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Chance-Constrained Optimization for Non-Linear
Network Flow Problems
Tillmann Weisser, Line A. Roald, and Sidhant Misra

Abstract—Many engineered systems, such as energy and trans-
portation infrastructures, are networks governed by non-linear
physical laws. A primary challenge for operators of these net-
works is to achieve optimal utilization while maintaining safety
and feasibility, especially in the face of uncertainty regarding
the system model. To address this problem, we formulate a
Chance Constrained Optimal Physical Network Flow (CC-OPNF)
problem that attempts to optimize the system while satisfying
safety limits with a high probability. However, the non-linear
equality constraints representing the network physics introduce
modelling and optimization challenges which make the chance
constraints numerically intractable in their original form. The
main contribution of the paper is to present a method to obtain
tractable polynomial approximations to the chance constraints
using Semidefinite Programming (SDP). The method uses a
combination of existing semi-algebraic techniques for projec-
tion and volume computation in combination with novel set
manipulations to provide conservative inner approximations to
the chance constraints. In addition, we develop a new two-step
procedure to improve computational speed. While the method
is applicable to general physical network flow problems with
polynomial constraints, we use the AC optimal power flow
problem for electric grids as an example to demonstrate the
method numerically.

Keywords—Stochastic/Uncertain Systems, Nonlinear Systems, Al-
gebraic/Geometric Methods, Optimization, Transportation Networks

I. INTRODUCTION

Networked systems are ubiquitous and include critical in-
frastructure networks such as the power grid, gas transmission
pipelines, water networks and district heating systems. In such
systems, optimization is often leveraged to maximize technical
performance or economic efficiency, giving rise to what we
will call Optimal Physical Network Flow (OPNF) problems.
Optimization of system operation requires a mathematical
model of the system. However, in practical systems, imperfect
information and forecast errors introduce uncertainty in system
operation and planning. If the uncertainty is not accounted
for properly during the design and optimization process, the
optimized system solution might be vulnerable to uncertainty,
with potentially detrimental impacts on system risk.

A prominent example is the Optimal Power Flow (OPF)
problem in the electric power grid, which minimizes opera-
tional cost subject to technical constraints, and is used to clear
electricity markets, perform security assessment and guide
system expansion planning. The most significant source of
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uncertainty in the OPF problem is due to imperfect forecasts in
renewable generation and loading conditions. System security
must be maintained by ensuring that all variables are kept
within acceptable values for a range of uncertainty realizations.
Problems with similar structure also arise in other infrastruc-
ture networks such as natural gas and water networks.

A typical approach to account for uncertainty is to formulate
the OPNF as a robust or stochastic program. However, for
many of the above mentioned systems, the physics governing
the network flows are given by a set of non-linear equations,
such as branch flow equations and nodal conservation laws.
This gives rise to non-linear equality constraints, which are
inherently non-convex and thus challenging for both deter-
ministic and stochastic optimization algorithms. In addition,
the non-linearity significantly complicates the characterization
of the uncertainty propagation throughout the system.

Most existing robust and stochastic programming methods
rely on assumptions of convexity. For practical problems such
as the OPF problem, solution methods for robust or stochastic
problem formulations typically use linear approximations [1],
[2] or convex relaxations [3], [4], [5] to circumvent the
problem of non-convexity. This enables the application of
well-known methods for robust [6] or chance-constrained [7],
[8] programming, at the expense of a reduction in model
fidelity and less comprehensive feasibility guarantees for the
underlying problem.

In this paper, we take a different approach. Instead of ap-
proximating or relaxing the non-linear network flow equations,
we aim at treating the non-convex problem directly using
techniques from polynomial optimization [9], [10], [11]. The
method is applicable for problems where the equality and
inequality constraints can be represented as polynomials in
both the decision variables and uncertain parameters.

We first formulate the uncertainty-aware problem as a
Chance-Constrained OPNF (CC-OPNF) to guarantee that the
constraints are satisfied with a high probability.

Due to the chance-constraints, the CC-OPNF is intractable
in the original form. The main contribution of the paper is to
develop conservative, tractable approximations of the chance
constraints in the form of polynomial constraints. We start
from recent results for volume computations of semi-algebraic
sets [9] and projections of semi-algebraic sets [10], which
were shown to be useful for outer approximations of chance
constraints [11], and provide two crucial extensions:

1) While [11] allow for outer approximations of the chance
constraints using a hierarchy of SDPs, in practice it is
not straight-forward to obtain an inner approximation,
which is typically of interest in our setting. Therefore,
we use a series of set manipulations to extend the ex-
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isting methods towards practical inner approximations.
2) To improve computational performance, we develop a

two-step approximation procedure, which allows for
better approximations at lower computational overhead.

Replacing the chance constraints by their respective polyno-
mial approximations yields an Approximate CC-OPNF (ACC-
OPNF) problem that is still non-convex, but readily solvable
by state-of-the-art non-linear programming solvers. Note that
the polynomial chance-constraint approximations, which can
be computationally heavy to compute, are determined a-priori
in a pre-processing step to the ACC-OPNF.

Based on a small case study for the AC OPF problem,
we demonstrate the practical performance of the method. In
particular, we demonstrate the value of the extensions to inner
approximations and the benefit of the two-step procedure.

The remainder of the paper is organized as follows. Af-
ter discussing the problem formulation in Section II, we
explain how to obtain polynomial approximations of the
chance constraints in III. Section IV describes the rationale
behind the two-step procedure, while Section V summarizes
the overall approach. In Section VI, we describe how our
general framework can be mapped to the CC-AC-OPF, before
providing numerical results in Section VII. Finally, Section
VIII summarizes and concludes.

II. PROBLEM FORMULATION

We now present the problem formulation in abstract form
for a generic physical network flow problem, as the method
can be applied to any problem that has the structure described
below. For a concrete example, we refer the reader to section
VI, where the method is applied to the AC OPF problem.

A. Deterministic Optimal Physical Network Flow
We define the problem variables as x = (x1, . . . , xn) and

y = (y1, . . . , ym). For multivariate polynomials f0
1 , . . . , f

0
m,

g0
1 , . . . , g

0
k ∈ R[x,y] we consider the following Deterministic

Optimal Physical Network Flow (D-OPNF) problem:

min
x,y

c(x,y) s.t.

f0
i (x,y) = 0, i = 1, . . . ,m, (1a)
g0
j (x,y) ≥ 0, j = 1, . . . , k. (1b)

Here, the cost function is given by a polynomial c ∈ R[x,y].
The polynomial equality constraints f0

i (x,y) = 0 represent the
network flow physics. The polynomial inequality constraints
g0
j (x,y) ≥ 0 represent engineering limits.

To explicitly describe the degree of freedom in the system,
we have separated the variables into x and y. Since the equality
constraints f0

i (x,y) = 0 eliminate m degrees of freedom, the
variables y are an implicit function of the independent variable
x. Note that due to the non-linearity of the f0

i , in general y
might not be determined uniquely by a choice of x. In this
paper we make a practical assumption stated below.

Assumption 1. The engineering limits g0
j (x,y) ≥ 0 are such

that the solution y to the system of equalities f0
i = 0, whenever

it exists is unique. As a result, we therefore can write y as a
function of x, i.e. yx := y(x).

The above assumption reflects a feature often encountered
in engineered networks. Even though, mathematically the
network physics described by the non-linear system f0

i = 0
can have multiple solutions, there is only one solution that
is physically meaningful within the region that the system
is operated. As soon as the variables x are set, the state of
the system is fully determined. Assumption 1 allows us to
formalize this notion.

B. Chance-Constrained Optimal Physical Network Flow
The aim of this paper is to account for uncertainty in

the D-OPNF (1), and to this end, we formulate the problem
as a chance-constrained optimization problem. The chance
constraints limit the probability of constraint violations, and
can be enforced either as joint chance constraints (several equa-
tions hold jointly with a given probability) or separate chance
constraints (each constraint is assigned its own probability).
Due to the underlying physics of the problem, the network
flow constraints f0

i must be satisfied jointly: If one of them is
violated, the solution is not physically valid and the remaining
constraints are meaningless. The probability of not jointly
satisfying the network flow constraints can be understood as
the probability that the uncertainty realization will lead to a
situation where the flow problem is unstable and there exist no
steady-state operating point (e.g., voltage instability in electric
power grids). The engineering limits g0

j can be satisfied either
jointly or separately, depending on the preferred method for
risk management. In this paper, we provide a method for
enforcing the engineering limits as separate chance constraints.

Let (Ω, µ) be a probability space. The random variables
ω = (w1, . . . , w`) have zero mean 0 ∈ Rl. For every measur-
able event A ⊆ Ω denote the probability of A by Pω(A) =∫
A

1µ(dω). Finally, let f1, . . . , fm, g1, . . . , gk ∈ R[x,y,ω] be
multivariate polynomials. The notation is motivated by the
idea that f0

i (x,y) = fi(x,y,0) and g0
j (x,y) = gj(x,y,0).

Define f =
∑m
i=1 f

2
i . Then enforcing the system of equations

fi(x,y,ω) = 0, i = 1, . . . ,m is equivalent to imposing
f = 0. We will use the later for better readability, although our
implementation is based on the system of equalities rather than
the single constraint f = 0. We state the CC-OPNF problem:

min
x,yx,y(ω)

c(x,yx) s.t.

f0
i (x,yx) = 0, i = 1, . . . ,m, (2a)
g0
j (x,yx) ≥ 0, j = 1, . . . , k, (2b)
Pω (f(x,y(ω),ω) = 0) ≥ 1− ε1, (2c)
Pω (gj(x,y(ω),ω) ≥ 0)

≥ 1− ε2, j = 1, . . . , k. (2d)

In addition to the chance-constraints to account for uncertainty,
we also keep the constraints (2a), (2b) from problem (1).
These constraints give a precise meaning to the cost function
c(x,yx), which is expressed as the operation cost for the
expected realization ω = 0.
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We note that the problem as presented in (2) is a variational
optimization problem. The x variables however do not depend
on ω, which means that once the controllable variables are
chosen, they cannot be modified in response to uncertainty.
Although, the y variables are a function of ω, similar to the
DNF (1), the equality constraints eliminate the degrees of
freedom for y, and by a direct generalization of Assumption 1,
one can think of y in (3) as a function of (x,ω), within
the region defined by gj ≥ 0. As a result, the constraints
in (2d) are simply constraints on the variable x, a property
that we exploit in our approach to convert the variational
problem in (3) into a standard optimization problem in x.
However, attempting to eliminate the y(ω) variables creates
another issue - unlike in (1), where the inequalities (1b)
along with Assumption 1 guarantee uniqueness and physical
interpretability, eliminating y(ω) means that there is no way
to enforce that (x,y(ω),ω) satisfy all the inequalities in (2d),
thus forfeiting the aforementioned guarantees. To circumvent
this issue, we introduce a set Y for the y variables and make
the following assumption:

Assumption 2. Restricting the range of y to a set Y ⊆ Rm
the solution y(ω) to the system of equalities f = 0 in (2c) is
unique whenever it exists.

The set Y can be interpreted as domain specific knowledge
about the system introduced in order to reduce the feasible
space to a region where our physical model is valid and exclude
physically meaningless solutions to f = 0. We propose the
abstract formulation of the CC-OPNF problem below:

min
x,yx

c(x,yx) s.t.

f0
i (x,yx) = 0, i = 1, . . . ,m, (3a)
g0
j (x,yx) ≥ 0, j = 1, . . . , k, (3b)
Pω (∃y ∈ Y, f(x,y,ω) = 0) ≥ 1− ε1, (3c)
Pω (∃y ∈ Y, f(x,y,ω) = 0 ∧ gj(x,y,ω) ≥ 0)

≥ 1− ε2, j = 1, . . . , k. (3d)

The sole reason for including the constraints f = 0 in (3d) is
to implicitly specify y as a function of x and ω.

The main contribution of this paper is to provide tractable
approximations to the chance constraints (3c), (3d). The details
of the approximation, which replaces the chance constraints in
(3c), (3d) by a set of polynomial constraints will be explained
over the next sections.

III. POLYNOMIAL APPROXIMATIONS OF CHANCE
CONSTRAINTS

In this section, we first review results from the literature
that use semi-definite programming (SDP) based methods for
computing the volume of a basic semi-algebraic set, since they
form the basis of the chance constraint approximations. Using
these methods, we then develop inner and outer approxima-
tions of the chance constraint formulation in (3).

A. Preliminaries
Let B = Bx×Ω, where Bx ⊆ Rn is a hyper-interval or any

other simple shape such that the moments with respect to the

Lebesgue measure λx are known. We define a measure space
(B,µxω) by endowing B with the product measure µxω given
by µxω = λx ⊗ µ. Let K ⊆ B be a basic semi-algebraic set,
where for each (x,ω) ∈ K we interpret x as the variables and
ω as the uncertainty. We call all points (x,ω) ∈ K as feasible
points. For a given x, a chance constraint enforces that the
probability that (x,ω) is feasible is larger than a given value,
i.e.,

Pω((x,ω) ∈ K) ≥ 1− ε, (4)

where the probability is computed using the measure µ on ω.
This probability can be interpreted as the volume of the set
Kx := {ω : (x,ω) ∈ K} with respect to the measure µ:

ρ(x) := Pω((x,ω) ∈ K) =

∫
Ω

1Kxdµ, (5)

where 1Kx denotes the indicator function of the set Kx.
1) Approximating the volume of semi-algebraic sets: In [9]

Henrion et al. propose a hierarchy of semi-definite programs
approximating the set K by the level set of some polynomial.
The starting point in [9] is an infinite dimensional linear
problem given as follows:

min
p∈R[x,ω]

∫
B

p(x,ω)dµxω

s.t. p− 1 ≥ 0 on K,
p ≥ 0 on B.

(6)

Every feasible p is an over-estimator of the indicator function
of K on B. By minimizing the integral over p, the optimal
solution has to be close to the indicator function of K in
L1(µxω)-norm. The dual problem to (6) reads

max
φ∈M+(K)
ψ∈M+(B)

∫
K

1dφ s.t. ∀(α, β) ∈ Nn+`
0∫

K

xαωβdφ+

∫
B

xαωβdψ =

∫
B

xαωβdµxω,

(7)

where the optimization variables φ and ψ are (positive) Borel
measures supported on K and B respectively. As the moments,
and in particular the mass of φ are bounded by the moments
of µxω , the optimal solution to (7) is the restriction of µxω to
K. Consequently, the optimal value of (7) is the volume of K
with respect to µxω .

The infinite dimensional problems in (7) and (6) can be
approximated by a hierarchy of semi-definite programs (SDPs)
by using the method proposed by Lasserre [12], which we
briefly summarize. A finite dimensional problem is obtained
by (i) restricting the feasible set of (6) to polynomials of a fixed
degree 2d, and (ii) replacing the non negativity condition in
the constraints by an algebraic certificate for non negativity
(such as Putinar’s theorem) on K and B, respectively, which
can be expressed by linear constraints on positive semi-definite
matrices. The number d is referred to as the relaxation degree
or the relaxation order. The interested reader is referred to [12]
for a full description of this relaxation procedure.
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For any finite order of relaxation d we obtain a polynomial
pd ∈ R[x,ω] of degree 2d that approximates the indicator
function 1K from above, and for any fixed x approximates the
function 1Kx from above. Notice that since pd(x,ω) ≥ 1K
we have

ρ(x) =

∫
1Kxdµ ≤

∫
pd(x,ω)dµ =: h∗(x), (8)

where the integration is only with respect to µ, i.e, not with
respect to µxω . The chance constraint in (4) now can be
replaced by the tractable polynomial inequality given by

h∗(x) ≥ 1− ε. (9)

As h∗ is over approximating ρ, the constraint in (9) serves as
an outer approximation of the chance constraints.

2) Approximating the volume of the projection of semi-
algebraic sets: Comparing the generic representation of
chance constraints in (4) to the one presented in (3), we see
that in many applications such as the OPNF, the presence of
equality constraints introduce additional dependent variables
y that are needed to describe the system. It is straightforward
to extend the framework described above by appending the
additional variables y to form the set K in (x,y,ω)-space
and apply the same procedure outlined above. However, since
the variables y are fully specified by (x,ω) the volume of
the set K is zero leading to ill-conditioned problems while
approximating the volume using (7). This problem can be
addressed by approximating the projection of K onto the
(x,ω) space where the volume is non-zero, instead of the
original set K, using the method in Magron et al. [10]. To
approximate the indicator function of the projection

πxω(K) := {(x,ω) : ∃y ∈ Rm, (x,y,ω) ∈ K}

of K onto the (x,ω)-space, consider the variant of (6):

min
p∈R[x,ω]

∫
B

p(x,ω)dµxyω

s.t. p− 1 ≥ 0 on K,
p ≥ 0 on B,

(10)

where now B := Bx × By × Ω for some set Bx and By

for which it is easy to compute the moments of the Lebesgue
measure, and µxyω = λx ⊗ λy ⊗ µ. Note that the optimizing
variable p is restricted to be invariant in y-direction. The
constraints guarantee that p is an over-estimator of the indicator
function of πxω(K) on πxω(B) = Bx × Ω. Similar to the
results in [9], Magron et al. prove convergence results for p
to the indicator function of πxω(K) and the optimal value to
the volume of the projection with respect to the marginal of
µxyω for the corresponding semi-definite hierarchies.

B. Approximations of the CC-OPNF
In this subsection, we describe how to use the methods

outlined in Section III-A to provide outer and inner approxi-
mations of the CC-OPNF (3). We specify the feasible set of
the chance constraints that we want to approximate by

Lx := {x : Pω(∃y ∈ Y, f(x,y,ω) = 0) ≥ 1− ε1, (11a)

Pω(∃y ∈ Y, f(x,y,ω) = 0 ∧ gj(x,y,ω) ≥ 0)

≥ 1− ε2, j = 1, . . . , k}, (11b)

where we assume that Lx ⊆ Bx. As mentioned in Section II,
our goal is to approximate the set Lx by replacing the
intractable chance constraints by polynomial constraints. We
define the sets for which the constraints remain satisfied as

K0 := {(x,y,ω) ∈ B : f(x,y,ω) = 0}, (12)
Kj := {(x,y,ω) ∈ B : f(x,y,ω) = 0 ∧ gj(x,y,ω) ≥ 0},

j = 1, . . . , k.

1) Outer approximation of the feasible set: An outer ap-
proximation of the set Lx can be obtained by applying the
method outlined in Section III-A to each of the sets Kj for
j = 0, . . . , k. For each Kj , we get a polynomial h∗j ∈ R[x]
which approximates the function x 7→ Pω(πxω(Kj)) from
above, leading to an overestimation of the satisfaction prob-
ability and an outer approximation of the chance constraints.
Consequently the set

{x ∈ Bx : h∗0(x) ≥ 1− ε1, h
∗
j (x) ≥ 1− ε2, j = 1, . . . , k}

is an outer approximation of Lx, and the corresponding ACC-
OPNF provides a lower bound to the optimal cost of the OPNF.

2) Inner approximation of the feasible set: In applications
where system security is of primary concern, obtaining feasible
solutions to (3) are more important than obtaining lower
bounds to the cost, motivating an investigation of inner ap-
proximations to the chance constraints. However, as opposed
to the outer approximation, obtaining an inner approximation
of Lx is more involved.

In the following, we propose a modification of Lx which we
can use to approximate (almost) from the interior. For ε1 < ε2

define the set

Kx := {x ∈ Bx :

Pω(∃y ∈ Y, f(x,y,ω) = 0) ≥ 1− ε1, (13a)
Pω(∃y ∈ Y, (f(x,y,ω) = 0 ∧ gj(x,y,ω) ≤ 0))

≤ ε2 − ε1, j = 1, . . . , k}. (13b)

The essential difference between Lx and Kx is that the
probabilities (13b) in Kx are bounded from above whereas
the probabilites (11b) in Lx are bounded from below. Since
the methods discussed in III-A lead to over-estimators of the
probability, the reversal of the inequality in the formulation in
Kx now enables us to approximate the sets described by the
chance constraints in (13b) from the interior. The following
proposition relates the approximating set Kx to Lx.

Proposition 1. Kx is an inner approximation of Lx.

The proof is simple and is given in the appendix. Instead
of directly dealing with Lx, we attempt to approximate the
set Kx from the interior. Using the same procedure we now
compute polynomials h∗0, . . . , h

∗
m approximating the functions

x 7→ Pω(πxω(Kj)) where Kj now is defined by

K0 :={(x,y,ω) ∈ B : f(x,y,ω) = 0}, (14)
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Kj :={(x,y,ω) ∈ B : f(x,y,ω) = 0 ∧ gj(x,y,ω) ≤ 0}.

Note that though we are aiming for an inner approximation
of Kx, the polynomials h∗j are over-approximators of the
probability. The set Kx is then approximated by the set

K̃x := {x ∈ Bx : h∗0(x) ≥ 1− ε1 (15a)
h∗j (x) ≤ ε2 − ε1, j = 1, . . . , k}. (15b)

Since the polynomials h∗j (x) over-approximate the probabil-
ities in (13b), the set defined by the inequalities in (15b)
are inner approximations of the corresponding sets defined by
(13b). Unfortunately the same relation is not true for the sets
defined by (15a) and (13a) that correspond to the probability
of joint violation of the equatility constraints fi(x,y,ω) = 0.
Therefore, K̃x is an approximate inner approximation to Lx.

IV. IMPROVED APPROXIMATIONS THROUGH STOKES
CONSTRAINTS

The SDP hierarchy to approximate the chance constraints
presented in Section III-A is guaranteed to converge to the
optimum as d grows to infinity, but much less is known
about the associated rate of convergence. When the number
of variables in the polynomial optimization problem is large,
the computation times can become prohibitively expensive,
since current SDP-solvers are not able to solve problems with
variables of size > 1000 on a standard computer. Coupled
with the fact that the size of SDP-variables at relaxation
level d is

(
N+d
d

)
,where N is the number of variables of

the polynomial optimization problem, it becomes crucial to
achieve high approximation accuracy at lower values of d.
However, convergence of the indicator function approximation
tends to be slow due to the so-called Gibbs’ phenomenon: If a
function has a discontinuity, every overestimating polynomial
approximation p overshoots the upper value at the jump [11].
In the following subsections, we first review existing results
regarding the use of valid constraints generated via the Stokes
Theorem to speed up the convergence rate, and then describe
our approach to generalize this procedure to computing the
volume/probability of projections of semi-algebraic sets.

A. Concept of Stokes constraints
In [11] Lasserre proposes to improve convergence of the

hierarchy by adding additional constraints to the problem (7).
When a polynomial t is known to vanish on the boundary of K,
the optimal measure φ∗ satisfies the equality

∫
K
θ(x,y)dφ∗ =

0 for some family of functions θ depending on µ and t. The
equality is a consequence of the Stokes theorem, which is
why the constraints are referred to as Stokes constraints. We
describe the procedure to generate these constraints below, in
the case where µ is the uniform measure. For more general
measures we refer to [11].

Let t ∈ R[x,ω] be a polynomial that vanishes on the
boundary of K. Given any (α, β) ∈ Nn+`

0 and z ∈
{x1, . . . , xn, w1, . . . , wm}, define the polynomial θzαβ as

θzαβ := ∂
∂z

(
xαωβt(x,ω)

)
. (16)

-1 -0.5 0 0.5 1
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Fig. 1. Effect of Stokes constraints on the dual variables. Polynomial p
approximating the indicator function on [− 1

2
, 1
2

] without (red) and with (blue)
Stokes constraints.

Then by the Stokes formula, for all (α, β) ∈ Nn+`
0 and z ∈

{x1, . . . , xn, w1, . . . , wm} we have∫
K

θzα,βdφ∗ =

∫
K

∂
∂z

(
xαωβt(x,ω)

)
dφ∗ = 0. (17)

Since the optimal measure satisfies all the equality constraints
given in (17), we can add these equations as constraints to (6)
without affecting the optimal solution. Adding these redundant
constraints has been shown in some cases to greatly improve
the rate of convergence of the SDP hierarchy, i.e., enabling
higher accuracy at a lower relaxation level d. While the faster
convergence is beneficial, the dual of (6) with addition of
constraints in (17) now reads

min
p∈R[x,ω],
qθ∈R

∫
B

p(x,ω)dµxω

s.t. p− 1 ≥
∑
θ∈Θ

qθθ on K,

p ≥ 0 on B,

(18)

where Θ is the set of all θzαβ defined in (16). Comparing (18)
to problem (6) we observe that the polynomial p in (18) is no
longer an over-estimator of the indicator function 1K on B.

This effect is illustrated in Figure 1, where typical shapes of
p for problems (6) (red) and (18) (blue) are shown. We observe
that the red curve over-approximates the indicator function of
K (dashed black). Also we can see the mismatches at the
discontinuities of the indicator function due to the Gibbs’
phenomenon. We note that the 1-super-level-set of the red
curve is a good approximation of the set K. In contrast to that,
when applying Stokes constraints, we observe that the 1-super-
level-set of the blue curve does not provide any information
about the set K. The integral value of the blue curve however
is closer to the volume of K than the integral value of the red
curve. Moreover the integral preserves the over-approximation
property. Indeed for any polynomial p feasible for (18) we
have∫

K

pdµxω ≥
∫
K

1dµxω +
∑
θ∈Θ

qθ

∫
K

θdµxω︸ ︷︷ ︸
=0 by Stokes

=vol(K). (19)

B. Partial Stokes constraints for chance constraints
The polynomial p(x,ω) obtained above cannot be used to

approximate the function ρ(x) in (5). If however we only use
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ω as variables z in (16) then for all x we have∫
Bx

pdµ ≥
∫
Kx

1dµ+
∑
θ∈Θ

∫
Kx

θdµ = ρ(x). (20)

Applying Stokes constraints only in the ω direction hence
allows us to both obtain the improved convergence rates while
still obtaining an over-estimator of the probability of Kx.

C. Partial Stokes constraints for projection of sets
The method in Section IV-A cannot directly be applied to

the setting where the feasible set is described by the projection
of a semi-algebraic set. This is because in order to be able to
add Stokes constraints to the problem in (10), we must first
find a polynomial t ∈ R[x,ω] that vanishes on the boundary of
the projection πxω(K) of K. Note that in Section IV-A where
there is no projection involved, the polynomial t ∈ R[x,ω]
that vanishes on the boundary of K can be readily obtained as
the product of the polynomials that define the semi-algebraic
set K. For the projection πxω(K) of a semi-algebraic set K
in (x,y,ω)-space, this trick is not applicable.

Our solution to this issue is a two-step-procedure: In the first
step we approximate the projection πxω(K) by the super-level-
set of a polynomial p(1) ∈ R[x,ω]. In the second step, we use
this super-level-set S to compute a second polynomial p(2) ∈
R[x,ω] approximating the volume of S. This is explained in
more detail below.

1) Step 1: Approximating the projection of K: We first apply
the method in Section III-A and solve the problem in (10)
to obtain a polynomial p(1) that is an over-estimator of the
indicator function of πxω(K), i.e. p(1) ≥ 1 on πxω(K). In
particular the super-level-set given by

S := {(x,ω) ∈ Bx × Ω : p(1)(x,ω)− 1 ≥ 0} (21)

is an outer approximation of πxω(K). Fig. 2 illustrates this
step. Numerical experiments have shown that the 1-super-level-
set of the optimizing polynomial is quite accurate already for
low relaxation degrees.

2) Step 2: Probability approximation: After the first step
we replace the actual projection πxω(K) by its approximation
S defined in (21). In doing so we lose information about
πxω(K) but we gain two important advantages. First, moving
from K to S we get a significant reduction in the number of
variables, as we eliminate the whole y-space. This allows us
to afford computational capacity for higher levels in the SDP
relaxation hierarchy and get better volume approximations.
Second, we now have a polynomial, specifically p(1) − 1,
that vanishes on the boundary of S. This crucial difference
enables us to use Stokes constraints to improve the volume
approximation. Applying the method in Section IV-B, we
obtain a polynomial p(2) ∈ R[x,ω] that still preserves the
desired over-approximation property:

h∗(x) :=

∫
Ω

p(2)(x,ω)dµ
(a)

≥ Pω(S)
(b)

≥ Pω(πxω(K)),

where (a) follows from (20) and (b) follows because
πxω(K) ⊆ S. This step is summarized in Fig. 3.

Bx

Ω

By

πxω(K)

S

K

p(1)

Fig. 2. Step 1: Projection step. The projection of K is approximated as S,
which is defined by the 1-super-level set of p(1).

p(1)

p(2)

S

Bx

Pω

Ω

h

Fig. 3. Step 2: Probability approximation. The probability is approximated
by integrating p(2) in Ω direction for every x.

V. THE OVERALL APPROACH

To summarize the overall approach, we first recall the
problem formulation (3). Our aim is to eliminate the chance
constraints (3c) and (3d) and replace them by tractable poly-
nomial constraints. The challenge is to (i) ensure existence
of solution to the equality constraints, (ii) compute inner
approximations to the chance constraints, and (iii) enable use
of Stokes constraints to speed up convergence.

We address the challenges in the following steps:
1) We reformulate the feasible set Lx of the chance

constraints by the set Kx that allows us to obtain inner
approximations.

2) We eliminate the dependent y variables by approximat-
ing the projection of each Kj defining Kx as the super-
level set S of a polynomial p(1)

j .
3) We use the reduced set S to compute the inner ap-

proximations to the chance constraints by polynomials
h∗0(x), . . . , h∗k(x). To speed up convergence, we add
Stokes constraints which is made possible by the avail-
ability of the polynomial p(1).
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Now, the chance constraints in original problem (3c), (3d)
can be replaced by their approximation to obtain the ACC-
OPNF formulation:

min
x,yx

c(x,yx) s.t.

f0
i (x,yx) = 0, i = 1, . . . ,m, (22a)
g0
j (x,yx) ≥ 0, j = 1, . . . , k, (22b)
h0(x) ≥ 1− ε1, (22c)
hj(x) ≤ ε2 − ε1, j = 1, . . . , k. (22d)

Although obtaining the polynomials h∗0(x), . . . , h∗k(x) might
be computationally heavy, this procedure is independent of the
actual solution process for the resulting ACC-OPNF and can
be considered as a pre-processing step to be executed offline.
The resulting approximate CC-OPNF, despite remaining non-
convex, can be solved to local optimality easily using a local
non-linear solver. Furthermore, methods for global optimiza-
tion of polynomial problems can be applied [13].

VI. APPLICATION TO CHANCE-CONSTRAINED AC
OPTIMAL POWER FLOW

In this section, we present the mapping of a chance-
constrained AC optimal power flow (CC-AC-OPF) problem
onto the general CC-OPNF problem (3). Motivated by the re-
cent increase in generation uncertainty from renewable energy
sources, our CC-AC-OPF formulation attempts to minimize
generation cost, subject to engineering constraints while ac-
counting for the uncertainty in renewable power generation.

A. Deterministic Optimal Power Flow
We first formulate the deterministic OPF problem where

we assume perfect knowledge of the system. This problem
corresponds to the deterministic OPNF (1).

1) Notation: We consider an electric network where N
and E denote the sets of nodes and edges. Without loss of
generality, we assume that there is one generator, one demand
and one uncertainty source per bus. Complex power is given
by s = p+j ·q, where p and q are the active and reactive power.
Subscripts R, G and D are for renewable energy sources,
conventional generators and loads, respectively. The complex
bus voltages are denoted by v = vreal + vimag , and the
corresponding voltage magnitudes by |v| = (v2

real+v
2
imag)

1/2.
2) Problem formulation: Given the above considerations,

the OPF problem is given by

min
pG0,
qG0,v0

∑
i∈G

c2,ip
2
G0,i + c1,ipG0,i + c0 (23a)

s.t. sG0,i + sR,i − sD,i =
∑

(i,j)∈E

s0,ij , ∀i ∈ N , (23b)

s0,ij = Y∗ijv0,iv
∗
0,i −Y∗ijv0,iv

∗
0,j , ∀(i, j)∈E ,

(23c)
pminG,i ≤ pG0,i ≤ pmaxG,i , ∀i ∈ N , (23d)

qminG,i ≤ qG0,i ≤ qmaxG,i , ∀i ∈ N , (23e)

|v|min ≤ |v0,j | ≤ |v|max, ∀j ∈ N , (23f)

|s0,ij | ≤ |sij |max, ∀(i, j)∈E .
(23g)

The objective (23a) of the problem is to chose the generation
dispatch point, given by the active and reactive power genera-
tion pG0, qG0 and the complex voltages v0, such that the the
cost of active power generation given by the quadratic function
in (23a) is minimized. The AC power flow equations (23b),
(23c) are a set of equality constraints describing the physical
laws, with the nodal power balance given by (23b), and
transmission line flows given by the Ohm’s law (23c), where
Y is the so-called admittance matrix. Note that we use the
rectangular form of the power flow equations to obtain polyno-
mial constraints. Further, we enforce a set of engineering limits
(23d)-(23g). The constraints (23d), (23e) represent bounds on
generation capacity, (23f) limits the voltage magnitudes to
safe ranges and (23g) enforces limits on the apparent power
flow. Among thesse constraints, (23b) and (23c) correspond
to the equality constraints f0

i = 0 in the deterministic OPNF
(1), and the remaining constraints correspond to the inequality
constraints g0

j ≥ 0.

B. Chance-Constrained Optimal Power Flow
We now extend the deterministic problem to the setting with

uncertainty in the power injections.
1) Modelling uncertain injections: We model the uncertain

active power injections from renewable generators as the sum
of the expected value pR and a fluctuation ω. The expected
reactive power injection is denoted by qR. The reactive power
injections are assumed to adjust in a way that the power factor,
given by γ = qR/pR, remains constant:

sR(ω) = (pR + ω) + j · (qR + γω) (24)

We assume that the probability distribution of ω is known. The
active and reactive power consumption of the loads, denoted
by pL, qL, are assumed to be constant, but could also be
modelled similar to (24).

2) Power flow equations under uncertainty: For non-zero
uncertainty realization ω, the power flow equations (23b) are
adapted to account for ω, i.e.

sG,i(ω) + sR,i + ω − sD,i=
∑

(i,j)∈E

sij(ω), ∀i ∈ N , (25a)

sij(ω)=Y∗ijvi(ω)v∗i (ω)−Y∗ijvi(ω)v∗j (ω), ∀(i, j)∈E . (25b)

3) Response to uncertainty: When the power injections fluc-
tuate, the controllable generators must adjust their generation
output sG,i(ω) to ensure that the power balance constraints
(23b) are satisfied. We adopt balancing practices typical in
power systems operation, which require the definition of so-
called pv, pq and vθ (reference) buses.

On each node of the network there are four state variables,
namely the active power injection p, the reactive power injec-
tion q, and two voltage variables corresponding to the voltage
magnitude and angle |v|, θ (polar coordinates) or the real and
imaginary voltage vreal, vimag (rectangular coordinates). The
buses are classified according to the quantities that are control-
lable or specified: (i) pq buses (such as loads) with specified
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real and reactive power, (ii) pv buses (such as generators) with
controllable active power and voltage magnitude, and (iii) vθ
or reference bus with the voltage angle set to zero. The sets of
nodes that correspond to the three categories are denoted by
subscripts Npq, Npv and Nvθ.

Given the above definitions, we assume that the active power
injections from generators at pq, pv buses remain constant
throughout the fluctuations, and all fluctuations ω are balanced
by the generator connected at the slack bus. Similarly, reactive
power is balanced by adjusting the reactive power output of pv
and vθ buses to maintain constant voltage magnitudes, while
the reactive power injections at pq buses are kept constant.

C. Definition of x and y variables
We choose the rectangular coordinate representation in order

to be able to employ the semi-algebraic methods described in
this paper. This gives us 4 variables per bus p, q, vimag, vreal.
However, as described above, the standard model for pv and
vθ buses are based on polar coordinates, where we keep the
voltage magnitude constant. We handle these requirements in
rectangular coordinates by adding the constraints vimag = 0
and vreal,i(ω) = vreal,i for i ∈ Nvθ, and the constraint
vreal,i(ω)2 + vimag,i(ω)2 = |v|2i for i ∈ Npv .

This results in two independent variables per bus, which
we choose to also correspond to the quantities that can be
controlled by the system operator. In particular, we define the
independent x variables as

pG0,i, qG0,i, ∀i ∈ Npq,
pG0,i(ω), |v|0,i, ∀i ∈ Npv,
vreal0,i, vimag0,i, ∀i ∈ Nvθ.

The variables that change as a function of ω are the y variables
in the CC-OPNF formulation (3):

vreal,i(ω), vimag,i(ω), ∀i ∈ Npq,
qG,i(ω), vreal,i(ω), vimag,i(ω), ∀i ∈ Npv,
pG,i(ω), qG,i(ω), ∀i ∈ Nvθ,
sij(ω), ∀ij ∈ E .

Note that in the process of solving (3), we are not explicitly
assigning a value to these dependent quantities y(ω). However,
the variables yx, which correspond to the y variables at the
expected operating point (ω = 0), are explicitly defined.

1) Definition of constraints f = 0 and g ≤ 0: As is evident
from (25), both the generation outputs pG,i(ω) and qG,i(ω),
the power flows sij(ω) and the voltage variables vi(ω) will
change depending on the realization of ω. The constraints
which incorporate those quantities are therefore enforced as
chance constraints.

The stochastic power flow equations (25) correspond to
the equality constraints f(x,y,ω) = 0. When there is no
solution to this set of equations, the system is unstable and
might collapse at any point leading to complete blackout of
the electric grid. We hence want the probability of violating
any of the equality constraints to be very low, and enforce those
constraints jointly as in (3c) with a small acceptable violation
probability ε1.

The inequality constraints gj(x,y,ω) ≤ 0 correspond to the
engineering limits

pminG,i ≤ pG,i(ω) ≤ pmaxG,i , ∀i ∈ Nvθ (26a)

qminG,i ≤ qG,i(ω) ≤ qmaxG,i , ∀i ∈ Npv,Nvθ (26b)

|vi|min ≤ |vi|(ω) ≤ |vi|max, ∀i ∈ Npq (26c)
vreal,i(ω)2 + vimag,i(ω)2 = |v|2i , ∀i ∈ Npv (26d)
|sij |(ω) ≤ |sij |max, ∀(i, j) ∈ E . (26e)

In contrast to a violation of the power flow equations (25),
a violation of one of the engineering constraints (26) would
typically have a more local impact (e.g. overloading of a
component), and can often be tolerated for a certain amount of
time (e.g. violations of thermal capacity limits of transmission
lines). We hence enforce (26) as separate chance constraints,
and allow for a larger violation probability ε2 > ε1.

2) Choosing Y : The last parameter we must determine
before the mapping from the CC-AC-OPF to the generic CC-
OPNF problem (3) is complete, is the set Y from Assumption
2. We would like to choose Y such that solutions to (25) are
unique and have a well-defined physical meaning, which for
the OPF problem implies ensuring that low voltage solutions
to the power flow equations are excluded. Therefore we define
the sets Y by the inequalities

|v|min− ≤ |vi|(ω), ∀i ∈ Npq. (27)

Here, |v|min− is lower than the standard voltage bound |v|min,
but sufficiently large to exclude low voltage solutions.

VII. CASE STUDY

We first describe the implementation and test system, before
presenting the numerical results for the chance constraint
approximation and the resulting approximate CC-OPNF.

A. Implementation
In this section, we describe our implementation to obtain

the ACC-OPNF in Section V and evaluate its performance. To
obtain the polynomials h∗0, . . . , h

∗
k in (22) we solve SDP re-

laxations to the infinite dimensional linear problems described
in IV-C1 and IV-C2. We use the GloptiPoly3 Matlab toolbox
[14] to model the relaxations and Mosek [15] to solve the
SDPs. The resulting ACC-OPNF is implemented in Julia [16]
with JuMP [17] and PowerModels.jl [18] and then solved using
the local non-linear solver Ipopt [19]. We also perform Monte-
Carlo simulations for benchmarking which requires solving the
standard power flow and the AC-OPF which are implemented
using Matpower [20] and PowerModels.jl respectively.

B. Test system
We run our numerical experiments on a modified version of

a 4-bus system in [21] (case4gs in the Matpower library) which
is illustrated in figure 4. The system has two conventional
generators at Bus 1 and Bus 4, with active and reactive power
limits pminGi = 0, pmaxGi = 500 and qminGi = −250, qmaxGi = 500.
Bus 1 is the reference bus, while all other buses are PQ buses.
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Fig. 4. Overview of the 4-bus system. Generators marked in blue, uncertainty
source in green and loads in black.

We assume that the load at Bus 2 is uncertain, with active
power fluctuations ω uniformly distributed on [−50, 50]. The
reactive power fluctuations on Bus 2 are proportional to the
active power fluctuations, with γ ≈ 0.62. We assume quadratic
cost for Bus 1 with (c2,1, c1,1, c0,1) = (0.01, 30, 200) and a
linear cost for Bus 4 with (c2,4, c1,4, c0,4) = (0, 25, 400).

C. Numerical results
We verify the approximation quality of the chance constraint

approximation, and then assess the performance of the full CC-
AC-OPF problem.

1) Approximation of chance constraints: We employ the
two-step approach described in IV-C to obtain the chance
constraint approximations through the polynomials h∗0, . . . , h

∗
k

given in (22). We investigate the accuracy of this approx-
imation and how the accuracy improves by increasing the
relaxation order d and the addition of Stokes constraints. We
show results for both the outer approximation III-B1 and the
(approximate) inner approximation III-B2.

To obtain outer and inner approximations we need to com-
pute the probability of the projections of the sets Kj defined
in (12) and (14) respectively, by using the two-step method
in Section IV-C. For the corresponding SDP relaxations, we
choose the relaxation order of the first step to be d = 2 or 3
and for the second step to be d+5 = 7 or 8. For the first step, a
lower degree polynomial is sufficient to approximate the level
sets of Kj , whereas in the second step needs higher orders for
better approximation and benefiting from Stokes constraints.

To assess how close we are to the true feasible set of the
chance constraints, we created a large number of grid point
to represent Bxb using 100 grid points for both active and
reactive power for a total of 10′000 grid points. For each grid
point, we sampled 1’000 realizations of ω. For each (x,ω),
we solved a standard power flow using Matpower. We then
calculated the probability that a constraint holds for fixed x
by dividing the number of samples for which the power flow
satisfies the constraints by the total number of samples for ω.

Figure 5 shows the feasible region for ε1 = 0.01 and
ε2 = 0.1. We show both the inner (green) and outer (red)
approximation of the feasible region for relaxation orders
d = 2, 3, and both with and without Stokes constraints. As
a benchmark, we also show the feasible region computed
through the Monte Carlo simulation (blue). The closer the
approximated regions (green and red) are to the benchmark
(blue), the better the approximation. We remark that both
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Fig. 5. Comparison of the outer (red) and inner (green) approximation with
the Monte Carlo simulation (blue) for ε1 = 0.01 and ε2 = 0.1.

outer inner
d = 2 d = 3 d = 2 d = 3

ε2 – Stokes – Stokes – Stokes – Stokes
0.20 175% 165% 141% 124% 53% 79% 56% 79%
0.15 179% 168% 143% 126% 49% 75% 53% 76%
0.10 182% 171% 144% 126% 43% 69% 47% 70%
0.05 185% 173% 144% 125% 30% 56% 36% 58%

TABLE I. RATIO APPROXIMATED VS. REAL VOLUME FOR DIFFERENT
VALUES OF ε2 .

increasing the relaxation order and introducing Stokes con-
straints increase the quality of the solution. The improvement
obtained by introducing Stokes constraints is very significant,
while increasing the relaxation order only slightly increases
the quality of the approximation.

To further assess the quality of approximation, we report
the ratios between the volume of the approximated feasibility
regions and the volume computed through the Monte Carlo
simulation in Table I for ε1 = 0.01 and different values of ε2.
The addition of Stokes constraints clearly offers significant
improvement. Interestingly, the quality of the outer approxi-
mation does not seem to depend on the choice of ε2, while
the accuracy of the inner approximation decreases with ε2.

We observe that the outer approximation to the chance
constraints is not very tight, and might lead to violation
probabilities significantly above the acceptable levels. The
extension proposed in this paper to allow for an (approximate)
inner approximation provides a significant practical advantage
over the previously existing methods in terms of returning safe
approximations. It is also accurate enough to provide non-
empty feasible sets, even at low relaxation orders.

D. Solving an instance of a CC-AC-OPF
We assess the performance of the ACC-OPNF formulation

in (22) by evaluating the cost of the optimal generation
dispatch, the empirical constraint violation probability and by
relating it to the deterministic AC-OPF. For this experiment,
we use the best inner approximation with relaxation order
d = 3 as well as the Stokes constraints to approximate the
CC-AC-OPF (3). We solve both the deterministic AC-OPF
and the approximation of the CC-AC-OPF for different values
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Det. ε2 = 20% ε2 = 15% ε2 = 10% ε2 = 5%

pG0,1 8.5 30.1 36.3 44.7 58.8

qG0,1 158.4 168.0 168.2 168.6 169.1

pG0,4 500.0 477.6 471.2 462.4 447.9

qG0,4 149.5 135.4 134.0 132.1 129.1

cost 13 357 13 452 13 481 13 523 13 596

ε∗2 39.8% 18.2% 12.1% 3.7% 0.0%

TABLE II. OPTIMAL VALUES AND SOLUTIONS TO (1) AND (22) FOR
ε1 = 0.01 AND DIFFERENT VALUES OF ε2

of ε2. We then compare the power injections, the cost and
the maximal empirical violation probability of the individual
chance constraints ε∗2, which is computed through another
Monte Carlo simulation at the obtained solution point using
1’000 samples of ω.

Table II summarizes the results. Column Det. we show
the results for the deterministic AC-OPF. The other columns
are labeled by their acceptable violation probability for the
individual constraint violation ε2. The violation probability
ε1 = 0.01 for all experiments. The variables pG0,4 and qG0,4

are the independent variables x in our problem formulation,
corresponding to the active and the reactive power of the
generator at Bus 4 in the test case. The power injections at the
slack bus generator pG0,1 and qG0,1 are among the dependent
yx variables. Since these generators will adjust their values
based on the realization of ω, we report their expected values
in the table. Further, we list the cost of the operating point
and the maximum empirical violation probabilities ε∗2 among
all individual constraints. We do not show results for the
empirical violation probability of the joint chance constraint
ε∗1, as it was constantly 0% for all optimal operating points.
This is expected, since the engineering limits are typically
more limiting than the power flow solvability conditions.

As the violation probability ε2 decreases, more and more
of the system load must be covered by the more expensive
slack generator, resulting in a higher value for pG0,1 and a
higher expected cost. Considering the violation probabilities
of the individual chance constraints we see that the optimal
solution to the deterministic AC-OPF violates at least one
of these constraints with a probability of almost 40%. For
the approximations of the CC-AC-OPF the empirical violation
probability ε∗2 of the individual chance constraints is always
below the requested probability ε2, reflecting the fact that we
indeed obtain a true inner approximation. While the empirical
violation probability is quite close to the acceptable level for
ε2 = 20% and ε2 = 15%, respectively, the approximation
is significantly more conservative for lower values of ε2. For
ε2 = 5% no violations are observed.

VIII. CONCLUSION

In this paper, we develop a new approach to handle chance
constrained optimization problems in non-linear physical net-
works. The method is based on Semidefinite Programming
(SDP) techniques to compute the volume of semi-algebraic
sets, from which polynomial approximations of the chance
constraints are obtained. To make existing results applicable
in our practical setting, we (i) propose a set reformulation

in order to enable inner approximations, and (ii) develop a
two-step procedure to improve approximation quality at lower
computational overhead.

The method is applicable to any problem with polynomial
equality and inequality constraints, and we demonstrate it
numerically on the chance constrained AC Optimal Power
Flow. In our experiments, the polynomial approximations were
shown to provide sufficiently accurate representations of the
feasible domain, and the resulting CC-AC-OPF was able to
provide safe operating points with limited violation probability.

The method presented is a powerful and novel technique to
handle chance constrained optimization for non-linear systems.
Although, in its current form the method is applicable to
small systems, it has the potential for multiple extensions and
improvements. One promising future direction is to exploit the
sparsity structure of networks to scale the method to larger
instances.
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APPENDIX

A. Proof
Proof: For the proof it will be handy to introduce some

formulas. Define
A :=∃y ∈ Y, f(x,y,ω) = 0,

B :=∃y ∈ Y, (f(x,y,ω) = 0 ∧ gj(x,y,ω) ≤ 0,

B′ :=∀y ∈ Y, (f(x,y,ω) 6= 0 ∨ gj(x,y,ω) > 0),

B′′ :=∀y ∈ Y, (f(x,y,ω) 6= 0 ∨ gj(x,y,ω) ≥ 0),

C :=∃y ∈ Y, (f(x,y,ω) = 0 ∧ gj(x,y,ω) ≥ 0).

Note that ¬B = B′ and B′ ⇒ B′′. Therefore x ∈ Kx is a
stronger condition than

x ∈ Kx := {x ∈ Bx : Pω(A) ≥ 1− ε1,

Pω(B′′) ≥ 1− ε2 + ε1, j = 1, . . . , k},

i.e., Kx ⊆ Kx. To see that Kx ⊆ Lx, note that B′′ ⇔ (A ∧
B′′) ∨ (¬A ∧ B′′), (A ∧ B′′) ⇒ C, and (¬A ∧ B′′) ⇔ ¬A.
Hence, if x ∈ Kx, 1−ε2+ε1 ≤ Pω(B) ≤ Pω(¬A)+Pω(C) ≤
ε1 + Pω(C). Consequently, Pω(C) ≥ 1− ε2, i.e., x ∈ Lx.


