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Exponential Lyapunov Stability Analysis of a Drilling Mechanism

Matthieu Barreau, Alexandre Seuret and Frédéric Gouaisbaut

Abstract—This article deals with the stability analysis of
a drilling system which is modelled as a coupled ordinary
differential equation / string equation. The string is damped at the
two boundaries but leading to a stable open-loop system. The aim
is to derive a linear matrix inequality ensuring the exponential
stability with a guaranteed decay-rate of this interconnected

system. A strictly proper dynamic controller based on boundary
measurements is proposed to accelerate the system dynamics
and its effects are investigated through the stability theorem and
simulations. It results in an efficient finite dimension controller
which subsequently improves the system performances.

I. INTRODUCTION

Many physical situations like string-payloads [13] or drilling

systems [6] are modeled by infinite dimensional systems. They

are, in their fundamentals, related to a Partial Differential

Equation (PDE) and consequently, their stability analysis and

control are not straightforward and has been under active

research during the last decade.

A drilling mechanism is within this class of systems. It is

used in the industry to pump oil deep in the soil. This physical

system is subject to torsion and radial deformation due to the

torque applied on one boundary of the pipe. This system is

usually modeled by a coupled Ordinary Differential Equation

(ODE) / string equation. These heterogeneous equations ap-

pear naturally when the torsional motion of the pit is coupled

with the axial deformation of the pipe [7]. Moreover, as there

is friction all along the pipe, it leads to a complex system

made up of two non-linear equations. The commonly used

methodology to control this system is the backstepping.

The aim is to use a control to transform the problem into a

target system with the desired properties. Then, using a Lya-

punov approach for example, the stability can be proven. This

has been widely used in [6], [14], [15], [23]. There are many

advantages because it provides a Lyapunov functional useful

for a robustness analysis for example but it also provides a very

accurate control as it mostly depends on the target system. But

the calculations are tedious and lead to an infinite dimension

control law which may be subjected to implementation issues.

Coming from the stability analysis of time-delay systems, a

new method based on Linear Matrix Inequalities (LMIs) seems

to be promising. As time-delay systems are a particular case

of infinite dimension systems [11], it is possible to extend the

methodology described in [21] to other systems. It relies on

a Lyapunov functional and a state extension using projections

of the infinite dimensional state on a basis of orthonormal

polynomials. It has been successfully applied to transport
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equations in [18], to the heat equation [4] and to the wave

equation also [2].

In this paper, we focus on the exponential stability analysis

of a linearized drilling mechanism as described in [19] with

the previous methodology. First, we explain the problem and

discuss the existence of a solution. Then, an exponential

stability result is provided. The theorem ensures the expo-

nential stability with a guaranteed decay-rate. Some necessary

conditions are drawn from the LMI condition and then, an

example using physical values is provided. A control law is

also derived to show the effectiveness of the method.

Notations: In this paper, R
+ = [0,+∞) and (x, t) 7→

u(x, t) is a multi-variable function from [0, 1] × R
+ to R.

The notation ut stands for ∂u
∂t

. We also use the notations

L2 = L2((0, 1);R) and for the Sobolov spaces: Hn =
{z ∈ L2; ∀m 6 n, ∂mz

∂xm ∈ L2}. The norm in L2 is

‖z‖2 =
∫

Ω |z(x)|2dx = 〈z, z〉. For any square matrices A

and B, the operations ’He’ and ’diag’ are defined as follow:

He(A) = A+A⊤ and diag(A,B) = [A 0
0 B ]. A positive definite

matrix P ∈ R
n×n belongs to the set S

n
+ or more simply

P ≻ 0.

II. PROBLEM STATEMENT

A. Modeling of the drilling process

A drilling mechanism was first modeled in [10] using the

work of [7]. This phenomenon described in Figure 1 is the

result of a coupling between a radial deformation and an axial

movement. This coupling was later modeled in [19], [20] by

the following nonlinear model:






















































ztt(x, t) = c2zxx(x, t) − dzt(x, t), x ∈ (0, 1), t ≥ 0,

zx(0, t) = g (zt(0, t)− u1(t)) , t ≥ 0,

zx(1, t) = −hztt(1, t)− kzt(1, t)

−qTnl(zt(1, t)), t ≥ 0,

Ẏ (t) = AY (t) +Bu2(t)

+E1zt(1, t) + E2Tnl(zt(1, t)), t ≥ 0,
(1)

with initial condition z(·, 0) = z0, zt(·, 0) = z0t on (0, 1)
and Y (0) = Y 0. In this model, z is the twist angle and it

propagates along the pipe following a damped wave equation

of speed c and internal damping d. Since the internal damping

stabilizes the system, in this study, we consider the worst case

scenario with d = 0 like in [10]. There are two boundary

conditions at x = 0 and x = 1. At x = 0, a rotary table

whose speed is controlled by the input u1 allows to twist the

pipe. Furthermore, there is an elastic connection between the

rotary table and the beginning of the pipe. Due to this not rigid

connection, there is a boundary damping with a coefficient g
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Fig. 1. Schematic of a drilling mechanism originally taken from [20]. Data
corresponding to physical vaues are given in Table I.

at x = 0.

The drilling pit is located at x = 1. When drilling, an external

torque applies at this boundary and the momentum equation

leads to a second order in time boundary condition. The term

Tnl is a non-linear function related to the change of torque

and given below. To simplify the system as done in [10], we

consider the equation at the bottom of the pipe to be only a

first order boundary damping, then h = 0.

Finally, the last finite dimensional equation is related

to the axial deformation of the pipe. Indeed, Y (t) =
[y(t)− Γ0t ẏ(t)− Γ0]

⊤ ∈ R
2 with y the axial bit position

and Γ0 is the rate of penetration. This equation is a damped

harmonic oscillator due to the axial extension of the pipe.

The parameters c, g, k, q, A21, A22, b, e1 and e2 are physical

parameters given in [20] and reported in Table I. The matrices

have the following structure:

A =
[

0 1
A21 A22

]

, B = [ 0b ] , E1 =
[

0
e1

]

, E2 =
[

0
e2

]

.

The aim is to design control laws u1 and u2 such that the

speed angle zt(1, t) in system (4) converges to Ωe and Y to

0. Without loss of generality, we assume Ωe > 0.

In [7], [20], the nonlinear part of the torque is described by

the following equations:







Tnl(x) = WobRbµb(x) sign(x),

µb(x) = µcb + (µsb − µcb) e
−γb|x|.

(2)

Considering the overshoot on the variable zt(1, t), then
zt(1,t)
Ωe

is small, the following approximation of Tnl is pro-

posed:

Tnl(zt(1, t)) ≃ WobRbµsb

zt(1, t)

Ωe

. (3)

That leads to an approximated linear system defined for t > 0

with the same initial conditions:











































wtt(x, t) = c2wxx(x, t), x ∈ (0, 1),

wx(0, t) = g (wt(0, t)− u1(t)) ,

wx(1, t) = −(k + qWobRbµsbΩ
−1
e )wt(1, t),

Ẏ (t) = AY (t) +Bu2(t)

+(E1 +WobRbµsbΩ
−1
e E2)wt(1, t).

(4)

It is possible to use the Riemann coordinates to simplify the

writing of this system using the following variable: χ(x, t) =
[

wt(x,t)+cwx(x,t)
wt(1−x,t)−cwx(1−x,t)

]

. The system becomes for t > 0:



















χt(x, t) = cχx(x, t), x ∈ (0, 1),
[

1−cg 0

0 1−ck̃

]

χ(0, t) =
[

0 1+cg

1+ck̃ 0

]

χ(1, t)−
[

2cgu1(t)
0

]

,

Ẏ (t) = AY (t) +Bu2(t) + Ẽ1 [ χ⊤(0,t) χ⊤(1,t) ]
⊤
,

(5)

with k̃ = k + qWobRbµsbΩ
−1
e and Ẽ1 = 1

2 (E1 +
WobRbµsbΩ

−1
e E2) [ 0 1 −1 0 ]. The stability of system (5) im-

plies the stability of (4) and then the study focuses more on

system (5).

Assuming there is an equilibrium point, the equilibrium

x 7→ χe(x) =
[

we
t (x)+cwe

x(x)
we

t (1−x)−cwe
x(1−x)

]

of system (5) satisfies

χe
t = 0, we

t = Ωe. It has the following form: χe(x) =

Ωe

[

1−ck̃x

1+ck̃(1−x)

]

. Therefore, a feedforward open-loop control

is introduced as:

ue
1 = Ωe

(

1 + k̃g−1
)

, ue
2 = −ẽ1b

−1. (6)

Introducing the error variables χ̃(x, t) = χ(x, t) − χe(x),
ũ1(t) = u1(t)−ue

1 and ũ2(t) = u2(t)−ue
2, the aim is to show

the exponential stability of χ̃ to 0 in order to get wt → Ωe

and ‖Y ‖ → 0. The inputs ũ1 and ũ2 are assumed to be the

results of a strictly proper dynamic controller whose inputs are

wt(0, t), wt(1, t) and Y . That means that the measurements are

these three variables but it is not possible to apply exactly

wt(1) or wt(0), corresponding to the situation where the

actuator is bandwidth limited for instance. This assumption is

important as the wave can be seen as a neutral system [1] and

using directly wt means that we can affect directly the neutral

part. This phenomena is known to be absolutely non-robust

[12] to small delay for example. Assuming the controller is of

order n, it is written for t > 0:



















Ẋc(t) = AcXc(t) +Bc1Y (t) +Bc2

[

wt(1,t)
wt(0,t)

]

,

ũ1(t) = C1

[

Xc(t)
Y (t)

]

,

ũ2(t) = C2Xc(t) +KY (t).

with C1, C2 ∈ R
1×(n+2), Ac ∈ R

n×n, Bc1, Bc2 ∈ R
n,2 and

K ∈ R
1×2. The closed-loop system in Riemann coordinates



can be rewritten as:


















χ̃t(x, t) = cχ̃x(x, t),
[

1−cg 0

0 1−ck̃

]

χ̃(0, t) =
[

0 1+cg

1+ck̃ 0

]

χ̃(1, t)−
[

2cgC1X(t)
0

]

,

Ẋ(t) = ÃX(t) + B̃
[

χ̃(1,t)
χ̃(0,t)

]

,

(7)

with initial conditions χ̃(x, 0) = χ̃0(x), X(0) = X0, X⊤ =
[X⊤

c Y ⊤ ]
⊤

and

Ã=





Ac Bc1

BC2 A+BK



, B̃=
1

2





Bc2

Ẽ1 02,1





[

1 0
0 1
0 1
1 0

]⊤

.

Remark 1: From now on, to ease the reading, the parameter

t may be omitted and χ̃ refers to a solution of (7).

B. Existence and uniqueness

The existence and uniqueness follows the same lines than

in [2]. Define the following set: Hm = R
n+2 × Hm × Hm

with m ∈ N. The space H = H0 can be equipped with the

following norm:

∀(X,χ) ∈ H, ‖(X,χ)‖H = |X |2 + 1
2‖χ‖

2

= |X |2 + c2‖wx‖2 + ‖wt‖2.

Using the operator notation [22], system (7) is formulated

as follows:

T
(

X
χ

)

=





ÃX + B̃
[

χ(1)
χ(0)

]

cχ



 , and T : D(T ) → H,

with

D(T ) =
{

(X,χ) ∈ H1,
[

1−cg 0

0 1−ck̃

]

χ(0) =
[

0 1+cg

1+ck̃ 0

]

χ(1)−
[

2cgC1X
0

]

}

.

The existence of a continuous solution for (X0, χ0) ∈ D(T )
is ensured by applying Lumer-Philips theorem (for example in

[22, p.103]) whose conditions are recalled below:

1) there exists a function V : H → R
+ such that its

derivative along the trajectories of (7) is negative;

2) there exists λ sufficiently small such that D(T ) ⊆
R(λI − T ) where R is the range operator.

The first condition relies on the existence of a Lyapunov

functional and is therefore the subject of the following part.

The second statement needs some calculations very similar

to the one conducted in [2] or [16]. For a given λ > 0, let

(r, f) ∈ D(T ), the aim is to prove the existence of (X,χ) ∈
D(T ) satisfying the following for x ∈ (0, 1):







λX − ÃX − B̃
[

χ(1)
χ(0)

]

= r,

λχ(x) − cχx(x) = f(x).

That leads to χ(x) = k1e
λx

c + F (x) with F (x) =

c−1
∫ x

0 eλ
x−s
c f(s)ds ∈ H1 and k1 = diag(k11, k12),

k11, k12 ∈ R. Using the boundary conditions, we get a system

of two equations:

(1− cg)k1 = k2e
λ
c (1 + cg)(A+ F (1))− 2cg

λ
C1X,

(1− ck̃)k2 = k1e
λ
c (1 + ck̃)(A+ F (1))

Since there exists a λ such that Ã+ B̃
[

χ(1)
χ(0)

]

is not the null

matrix, then this system has a unique solution for a given X

that ends the proof of existence.

III. EXPONENTIAL STABILITY OF THE DRILLING PIPE

A. Main result

The main result of this paper is the α-stability criterion

for system (7) expressed in terms of LMIs, therefore easily

tractable. Let us first define the α-stability.

Definition 1: System (7) is α-stable (or exponentially stable

with a decay-rate of at least α) with respect to the norm ‖·‖H
if there exists γ > 1 such that the following holds for (X0, χ0)
the initial condition:

‖(X(t), χ(·, t))‖H 6 γ‖(X0, χ0)‖He−αt.

Considering this definition, we propose a stability theorem for

system (7).

Theorem 1: Let N > 0. Assume there exists PN ∈
S
n+2+2(N+1)
+ , R,S ∈ S

2
+ such that the following LMI holds:

ΨN,α −RN ≺ 0, (8)

with

ΨN,α = He((ZN + αFN )⊤PNFN )− cG⊤
NSGN

+cH⊤
N (S +R)HNe

2α
c ,

FN =
[

In+2+2(N+1) 0n+2+2(N+1),2

]

,

ZN =
[

N⊤
N Z⊤

N

]⊤

, NN =
[

Ã 0n+2,2(N+1) B̃

]

,

ZN = c1NHN−c1̄NGN−
[

02(N+1),n+2 LN 02(N+1),2

]

,

(9)

GN =
[

−cgC1

01,n+2
02,2(N+1) G

]

, G =
[

0 1+cg

1+ck̃ 0

]

,

HN =
[

01,n+2

cgC1
02,2(N+1) H

]

, H =
[

1−ck̃ 0
0 1−cg

]

,

RN = diag(0n, R, 3R, · · · , (2N + 1)R, 02),

LN =

[

ℓ0,0I2 ··· 02

...
. . .

...
ℓN,0I2 ··· ℓN,NI2

]

, 1N =

[

I2

...
I2

]

, 1̄N =

[

I2

...
(−1)NI2

]

,

and ℓk,j = (2j + 1)(1− (−1)j+k) if j 6 k and 0 otherwise.

Then system (7) is α-exponentially stable.

The proof of this theorem relies on the construction of a

Lyapunov functional described in the following subsections.

Remark 2: A necessary condition for (8) to be fulfilled is

that the last 2×2 diagonal bloc of (8) must be definite negative

corresponding to the following inequality:

H⊤(S +R)He2
α
c −G⊤SG ≺ 0.



This condition implies:

α 6 αmax = max

(

c

2
log

∣

∣

∣

∣

∣

(ck̃ + 1)(cg + 1)

(ck̃ − 1)(cg − 1)

∣

∣

∣

∣

∣

, 0

)

. (10)

Setting g = 0 or k̃ = 0 leads to the same maximal decay-

rate than in [1], [3], [9]. This condition is also related to the

τ -stabilization which is a common phenomenon when consid-

ering a wave equation [17]. One can notice that for g > 0 and

k̃ > 0, the PDE system itself is asymptotically stable, because

the two boundary conditions are adding damping. Notice that

if one of them is negative, there exist also values of the other

coefficient making the system asymptotically stable. Note also

that for g = 1 or k̃ = 1 leads to αmax = +∞ meaning there is

no neutral part and the system resumes to a time-delay system.

Remark 3 (Hierarchy): Define the following set:

CN = {α > 0 | ΨN,α −RN ≺ 0, PN ≻ 0, R ≻ 0, S ≻ 0} ,

and assume this set is not empty. Then, denote αN = sup CN .

The hierarchy property states that αN+1 > αN . This can be

proved using the same strategy than in [2], [18].

B. Proof of Theorem 1

1) Preliminaries: The main contribution of this paper re-

lies on the extensive use of Bessel inequality to encompass

traditional results. Before stating this inequality, we need to

introduce an orthonormal family. The definition is as follows:

Definition 2 (Legendre polynomials): Let N ∈ N, the family

of Legendre polynomials of degree less than or equal to N is

denoted by {Lk}k∈[0,N ] with

Lk(x) = (−1)k
k
∑

l=0

(−1)l
(

k
l

) (

k+l
l

)

xl

with
(

k
l

)

= k!
l!(k−l)! .

The sequence {Lk} is made up of “shifted”-Legendre

polynomials on [0, 1]. As seen in [5], [8], [21], this family

is orthonormal in L2 with the canonical inner product. That

leads to the following definition.

Definition 3: Let χ ∈ L2. The projection of χ on the kth

Legendre polynomials is defined as follows:

Xk :=

∫ 1

0

χ(x)Lk(x)dx.

The Bessel inequality is obtained considering the previous

definitions and the orthogonal property of the shifted-Legendre

family.

Lemma 1 (Bessel Inequality): For any function χ ∈ L2 and

symmetric positive matrix R ∈ S
2
+, the following Bessel-like

integral inequality holds for all N ∈ N:

∫ 1

0

χ⊤(x)Rχ(x)dx >

N
∑

k=0

(2k + 1)X⊤
k RXk. (11)

This lemma and its short proof can be seen in [2].

The derivation of χk along time is needed in the sequel.

Lemma 3 from [2] deals with this issue.

Lemma 2: For any function χ ∈ L2, the following expres-

sion holds for any N in N using notations (9):
[

Ẋ0

...
ẊN

]

= c1Nχ(1)− c1̄Nχ(0)− cLN

[

X0

...
XN

]

.

The link between α-exponential stability and a Lyapunov

functional is made by the following lemma.

Lemma 3: Let V be a Lyapunov functional for system (7)

and α ≥ 0. Assume there exist ε1, ε2, ε3 > 0 such that the

following holds for all t > 0:






ε1‖(X,χ)‖2H 6 V (X,χ) 6 ε2‖(X,χ)‖2H,

V̇ (X,χ) + 2αV (X,χ) 6 −ε3‖(X,χ)‖2H,
(12)

then system (7) is α-exponentially stable.

Proof. Inequalities (12) bring the following: V̇ (X,w) +
(

α+ ε3
ε2

)

V (X,χ) 6 0. Then integrating this inequality

between 0 and t leads to:

‖(X(t), χ(t))‖2H 6
ε2

ε1
‖(X0, χ0)‖

2
He−2αt.

Once these useful lemmas reminded, a Lyapunov functional

can be defined.

2) Lyapunov functional candidate: The aim of this subpart

is to build a Lyapunov functional candidate for system (7).

Following the same methodology than introduced in [2], a

first Lyapunov functional Vα for the PDE part is defined with

S,R ∈ S
2
+:

Vα(χ) =

∫ 1

0

e2
αx
c χ⊤(x)(S + xR)χ(x)dx,

The Lyapunov functional candidate is then the summation

of a quadratic term and Vα. This quadratic term contains the

stability of state X but also some terms merging the ODE and

the PDE. This is done to enlarge the stability analysis, enabling

the study of stability of the whole interconnected system and

not of each subsystem independently. This technique, as shown

in [2], is well-suited for the study of an unstable ODE coupled

with a PDE for instance. The total Lyapunov function of order

N ∈ N is then:

VN,α(X,χ) = X⊤
NPNXN + Vα(χ) (13)

with PN ∈ S
n+2+2(N+1)
+ and XN =

[

X⊤
X

⊤
0 . . . X

⊤
N

]⊤

.

The aim now is to prove the existence of ε1, ε2 and ε3 > 0
to apply Lemma 3 on the functional VN,α and then conclude

the proof.

3) Existence of ε1: Conditions PN ≻ 0 and S,R ∈ S
2
+

mean that there exists ε1 > 0, such that for all x ∈ [0, 1]:

PN � ε1diag (In+2, 02) ,

S + xR � S � ε1
2 I2.

These inequalities imply:

VN,α(X,w) > ε1
(

|X |2 + 1
2‖χ‖

2
)

+
∫ 1

0
χ⊤(x)

(

S + xR − ε1
2 I2

)

χ(x)dx

> ε1
(

|X |2n + 1
2‖χ‖

2
)

> ε1‖(X,χ)‖2H.



4) Existence of ε2: Since PN , S and R are definite positive

matrices, there exists ε2 > 0 such that:

PN � diag
(

ε2In+2,
ε2
4 diag {(2k + 1)In}k∈(0,N)

)

,

(S + xR) � S +R � ε2
4 e

−2α
c I2, ∀x ∈ (0, 1).

Then, we get:

VN,α(X,χ) 6 ε2|X |2+
ε2

4

(

N
∑

k=0

(2k+1)X⊤
k Xk + ‖χ‖2

)

6 ε2
(

|X |2+ 1
2‖χ‖

2
)

= ε2‖(X,χ)‖2H.

The inequality comes from Bessel inequality (11).
5) Existence of ε3: This part is the most important and

shows that system (7) is dissipative [2], [22]. Differentiating

with respect to time (13) along the trajectories of system (7)

leads to:

V̇N,α(X,w) = He















Ẋ
Ẋ0

...
ẊN







⊤

PN





X
X0

...
XN













+ V̇α(w).

The goal here is to find an upper bound of V̇N,α using the

extended state: ξN =
[

X⊤
N wt(1) wt(0)

]⊤
. The first step is

to derive an expression of V̇α. Similarly to [2], we get:

V̇α(χ)= 2c
∫ 1

0 χ⊤
x (x)(S + xR)χ(x)e2

αx
c dx

= 2c
(

χ⊤(1)(S +R)χ(1)e2
α
c − χ⊤(0)Sχ(0)

−
∫ 1

0 χ⊤(x)Rχ(x)e2
αx
c dx

)

− 4αVα(χ)− V̇α(χ)

= c
(

χ⊤(1)(S +R)χ(1)e2
α
c − χ⊤(0)Sχ(0)

−
∫ 1

0 χ⊤(x)Rχ(x)e−2αx
c dx

)

− 2αVα(χ).

Using the previous equation, Lemma 2 and equation (4),

we note that XN = FN ξN , ẊN = ZNξN , χ(0) =
GNξN , χ(1) = HNξN where matrices FN , ZN , HN , GN are

given in (9). Then we can write:

V̇N,α(X,χ) = ξ⊤NΨN,αξN + c

N
∑

k=0

X
⊤
k (2k + 1)RXk

− c

∫ 1

0

χ⊤(x)Rχ(x)e2
αx
c dx− 2αVN,α(X,χ).

Denoting by WN,α(X,χ) = V̇N,α(X,χ) + 2αVN,α(X,χ),
the previous equality implies the following upper bound:

WN,α(X,χ) 6 ξ⊤NΨN,αξN + c

N
∑

k=0

(2k + 1)X⊤
k RXk

− c

∫ 1

0

χ⊤(x)Rχ(x)dx. (14)

Since R ≻ 0 and ΨN,α ≺ 0, there exists ε3 > 0 such that:

R � ε3
2 I2,

ΨN,α � −ε3diag
(

In+2,
1
2I2,

3
2I2, . . . ,

2N+1
2 I2, 02

)

.
(15)

Using (15) and Bessel’s inequality, equation (14) becomes:

WN,α(X,χ) 6−ε3

(

|X |2 +
1

2
‖χ‖2

)

6−ε3 ‖(X,χ)‖2H,

and that concludes the proof.

IV. EXAMPLES AND DISCUSSION

In this section, we illustrate the proposed theorem by using

values taken from [19], [20] and shown in Table I. The

simulation is based on a finite-difference method of order 2.

The two cases under study here are summarized below:

1) the feedforward control with n = 0 (using only ue
1 and

ue
2 in (6)) and

C1 = [ 0 0 ] , C2 = 0, K = [ 0 0 ] . (16)

2) a dynamic control with the following parameters:

Ã =
[

−100 −2500 0
1 0 0
0 0 −10

]

, B1 = 03,2, B2 =
[

0 974
0 0
1 0

]

,

C1 = [ 0 974 −2 0 0 ] , C2 = 01,3, K = [−92.2 5.02 ] .
(17)

The dynamic controller is obtained considering two low-

pass filters. Considering s being the Laplace variable, the

transfer functions of the two low-pass filters are u1

wt(0)
=

gc−5.9
(1+sωc1)2

and u1

wt(1)
= −0.2

1+ωc2
with the cut-off frequencies

ωc1 = 50 and wc2 = 10. Gain K has been chosen such that

the eigenvalues of A+BK are −1.3± 0.22i.
With the feedforward controller only, it is possible to

estimate the decay-rate of the solution. Indeed, there is no

real coupling between the ODE and the PDE and the decay-

rate of the interconnected system will be the smallest between

their respective ones. Here, the PDE has a decay-rate given

by equation (10) of 1.08 and the ODE is 0.2159. The results

of Theorem 1 is given in Table II. The maximum decay-rate

for the feedforward case is obtained for N > 1 and is, as

expected, the decay-rate of the ODE.

Figure 2 shows the time response of system (7) in the

two cases. The initial state for this computation is X0 =

0, w(x, 0) = 2−Ωek̃x and wt(x, 0) = Ωe

(

x− k̃g−1(1 − x)
)

for x ∈ (0, 1). Of course states X1 and X2 are much faster,

which results from the direct influence of static feedback

gain K but also the speed wt(1), which is more regular

and converges faster to 0. Indeed, as shown in Table II, the

speed is much faster in the situation with the dynamic control.

The hierarchy of Remark 3 is clearly visible and reaches its

maximum value at N = 3. One of the drawback of such a

system is the angular speed wt(x, ·) for x ∈ (0, 1), which

increases significantly compared to the first case.

Remark 4: A backstepping control law could have been

considered with a target system of arbitrary large decay-

rate. Compared to this method, the price to pay for a finite

dimension controller is seen by equation (10). Indeed, it is not

possible to accelerate the system with an arbitrary large decay-

rate. Other differences are that there is no design methodology

using LMI yet and the control is a finite-dimension state-

feedback using the knowledge of only Y , wt(0) and wt(1)
with strictly proper controllers.

V. CONCLUSION

We have studied the stability of a drilling mechanism,

which dynamics can be modeled as a coupled ODE/PDE.

Approximating this model around a desired equilibrium point

leads to an interconnected ODE / damped wave equation.



Symbol Value Symbol Value

c 2.6892 m.s−2 Ωe 10 rad.s−1

k̃ 1.50 s.m−1 g 2.48 s.m−1

A21 −41.58 s−2 A22 −0.43 s−1

ẽ1 −8.35 m.s−1.rad−1 b −0.43 s−1

TABLE I
COEFFICIENT VALUES TAKEN FOR THE SIMULATIONS.

Type of control N = 0 N = 1 N = 2 N = 3 αmax

Feedforward 0.2157 0.2159 0.2159 0.2159 1.0842

Dynamic 0.312 0.953 1.083 1.084 1.0842

TABLE II
MAXIMUM DECAY-RATE α USING THEOREM 1 AT AN ORDER N . THE

FEEDFORWARD CONTROLLED SYSTEM REFERS TO (16) WHILE THE

DYNAMIC CONTROLLED ONE IS WITH (17). THE LAST COLUMN αmax IS

CALCULATED USING (10).
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Fig. 2. Simulation on the feedforward and dynamic controlled system.

Fig. 3. Angle velocity error in the situation with dynamic control.

Therefore, The stability of this coupled system is studied using

a Lyapunov approach and the stability condition of such a

system has been expressed in terms of LMI. Using Bessel

inequality, we provided a hierarchy of LMI conditions for this

kind of interconnected system with linear feedback controllers.

Using only strictly proper hand-designed controllers, a control

law has been derived improving subsequently the decay-

rate of the system. Further studies would investigate how to

automatically design such controllers.
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