by separating time events from scheduling events. A toolchain based
on the formal language Fiacre combined with the LET assumption is designed to organize a set of tools to model, verify, and generate
code. In this context, an exact brute-force schedulability analysis based on a simulation is proposed. The tools and algorithms to
manage the computation are described and a speedup is proposed. An experiment on a synthetic system shows the efficiency of this
approach.

CCS Concepts: • Computer systems organization→ Embedded systems; Real-time system architecture; • Software and its
engineering → Scheduling; • Theory of computation → Verification by model checking;

Additional Key Words and Phrases: Embedded Systems, Formal Verification, Real-Time, Scheduling

ACM Reference Format:
Pierre-Emmanuel Hladik. 2018. A Brute-Force Schedulability Analysis for Formal Model under Logical Execution Time Assumption. 1,
1 (February 2018), 13 pages. https://doi.org/10.1145/3167132.3167199

1 INTRODUCTION

The design of embedded real-time systems requires specific toolchains to guarantee time constraints. These tools need
to be managed in a coherent way via the design process and need to deal with the system modeling, verification, and
code generation.

This paper presents such an integrated toolchain and focuses especially on the schedulability analysis. The toolchain
follows the Logical Execution Time (LET) assumption. This assumption, first introduced by Henzinger et al. [8], increases
the predictability of a real-time system by separating time events from scheduling events. An indirect advantage is the
possibility of also model-checking the behavior of such a system without considering the scheduling, which reduces
the risk of a state explosion.

The schedulability analysis presented in this paper makes full use of the LET assumption. The problem is reduced
to a schedulability analysis of a concrete system, i.e., a system of periodic tasks with a known offset with multiple
activation schemes. The problem is then to compute all the activation scenarios and to efficiently analyze them. To
achieve this, the approach introduced in Ref. [7] is followed and a scheduling simulation is used to produce an exact
scheduling analysis.

The remainder of this document is structured as follows. Section 2 describes the context, the toolchain, and the LET
assumption used for this study. Section 3 presents work relevant to the scheduling analysis. The following section
presents the model and assumptions used. Section 5 introduces a process to analyze the schedulability and describes the

Author’s address: Pierre-Emmanuel Hladik, LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France, pehladik@laas.fr.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the
Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3167132.3167199

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Pierre-Emmanuel Hladik

principal algorithms. Section 6 shows an evaluation of the schedulability analysis on a synthetic example, and finally
Section 7 addresses the conclusions and future work.

2 CONTEXT

The schedulability analysis presented in this paper is part of a larger project developing a toolchain called Hippo [9].
This toolchain aims to provide tools to design, verify, and generate code for embedded real-time applications to enforce
their temporal safety. The Hippo toolchain is based on a design methodology called MCSE (Méthodologie pour la
Conception de Systèmes Électroniques), which was proposed by Calvez [4] during the 1990s. This methodology provides
a framework to design embedded systems. It is a straightforward method, dealing with a full development cycle and
proposing a domain-specific language with a narrow but nevertheless meaningful syntax. Figure 1 outlines the main
steps of the Hippo toolchain.

The verification process of Hippo is based on the toolbox Tina [3] and the formal language Fiacre [2]. Tina is a
toolbox to design and analyze Time Transition Systems (TTS), which are time Petri nets with data handling. It includes
various tools to construct reachability graphs and to model-check linear temporal logic (LTL) or computational tree
logic (CTL) formulas. Fiacre is a formally defined language for modeling the behavioral and timing aspects of embedded
and distributed systems for formal verification and simulation purposes. A dedicated compiler, called frac, is availed
to transform a Fiacre model into a TTS model. Both Tina and Fiacre are documented and can be downloaded from
http://projects.laas.fr/tina/ and http://projects.laas.fr/fiacre/, respectively.

The main problem addressed by Hippo concerns the generation of an executable that guarantees that the timing
constraints are respected. One difficulty is to avoid a semantic gap between the model produced by the designer, the
model used by the model-checker, and the executable [11]. For the Hippo toolchain, we chose to generate a code as
close as possible to the TTS formal model. Therefore, during the generation step, a runtime system is used to produce C
code that guarantees a control flow that is identical in every detail to the behavior of the TTS model. This approach is
similar to the BIP toolset [1].

A second difficulty concerns the control of the time behavior and its verification. Traditionally, two approaches are
distinguished (a time-triggered approach versus an event-triggered approach [10]) by the time representation and the
instants at which events are considered. However, an intermediate approach, based on the Logical Execution Time
(LET) assumption, was introduced with Giotto [8].

Using LET, the system designer specifies the logical execution time of each task, that is, the duration between the
instant at which the task is activated and the instant at which the task provides its outputs. When the LET expires, the
outputs are made visible for other tasks. This buffering of outputs achieves determinacy in both timing (no jitter) and
functionality (no race conditions). LET programming trades code efficiency in favor of code predictability compared

MCSE
Functionnal

Model

Fiacre
Model TTS Model

Analyse

Executable
MCSE2FIACRE

System
Design

MCSE IDE

(i) (ii) (iii)

(iv)

(v)

Hippo

Schedulability Analyser

Frac

Tina

Fig. 1. Main steps of the Hippo toolchain.

Manuscript submitted to ACM

http://projects.laas.fr/tina/
http://projects.laas.fr/fiacre/

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Brute-Force Schedulability Analysis for Formal Model under Logical Execution Time Assumption 3

task A

task B

task C

LET for task A

LET for task B

LET for task C

task activation
and input reading

output data writing

(a) LET view

task A

task B

task C

input reading

output writing

task execution

(b) Scheduling EDF view

Fig. 2. Timing diagram for three tasks under the LET assumption.

to traditional task scheduling, which makes all outputs visible as soon as they become available. Figure 2(a) shows
examples of LET for three tasks.

To respect the LET assumption, the code generator needs to make sure that, on a specified platform, all the outputs
are computed in time. This can be handled by a code composed of multiple tasks to ensure concurrent execution and
a real-time operating system thereby leveraging the strengths of real-time scheduling during execution. Figure 2(b)
shows an example where an EDF scheduler is used to guarantee that the outputs are computed in time. Under the LET
assumption, the scheduling can be ignored to model-check the behavior of the application. However, during the code
generation step, the compiler needs to check the schedulability of the task. This paper addresses this problem.

The transformation from an MCSE Model to a FiacreModel is not the focus of this paper and is therefore omitted in
the following sections. A prototype for the TTS Execution Engine is implemented on Xenomai (https://xenomai.org).

3 RELATEDWORK

Numerous methods to analyze the schedulability have been developed since the initial work of Liu and Layland [13]. A
large portion of these methods uses analytical expressions to produce a schedulability test. The advantages of these
approaches are their ability to deal with various behavior task models and their often low computational complexity.
However, it may be difficult to extend these tests to non-usual behavior and they are often non-optimal for multiprocessor
architectures.

Other studies use formal methods to verify the schedulability of a system. For example, Lime et al. [12] modeled a
preemptive scheduler with a scheduling time Petri net, and Peres et al. [14] proposed a formal language to model a
scheduled system. These approaches have the advantage of directly modeling the scheduling algorithm with a behavior
model; however, a serious issue with these methods is the state space explosion, which drastically limits the number of
tasks that can be considered. Moreover, the preemption induces undecidability. To overcome these difficulties, some
researchers, such as Cordovilla et al. [6], propose modeling the task behavior with a formal model and the scheduler
with an ad-hoc code.

Goossens et al. [7] proposed another approach to analyze the schedulability of a multiprocessor system. They show
that, under certain hypotheses, it is possible to use a simulator to conduct an exact schedulability test. Our paper is a
continuation of this work.

There are several tools dedicated to the simulation of real-time systems such as Cheddar, YASA, TORSCHE, MAST,
Storm, and SimSo. Most of these tools are designed to validate, test, and analyze systems. SimSo [5] is the most advanced
and modular tool focusing on the study of the scheduler itself.

In this paper, we chose to use a formal method to model-check the behavior of a system without considering the
schedulability and to analyze the schedulability with a dedicated algorithm combined with a simulator. The aim of this

Manuscript submitted to ACM

https://xenomai.org

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Pierre-Emmanuel Hladik

Fiacre
model

Model of
operations

tts Discret State
Graph

frac

Minimal
Discret Graph

tina -F1 lolli

Transitions of
interest

Paths of
activations

Trace of
simulations

SimSo

(i) (ii) (iv)

(iii)

(v) (vi)

hippo
Sched

Fig. 3. Toolchain for the schedulability analysis.

approach is to avoid a state space explosion with formal methods while maintaining an exhaustive verification of the
system’s behavior.

4 MODEL AND HYPOTHESIS

The toolchain used to conduct the schedulability analysis is sketched in Figure 3. The main steps are:

(i) the Fiacre model is compiled to a TTS Model via the compiler frac;
(ii) (ii) the state space is generated by the tool Tina (as explained in the next section, the state graph is obtained by

firing integer unit delay transitions and discrete transitions);
(iii) the elements formally described in the TTS are linked with scheduling time parameters of tasks such as the

execution time and deadline;
(iv) the tool lolli reduces the state space graph to a minimal determinist automaton with only transitions that

represent a unit delay or a task activation;
(v) all sequences of task activations are computed for a feasibility interval; and
(vi) each sequence is run with a scheduling simulator and each deadline is checked.

The next subsections describe each step in detail, especially step (v). The tools that support steps (i), (ii), and (iv) are
available with the toolbox Tina; therefore, only the input and output models will be presented below. An alternative
toolchain is also proposed in Section 5.4 via embedding the scheduling simulation into the search for the sequences of
activations, i.e., steps (v) and (vi) are merged.

The simulator used is SimSo [5]. It is a discrete event simulator used to evaluate real-time scheduling algorithms
(mono or multiprocessor). It is only used in this study to generate the scheduling of a sequence of task activations and
to check the deadlines.

From a general perspective, this approach follows the idea introduced by Goossens et al. [7] to produce an exact
schedulability test based on simulations. The hypotheses of the scheduling algorithm used to conduct this test are
exposed in the following. The purpose of this paper is to propose a practical solution to proceed any behavioral model
of the execution described in the specialized Fiacre for MCSE.

Fiacre model. The Fiacre [3] language is used to model the behavior and timing aspects of systems. This language
is composed of parallel processes communicating via ports and shared variables. A process describes the behavior of
sequential components and is defined by a set of control states, each associated with a program segment built from
classical deterministic constructs (assignments, if-then-else conditionals, while loops, and sequential compositions),
communication data-events on ports, and jumps to the next state. To consider MCSE behavior and the LET assumption,
a specialization of Fiacre is performed.
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Brute-Force Schedulability Analysis for Formal Model under Logical Execution Time Assumption 5

1 process pExample is
2 [...]
3 argOp := arg; /* read data */
4 wait [0,0] /* trigger operation */
5 to BeginOp
6 from BeginOp
7 res := Op (argOp);/* operation */
8 wait [12 ,12]; /* LET */
9 to EndOp
10 from EndOp
11 [...]
12 pExample

Listing 1. Pattern to model the operation Op with a logical execution time.

From a temporal perspective, we assume that all instructions and transitions in a Fiacre model take zero execution
time. The timing is modeled via the wait statement, which represents a delay. This statement is associated with an
interval [a,b] and signifies that the control state needs to wait a duration between a and b before forwarding. For
our purpose, only punctual intervals with integer numbers are permitted, i.e., wait[a, a] with a ∈ N. This restriction
ensures that the behavior of the system is deterministic and induces a discrete time.

The LET assumption is associatedwith the functional treatments, which are embedded into functions called operations.
An operation is basically a C function with input and output data. These operations are executed in Hippo via tasks.
Each operation has its own task and is scheduled by the operating system.

Listing 1 shows the pattern used in Fiacre to model an operation under LET. The input data are read at line 3, and
activation is triggered at line 4. The usage of the statement wait [0,0] forces the transition to occur immediately, i.e.,
the inputs are immediately read. The call of the operation Op is represented in line 7. This function is the treatment
realized by the operation. The LET assumption is modeled by the value of the wait statement in line 8. In Fiacre, a
value is only updated during a transition, so that the value of res is made visible, i.e., the outputs are provided, only
when the delay (line 8) is expired.

The Fiacre model offers the possibility of writing any type of activation pattern for the operations: the periodicity
can be modeled with a simple delay or a precedence relation with synchronization via a port or condition. The Listing 2
gives an example of a periodic behavior. Thanks to the wait statement line 7, the process clock1 is periodic. The process
p1 is synchronized with this periodic clock through the label (ı.e. port in Fiacre terminology) tick1. It means that the
transition start from the process clock1 is synchronized with the transition waitPeriodic of p1. The composition
is done with the component cExample (line 17) where the par statement is used to synchronized ports of different
processes.

The task behavior does not need to be characterized; it is implicitly described by the model.

TTS Model. The Fiacre model is compiled to a TTS Model with the frac compiler. A TTS model is a time Petri net
with data handling and guards described in a C file.

We do not need to consider data in the schedulability analysis; therefore, we do not present how to manage them
here. This is done by the compiler during the code generation at the runtime.

Temporal characteristics of an operation. Two temporal characteristics are associated with an operation: its execution
time and its deadline. These are described in an xml file. It is possible to extend these characteristics to add information
for the scheduler, for example, a priority level. The scheduling algorithm is also described by the name of the scheduling
policy in SimSo.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Pierre-Emmanuel Hladik

1 process clock1 [tick1 : none] is
2 states start , order
3 from start
4 tick1;
5 to order
6 from order
7 wait [period ,period];
8 to start
9

10 process p1 [tick1 : none] is
11 states waitPeriodic , ...
12 from waitPeriodic
13 tick1;
14 [...]
15 to waitPeriodic
16
17 component cExample is
18 port tick1 : none in [0,0],
19
20 par * in
21 clock1 [tick1]
22 || p1 [tick1]
23 end

Listing 2. Pattern of a periodic activation.

Scheduling policy. The scheduling policy used by the operating system to execute tasks is not stated in the behavior
model. The scheduler policy only needs to be known during the simulation and is therefore directly implemented in
SimSo.

There are no restrictions on the scheduler (e.g., uniprocessor, multiprocessor, global, or partitioned); however,
as Goossens et al. [7] show, only deterministic and memoryless schedulers need to be considered. A memoryless
scheduler is a scheduler “for which the scheduler decision depends only on the state of the system at the current instant”
(see Definition 1 in Ref.[7] for a more formal definition). Moreover, in the same article [7], the authors specify that
simulation-based schedulability tests can only be used when the context is such that the simulation is C-sustainable. “A
schedulabitlity test is C-sustainable is a system deemed schedulable when tasks are using their WCET is schedulable
even if some tasks do not use up to their WCET”.

In practice, the Hippo runtime is based on industrial operating systems and, therefore, only the Fixed Priority
scheduler and Earliest Deadline First have been used (with the global version for the multiprocessor platform). These
two schedulers are deterministic, memoryless, and C-sustainable when the tasks are independent. In the case of a
multiprocessor architecture, only identical multiprocessor platforms are considered.

Moreover, to conduct the schedulability analysis, it is necessary to know the simulation interval. This interval is
related to the notion of the feasibility interval, i.e., a finite interval [a,b] such that if all the deadlines of jobs released in
the interval are met, then the system is schedulable. Readers are invited to refer to the comprehensive overview on
simulation intervals in Ref. [7].

5 SCHEDULABILITY ANALYSIS

5.1 Computation of the Discrete State Graph

The tool Tina (step (ii) in Fig. 3) is used with option -F1 on the TTS model to build a subgraph of the state graph
obtained by firing integer unit delay transitions and discrete transitions. This graph preserves the reachability and
linear time temporal properties. Figure 4(a) shows an example of part of a graph computed using this tool. The edges
labeled with "i" represent a unit time, and other edges are internal events in the model. Note that all timed values
(delays) are integers; therefore, a graph with discrete transitions has the same behavior as the initial model.
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Brute-Force Schedulability Analysis for Formal Model under Logical Execution Time Assumption 7

...

t 10

11 12

13 14 15 16

t 17 18

t + 1 21 22

t + 1 25 27

t + 2 23 28 30

t + 3 26 29 32

t + 4 35 38

...

i

t0 t1

a1a0 a2 a1

a1 a2a0 a1

i i

i
t2a3

i

i

t5

i

i

i

i

i
t5

i

(a) Discrete State Graph

t + 2

t + 3

t + 4

...

t
1’

2’ 3’ 4’

t
5’ 6’

t + 1 7’ 8’

9’

10’

11’

...

i

a0 a1 a2

a1 a0 a2 a1

i ia3

i i

i

i

i

(b) State Graph of interest

t + 2

t + 3

t + 4

...

t
1’

t
5’ 6’

t + 1 7’ 8’

9’

10’

11’

...

i

a0 ,a1 a1 ,a2

i ia3

i i

i

i

i

(c) Reduced State Graph

Fig. 4. Examples of graph refinement.

0

1

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

2
fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

3
fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

4
(1
)

5

fc
t_
_e
ng
in
e_
1_
t1

6
fc
t_
_h
__
fil
te
r_
1_
t1

7
fc
t_
_h
__
fil
te
r_
1_
t1

fc
t_
_e
ng
in
e_
1_
t1

8
(1
)

9
(1
)

10
cl
oc
k_
_5
0_
_h
z_
1_
t0

11

fc
t_
_v
z_
_c
on
tro
l_
1_
t0
_f
ct
__
va
__
co
nt
ro
l_
1_
t0
_c
lo
ck
__
50
__
hz
_1
_t
1

12 (1
)

13

fc
t_
_v
a_
_c
on
tro
l_
1_
t1

14

fc
t_
_v
z_
_c
on
tro
l_
1_
t115

fc
t_
_v
z_
_c
on
tro
l_
1_
t1

fc
t_
_v
a_
_c
on
tro
l_
1_
t116

(1
)

17

cl
oc
k_
_2
00
__
hz
_1
_t
1

18

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

19
(1
)

20
fc
t_
_e
ng
in
e_
1_
t1

21
(1
)

22
(1
)

23
(1
)

24
(1
)

25
cl
oc
k_
_1
00
__
hz
_1
_t
1

26
cl
oc
k_
_2
00
__
hz
_1
_t
1

27

cl
oc
k_
_2
00
__
hz
_1
_t
1

28
fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

cl
oc
k_
_1
00
__
hz
_1
_t
1

29
fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

30

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

31

fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

cl
oc
k_
_2
00
__
hz
_1
_t
1

cl
oc
k_
_1
00
__
hz
_1
_t
1

32

fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

33

(1
)

34

fc
t_
_e
ng
in
e_
1_
t1

35

fc
t_
_h
__
fil
te
r_
1_
t1

36

fc
t_
_h
__
fil
te
r_
1_
t1

fc
t_
_e
ng
in
e_
1_
t1

37(1
)

38(1
)

39(1
)

40

(1
)

41

cl
oc
k_
_2
00
__
hz
_1
_t
1

42

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

43

(1
)

44

fc
t_
_e
ng
in
e_
1_
t1

45
(1
)

46
(1
)

47
(1
)

48
(1
)

49
cl
oc
k_
_1
00
__
hz
_1
_t
1

50
cl
oc
k_
_2
00
__
hz
_1
_t
1

51
cl
oc
k_
_2
00
__
hz
_1
_t
1

52
fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

cl
oc
k_
_1
00
__
hz
_1
_t
1

53
fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

54

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

55
fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

cl
oc
k_
_2
00
__
hz
_1
_t
1

cl
oc
k_
_1
00
__
hz
_1
_t
1

56

fc
t_
_h
__
fil
te
r_
1_
t0
_c
lo
ck
__
10
0_
_h
z_
1_
t0

fc
t_
_e
ng
in
e_
1_
t0
_c
lo
ck
__
20
0_
_h
z_
1_
t0

57

(1
)

58

fc
t_
_e
ng
in
e_
1_
t1

59

fc
t_
_h
__
fil
te
r_
1_
t1

60

fc
t_
_h
__
fil
te
r_
1_
t1

fc
t_
_e
ng
in
e_
1_
t1

61 (1
)

62 (1
)

cl
oc
k_
_5
0_
_h
z_
1_
t2

Fig. 5. Example of a state graph obtainedwith
lolli.

For the schedulability analysis, only events linked to the activation of an operation need to be considered and
other non-timed transitions can be considered to be silent transitions (the set of events linked to an activation can be
automatically found using the Fiacre model). For example, a transition not-related to an activation can be a transition
used to model a conditional statement in a process.

By considering the state space graph to be an automaton, it can be reduced to the set of transitions linked to the
activation of an operation. To achieve this, the tool lolli was developed by Bernard Berthomieu at LAAS-CNRS. It
replaces transitions that are not in the set of interest with ϵ-transitions and determines and reduces this new graph. In
other words, the graph produced by lolli represents all timed sequences of activations that can occur in the system
and ignores other events. Figure 4(b) shows the result for the graph presented in Figure 4(a), where only a1, a2, and a3

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Pierre-Emmanuel Hladik

are transitions related to an activation. Other transitions are not linked to an activation and therefore are not treated by
the schedulability analysis.

5.2 Computation of sequences of activations

The execution of a system can be described by the set of timings of activations of operations. This set is called a sequence
of activations.

Definition 5.1. By denoting ⟨opi , t⟩ the activation of an operation opi at an instant t , a sequence of activations is
defined as an ordered set of activations {⟨opi , t1⟩, ⟨opj , t2⟩, ..., ⟨opk , t3⟩} with ti ≤ ti+1.

5.2.1 Computing the sequence from a path. We denote the directed graph obtained with lolli to be G = (V ,E),
where V is the set of vertices and E is the set of directed edges that connects an ordered pair of vertices.

The set of edges of unit time transitions is denoted C, i.e., the set of transitions labeled “i”, and the set of edges that
represents a transition related to an activation is denoted A. The sets A and C are a partition of E: E = A ∪ C and
A ∩ C = ∅. An edge e in A is linked to a set of operations activated during the transition e; this set is denoted Ope .

For a directed path p = e1e2...en , ei ∈ E (to simplify, we omit the vertices in the path) from a graph G = (V ,E), the
sequence of activations s (p) can be computed with an iterative expression:

t0 = 0
s0 = ∅

if ei ∈ C

ti = ti−1 + 1
si = si−1

otherwise

ti = ti−1

si = si−1
⋃
oj ∈Opei {⟨oj , ti ⟩}.

(1)

5.2.2 Equality between two sequences. If two operations op1 and op2 are activated at the same time t , then for the
sequences s1 = {sstar t , < op1, t >, < op2, t >, send } and s2 = {sstar t , < op2, t >, < op1, t >, send }, the order of the
releases of the operations is chosen by the scheduling policy; therefore, these sequences produce the same scheduling
(if the scheduler is deterministic). From a schedulability perspective, we consider s1 and s2 to be equivalent.

Definition 5.2. Two sequences of activations s1 and s2 are said to be equal, denoted s1 = s2, iff ∀a = ⟨oj , ti ⟩ ∈ s1, a is
also in s2 (and vice versa).

From a discrete state graph computed using lolli, the computation of all sequences can produce multiple equal
sequences, e.g., in the example depicted in Figure 4(b), the sequence s (p1) = {⟨a0, 0⟩, ⟨a1, 0⟩} from the pathp1 = (3, 4) (4, 7)
is equal to the sequence issued from the path p2 = (3, 5) (5, 7), s (p2) = {⟨a1, 0⟩, ⟨a0, 0⟩}.

To speed up the schedulability analysis of a system, it is of interest to not consider multiple sequences and to avoid
equal ones.

5.2.3 Equivalence and minimality. For a graph G = (V ,E) and a vertex v ∈ V , we denote P (G,v) to be the set of all
simple paths from v (a simple path refers to a path that contains no repeated vertices).

Definition 5.3. G1 is equivalent at G2, denoted as G1 ∼ G2, from v1 ∈ V1 and v2 ∈ V2 iff {s (p) | p ∈ P (G1,v1)} =

{s (p) | p ∈ P (G2,v2)}.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Brute-Force Schedulability Analysis for Formal Model under Logical Execution Time Assumption 9

Definition 5.4. A graph G is said to be minimal from a vertex v , if all paths from v produce different sequences of
activations:

∀(p1,p2) ∈ P (G,v)
2,p1 , p2 =⇒ s (p1) , s (p2)

.

5.2.4 Graph reduction. It is possible to compute a minimal graph equivalent to a graph G = (V ,E) from an initial
vertex. The details of the algorithms are not given here. Only the main steps are described.

First step: The reduction algorithm begins computing all subgraphsGi = (Vi ,Ei) ofG that have connected components
such that:

(i) all edges in Ei are in A,
(ii) all other edges in E connected to Vi are in C, and
(iii) all vertices in V connected to a edge in Ei are in Vi .

Therefore, a subgraphGi describes a set of activations occurring between two unit times, i.e., in [t , t + 1). In the example
depicted in Figure 4(b), we have two subgraphsG1 = ({1’, 2’, 3’, 4’, 5’, 6’}, {(1’,2’), (2’,5’), (1’,3’), (3’,5’), (3’,6’), (1’,4’), (4’,6’)})
and G2 = ({7′, 8′}, {(8′, 7′)}).

Moreover, for each subgraphGi = (Vi ,Ei), the set Ii of verticesv inVi with an edge in C that points tov is computed
and the set of verticesv inVi with an edge inA that points fromv is denotedOi . For the example depicted in Figure 4(b),
for G1, we have I1 = {1’} and O1 = {5’,6’}.

Second step: The algorithm computes all paths from vertices in Ii to Oi for a subgraph Gi . For each path p, the set of
activated operations {o |o ∈ Ope ,∀e ∈ p} is computed and saved only if another path does not have (i) the same initial
vertex, (ii) the same final vertex, and (iii) the same set of activated operations. Therefore, for each subgraphGi , we have
a minimal list of paths, li = [pi,1,pi,2, ...], where each path p is described by (ip , fp , sp) with ip as an initial vertex, fp
as a final vertex, and sp as a set of operations. In the example depicted in Figure 4(b), for the subgraphG1, the minimal
list is l1 = [(1′, 5′, {a0,a1}), (1′, 6′, {a1,a2})].

Third step: The algorithm computes a new graph Gmin by replacing all subgraphs Gi in G with edges linked to a set
of operations {e = (ip , fp),Ope = sp | p ∈ li }. In this example, we obtain the new graph given in Figure 4(c).

Fourth step: It is possible that two edges of Gmin with different initial nodes have the same set of operations, and
therefore a more compact representation of the graph may exist. Therefore, in the last step, the new graph Gmin is
considered to be an automaton where each set of Ope is associated with a symbol. This step uses the classic Hopcroft’s
algorithm to reduce the automata.

5.2.5 Equivalence and minimality of the reduction algorithm.

Theorem 5.5. The graph Gmin obtained with the reduction algorithm is equivalent to G.

Proof. According to the construction of Gmin, for all parts p′ = eiei+1...ei+k of a path p = n1e1n2e2n3...ennn+1

from G such that em ∈ A,m ∈ [i, i + k] and (ei−1, ei+k+1) ∈ C
2, there exists an edge e = (ni ,ni+k+1) in Gmin such

that s (e) = s (eiei+1...ei+k). Conversely, the algorithm ensures that all activation sequences from a path of Gmin exist if
there exists a path with the same sequence in G. □

Theorem 5.6. The graph Gmin obtained with the reduction algorithm is minimal.
Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Pierre-Emmanuel Hladik

Proof. The automaton minimization at the end of the reduction algorithm guarantees that a word accepted by the
automaton has a unique path, and therefore the graph is minimal in the sense of the definition 5.4. □

5.3 Computation of the schedule traces

The reduction algorithm obtains a minimal graph that represents all the possible sequences of activations for a given
system. To compute all the paths, i.e., all sequences of activations that the system can experience, a depth-first search
algorithm can be used combined with a stop condition based on the duration of the path, i.e., the algorithm is stopped
when ti from equation (1) reaches a fixed value. Accordingly, how can this duration be set to guarantee that all execution
scenarios have been checked?

Note that all graphs have a shape of lollipop (or racket), as shown in Figure 5. This means that the system has an
initial phase followed by periodic behavior. Therefore, if each operation is considered to be an independent task with a
period equal to the periodic behavior of the “lollipop” and an offset equal to its first instance of activation, the system
can be considered to be a concrete periodic system and therefore the classical results depending on the scheduling
policy can be used to determine a simulation interval [7].

After enumerating all the activation sequences, this sequence is translated into the input format for the scheduling
simulator SimSo. Note that any scheduling policy can be chosen with the simulator; however, the scheduler needs to be
C-sustainable to ensure the faisability of the analysis [7].

5.4 Embedded scheduling policy

It is possible to adaptively check the schedulability by computing the scheduling directly while traversing the minimal
activation graph. The details of this algorithm are not provided here.

The main idea is to compute the state of the scheduler and to check the schedulability at each step when the paths
are computed. The description of a state depends on the scheduling algorithm, for example, for EDF, the remaining
work for each job and the absolute deadline are sufficient information to compute the next state.

A simple depth-first search algorithm is therefore used to compute the new scheduler state and check the schedulability
of all paths from each vertex. If all operations have finished, the algorithm reaches the next vertex with an out edge not
in C. This new vertex is then marked as a source, and a new computation from this vertex is released, but only if the
vertex has never been used as a source before. Note that only memoryless scheduling is considered; therefore, all past
events that lead to a state can be forgotten and, if this state is met again the future, it will be exactly the same.

This algorithm ends when all paths are explored. Its termination is guaranteed by the finite number of vertices.
This algorithm has two major advantages on the toolchain with SimSo: (i) the simulation duration is computed by
the algorithm, i.e., the algorithm is stopped when all activation sequences have been explored, and (ii) the number of
paths to explore is reduced thanks to the cuts made when all the remaining work has been treated. However, the main
drawback is the necessity to write a specific procedure to update the scheduler state for each scheduling policy.

6 EXPERIMENTS

The toolchain is implemented in ML for frac, Tina, and lolli. SimSo is implemented in Python, as are the other tools.
The NetworkX package (https://networkx.github.io) is used to manipulate the graphs.

To show the efficiency of the approach, an experiment was conducted on a synthetic benchmark. This example is
described in Figure 6 and is composed of seven execution flows. Each flow is periodically activated and triggers the
activation of operations. In Figure 6, the uplets under the clocks represent the offset, i.e., the first activation, and the
Manuscript submitted to ACM

https://networkx.github.io

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Brute-Force Schedulability Analysis for Formal Model under Logical Execution Time Assumption 11

Op1
<1,3>

clock1

<0,5>

<1,2>

<4,6>

<1,2>

<3,15>

clock2

Op2

Op3

Op4

<10,20>

<2,10> <7,15>

<1,40>

clock3

Op6 Op7

Op5 mode == true
<7,40> <2,4>

<0,100>

clock4

Op8 Op9

mode == true
<2,5> <1,3>

<2,10>

clock5

Op10 Op11

mode == true
<10,20> <3,5>

<0,20>

clock6

Op12 Op13

<3,10>

<2,20>

<3,5>
Op15

Op16

Op18

mode == true
<3,5> <1,2>

<6,40>

clock7

Op14 Op17

Op.
<wcet,deadline>clock

<offset,period>

mode == true

Fig. 6. Synthetic example for the experiments.

period of the flow. An operation is represented by a rectangle and an uplet with its WCET and deadline. An arrow
between two operations indicates that the second operation is activated when the deadline of the previous one is
reached. A vertical line represents a conditional synchronization and indicates that an operation is activated only if the
condition is verified. For example, operation 9 is activated only if the variable mode is true, otherwise operation 8 is
activated.

Note that the value mode is shared by various flows and can be thought of as a mode-change. Here, the change can
happen at any time but only once.

By considering the conditional cases, the maximum utilization factor, i.e., the sum of the WCET operations divided
by the period, is 185%; therefore, a minimum of two processors is necessary to schedule this system. For this study, the
scheduler was a Global EDF on 3 processors.

The model of this system is written in Fiacre with the pattern given in Section 4 for the operations. The clocks,
conditions, and the mode-change are also modeled with the Fiacre language. The Listing 3 gives an example of Fiacre
code for the clock4 and the flow 4. The WCETs are specified in a dedicated xml file (see Section 4).

The experiments were performed on a 2.6 GHz Intel Core i5 with 8 GB of memory. The state graph obtained with
Tina has 31,125 states and 72,139 transitions. The discrete graph produced by lolli has 2244 nodes and 2834 edges,
and the reduced graph has only 1780 nodes and 1870 edges. The computation time is 1.03 s with Tina and 1.89 s with
lolli. The transition phase of the “lollipop” has a duration of 22 units of time and a period of 600 (equal to the lcm of
the periods of all the flows).

The number of paths explored with the brute force method coupled with SimSo is 282. The computation time to
compute all the activation sequences is 0.89 s, and the simulation of all the sequences with SimSo is 75.8 s. All deadlines
are respected.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Pierre-Emmanuel Hladik

1 p r o c e s s c l o c k 4 [t i c k 4 : none] i s
2 s t a t e s o f f s e t S t a t e , s t a r t S t a t e , o r d e r S t a t e
3

4 from o f f s e t S t a t e
5 wai t [0 , 0] ; / ∗ o f f s e t : 0 ∗ /
6 t o s t a r t S t a t e
7 from s t a r t S t a t e
8 t i c k 4 ; / ∗ s yn ch r on i z a t i o n even t ∗ /
9 t o o r d e r S t a t e

10 from o r d e r S t a t e
11 wai t [1 0 0 , 1 0 0] ; / ∗ pe r i o d : 100 ∗ /
12 t o s t a r t S t a t e
13

14 p r o c e s s p4 [t i c k 4 : none] (&mode : na t) i s
15 s t a t e s wa i t S t a t e , readMode , update InputDataOp8 , computeStateOp8 ,
16 update InputDataOp9 , computeStateOp9
17 var i : na t : = 0 , a rg : na t : = 0 , tmp : na t
18

19 from wa i t S t a t e
20 t i c k 4 ;
21 t o readMode
22 from readMode
23 tmp := mode ;
24 wai t [0 , 0] ;
25 i f tmp = 1 then
26 t o update InputDataOp8
27 e l s e
28 t o update InputDataOp9
29 end
30 from update InputDataOp8
31 arg : = i ;
32 wai t [0 , 0] ;
33 t o computeStateOp8
34 from computeStateOp8 / ∗ Op8 : d e a d l i n e 40 wcet 7 ∗ /
35 i : = Op8 (arg) ;
36 wai t [4 0 , 4 0] ;
37 t o w a i t S t a t e
38 from update InputDataOp9
39 arg : = i ;
40 wai t [0 , 0] ;
41 t o computeStateOp9
42 from computeStateOp9 / ∗ Op9 : d e a d l i n e 4 wcet 2 ∗ /
43 i : = Op9 (arg) ;
44 wai t [4 , 4] ;
45 t o w a i t S t a t e

Listing 3. Fiacre model excerpt of the synthetic example.

The method with the scheduling policy embedded in the tool explores 269 sequences with a mean size of 42 operations
in 1.2 s.

This experiment shows the feasibility of the method and that it is possible to proceed to an exhaustive schedulability
analysis with the simulation tool. Note that the use of SimSo increases the duration of the analysis; however, it is easy
to experiment with various schedulers on the same system. Here, the example is not schedulable with two processors.
The simulation tools can easily give a trace where a task do not respect its deadline.

7 CONCLUSION

In this article, a schedulability analysis was presented for a system under the LET hypothesis. This hypothesis has the
advantage of clearly separating the temporal analysis of the application behavior from the scheduling. The revealed
solution is based on the work of Goossens et al. [7], and a scheduling simulation was used to produce an exact
schedulability test. Two versions were proposed. The first one uses the notion of the feasibility interval of a concrete
task system, and the second adaptively enumerates all scheduling scenarios.
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Brute-Force Schedulability Analysis for Formal Model under Logical Execution Time Assumption 13

A complete implementation was carried out, and experiments were conducted on a synthetic system. The results
demonstrate the usability of this method.

REFERENCES
[1] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. 2010. Model-based implementation of real-time applications. In Proc. of ACM International

Conference on Embedded Software (EMSOFT).
[2] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali, Hubert Garavel, Pierre Gaufillet, Frederic Lang, and François Vernadat. 2008.

Fiacre: an Intermediate Language for Model Verification in the Topcased Environment. In Proc. of the Embedded Real Time Software (ERTS).
[3] Bernard Berthomieu, Pierre-Olivier Ribet, and François Vernadat. 2004. The tool TINA – Construction of Abstract State Spaces for Petri Nets and

Time Petri Nets. International Journal of Production Research 42, 14 (2004).
[4] Jean-Paul Calvez. 1993. Embedded Real-Time Systems – A Specification and Design Methodology. Wiley.
[5] Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche. 2014. SimSo: A Simulation Tool to Evaluate Real-Time Multiprocessor

Scheduling Algorithms. In Proc. of the 5th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS).
[6] Mikel Cordovilla, Frédéric Boniol, Eric Noulard, and Claire Pagetti. 2011. Multiprocessor Schedulability Analyser. In Proc. of the 26th Annual ACM

Symposium on Applied Computing (SAC).
[7] Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. 2016. Periodicity of real-time schedules for dependent periodic tasks on identical

multiprocessor platforms. Real-Time Systems (2016).
[8] Thomas Henzinger, Benjamin Horowitz, and Christoph Kirsch. 2003. Giotto: a time-triggered language for embedded programming. Proc. IEEE 91, 1

(2003).
[9] Pierre-Emmanuel Hladik, Silvano Dal Zilio, Olivier Pasquier, Sébastien Pillement, and Bernard Berthomieu. 2016. Outillage pour la modélisation, la

vérification et la génération d’applications temporisées et embarquées. In 15èmes journées Approches Formelles dans l’Assistance au Développement de
Logiciels (AFADL).

[10] Hermann Kopetz. 1991. Event-Triggered Versus Time-Triggered Real-Time Systems. In Proc. of the International Workshop on Operating Systems.
[11] Cédrick Lelionnais, Jérôme Delatour, Matthias Brun, Olivier H. Roux, and Charlotte Seidner. 2014. Formal Synthesis of Real-Time System Models in

a MDE Approach. International Journal on Advances in Systems and Measurements 7 (2014).
[12] Didier Lime and Olivier H. Roux. 2009. Formal verification of real-time systems with preemptive scheduling. Real-Time Systems 41, 2 (2009).
[13] Chang L. Liu and James Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 20, 1 (1973).
[14] Florent Peres, Pierre-Emmanuel Hladik, and François Vernadat. 2009. Specification and verification of real-time systems using the POLA tool. In

Proc. of the 3rd International Workshop International Conference on Verification and Evaluation of Computer and Communication Systems (VECoS).

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Context
	3 Related work
	4 Model and hypothesis
	5 Schedulability analysis
	5.1 Computation of the Discrete State Graph
	5.2 Computation of sequences of activations
	5.3 Computation of the schedule traces
	5.4 Embedded scheduling policy

	6 Experiments
	7 Conclusion
	References

