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This article deals with the stability analysis of a drilling system which is modelled as a coupled ordinary differential equation / string equation. The string is damped at the two boundaries but leading to a stable open-loop system. The aim is to derive a linear matrix inequality ensuring the exponential stability with a guaranteed decay-rate of this interconnected system. A strictly proper dynamic controller based on boundary measurements is proposed to accelerate the system dynamics and its effects are investigated through the stability theorem and simulations. It results in an efficient finite dimension controller which subsequently improves the system performances.

I. INTRODUCTION

Many physical situations like string-payloads [START_REF] He | Adaptive control of a flexible crane system with the boundary output constraint[END_REF] or drilling systems [START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave PDE with boundary anti-damping[END_REF] are modeled by infinite dimensional systems. They are, in their fundamentals, related to a Partial Differential Equation (PDE) and consequently, their stability analysis and control are not straightforward and has been under active research during the last decade.

A drilling mechanism is within this class of systems. It is used in the industry to pump oil deep in the soil. This physical system is subject to torsion and radial deformation due to the torque applied on one boundary of the pipe. This system is usually modeled by a coupled Ordinary Differential Equation (ODE) / string equation. These heterogeneous equations appear naturally when the torsional motion of the pit is coupled with the axial deformation of the pipe [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF]. Moreover, as there is friction all along the pipe, it leads to a complex system made up of two non-linear equations. The commonly used methodology to control this system is the backstepping.

The aim is to use a control to transform the problem into a target system with the desired properties. Then, using a Lyapunov approach for example, the stability can be proven. This has been widely used in [START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave PDE with boundary anti-damping[END_REF], [START_REF] Krstic | Delay compensation for nonlinear, adaptive, and PDE systems[END_REF], [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF], [START_REF] Wu | Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems[END_REF]. There are many advantages because it provides a Lyapunov functional useful for a robustness analysis for example but it also provides a very accurate control as it mostly depends on the target system. But the calculations are tedious and lead to an infinite dimension control law which may be subjected to implementation issues.

Coming from the stability analysis of time-delay systems, a new method based on Linear Matrix Inequalities (LMIs) seems to be promising. As time-delay systems are a particular case of infinite dimension systems [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF], it is possible to extend the methodology described in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time delay systems[END_REF] to other systems. It relies on a Lyapunov functional and a state extension using projections of the infinite dimensional state on a basis of orthonormal polynomials. The key result is based on an extensive use of Bessel inequality. It has been successfully applied to transport equations in [START_REF] Safi | Tractable sufficient stability conditions for a system coupling linear transport and differential equations[END_REF], to the heat equation [START_REF] Baudouin | Lyapunov stability analysis of a linear system coupled to a heat equation[END_REF] and to the wave equation also [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF]. M. Barreau, A. Seuret, F. Gouaisbaut are with LAAS -CNRS, Université de Toulouse, CNRS, UPS, France e-mail: (mbarreau,aseuret,fgouaisb@laas.fr).

In this paper, we focus on the exponential stability analysis of a linearized drilling mechanism as described in [START_REF] Saldivar | Analysis and Control of Oilwell Drilling Vibrations: A Time-Delay Systems Approach[END_REF] with the previous methodology. First, we explain the problem and discuss the existence of a solution. Then, an exponential stability result is provided. The theorem ensures the exponential stability with a guaranteed decay-rate. Some necessary conditions are drawn from the LMI condition and then, an example using physical values is provided. A control law is also derived to show the effectiveness of the method.

Notations:

In this paper, R + = [0, +∞) and (x, t) → u(x, t) is a multi-variable function from [0, 1] × R + to R.
The notation u t stands for ∂u ∂t . We also use the notations L 2 = L 2 ((0, 1); R) and for the Sobolov spaces:

H n = {z ∈ L 2 ; ∀m n, ∂ m z ∂x m ∈ L 2 }. The norm in L 2 is z 2 = Ω |z(x)| 2 dx = z, z .
For any square matrices A and B, the operations 'He' and 'diag' are defined as follow:

He(A) = A+A and diag(A, B) = [ A 0 0 B ].
A positive definite matrix P ∈ R n×n belongs to the set S n + and P 0.

II. PROBLEM STATEMENT

A. Modeling of the drilling process

A drilling mechanism was first modeled in [START_REF] Fridman | Bounds on the response of a drilling pipe model[END_REF] using the work of [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF]. This system described in Figure 1 is the result of a coupling between a radial deformation and an axial movement. This coupling was later modeled in [START_REF] Saldivar | Analysis and Control of Oilwell Drilling Vibrations: A Time-Delay Systems Approach[END_REF], [START_REF] Saldivar | The control of drilling vibrations: A coupled PDE-ODE modeling approach[END_REF] by the following nonlinear model for x ∈ (0, 1) and t > 0:

               z tt (x, t) = c 2 z xx (x, t) -dz t (x, t), z x (0, t) = g (z t (0, t) -ũ1 (t)) , z x (1, t) = -hz tt (1, t) -kz t (1, t) -qT nl (z t (1, t)), Ẏ (t) = AY (t) + B ũ2 (t) + E 1 z t (1, t) + E 2 T nl (z t (1, t)), (1) 
with initial condition z(•, 0) = z 0 , z t (•, 0) = z 0 t on (0, 1) and Y (0) = Y 0 . In this model, z is the twist angle and it propagates along the pipe following a damped wave equation of speed c and internal damping d. Since the internal damping stabilizes the system, in this study, we consider the worst case scenario with d = 0 like in [START_REF] Fridman | Bounds on the response of a drilling pipe model[END_REF]. A similar work can be done with d > 0 but leads to more tedious calculation and is then omitted. There are two boundary conditions at x = 0 and x = 1. At x = 0, a rotary table whose speed is controlled by the input ũ1 allows to twist the pipe. Furthermore, the boundary damping with a coefficient g at x = 0 represents a viscous friction torque. The drilling pit is located at x = 1. When drilling, an external torque applies at this boundary and the momentum equation leads to a second order in time boundary condition. The term T nl is a non-linear function related to the change of torque and given below. To simplify the system as done in [START_REF] Fridman | Bounds on the response of a drilling pipe model[END_REF], we
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Drill collars Bit Fig. 1. Schematic of a drilling mechanism originally taken from [START_REF] Saldivar | The control of drilling vibrations: A coupled PDE-ODE modeling approach[END_REF]. Data corresponding to physical vaues are given in Table I.

consider the equation at the bottom of the pipe to be only a first order boundary damping, then h = 0. The axial deformation is modeled by a finite dimensional equation as noted in [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF]. This equation is related to the axial deformation of the pipe. In [START_REF] Saldivar | The control of drilling vibrations: A coupled PDE-ODE modeling approach[END_REF], a second order damped harmonic oscillator is used because it models a mass subject to a force for small vibrations. The control at x = 0 for the axial position is t → ũ2 (t) and corresponds to the force needed in the system to drill. Denoting by y the axial bit position and by Γ 0 the rate of penetration, Y (t) = [y(t) -Γ 0 t ẏ(t) -Γ 0 ] ∈ R 2 represents the axial position error and axial velocity error, leading to the last equation in [START_REF] Baudouin | Lyapunov stability analysis of a linear system coupled to a heat equation[END_REF].

Remark 1: Note that this model does not take into account a coupling between torsion and axial deformation but more a cascaded effect between them. The parameters c, g, k, q, A 21 , A 22 , b, e 1 and e 2 are physical parameters given in [START_REF] Saldivar | The control of drilling vibrations: A coupled PDE-ODE modeling approach[END_REF] and reported in Table I. The matrices have the following structure:

A = 0 1 A21 A22 , B = [ 0 b ] , E 1 = 0 e1 , E 2 = 0 e2 .
The aim is to design control laws ũ1 and ũ2 such that the angular speed z t (1, t) in system (4) converges to the desired angular velocity Ω e and Y to 0. Without loss of generality, we assume Ω e > 0.

In [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF], [START_REF] Saldivar | The control of drilling vibrations: A coupled PDE-ODE modeling approach[END_REF], the nonlinear part of the torque is described by the following equations for θ ∈ R:

   T nl (θ) = W ob R b µ b (θ) sign(θ), µ b (θ) = µ cb + (µ sb -µ cb ) e -γ b |θ| . (2)
Considering Ω e 0, then e -γ b Ωe is small and T nl is linearized around Ω e as follows:

T nl (z t (1, t)) W ob R b µ cb = T e . ( 3 
)
Remark 2: This approximation prevents from the stick-slip effect which is the main problem that occurs when dealing with drilling pipes for small Ω e . This work can be seen as a preliminary version of an extended one considering the nonlinearity. That leads to an approximated linear system defined for t 0 with the same initial conditions and x ∈ (0, 1):

               w tt (x, t) = c 2 w xx (x, t), w x (0, t) = g (w t (0, t) -ũ1 (t)) , w x (1, t) = -kw t (1, t) -qT e Ẏ (t) = AY (t) + B ũ2 (t) + w t (1, t)E 1 -T e E 2 . (4) 
It is possible to use the Riemann coordinates to simplify the writing of this system using the following variable: χ(x, t) = wt(x,t)+cwx(x,t) wt(1-x,t)-cwx(1-x,t) . The system becomes for t 0:

         χt (x, t) = c χx (x, t),
x ∈ (0, 1),

1-cg 0 0 1-ck χ(0, t) = 0 1+cg 1+ck 0 χ(1, t) + -2cg ũ1(t) 2cqT e , Ẏ (t) = AY (t) + B ũ2 (t) + Ẽ1 χ(0,t) χ(1,t) -T e E 2 , (5) 
with Ẽ1 = 1 2 E 1 [ 0 1 1 0
]. The stability of system ( 5) implies the stability of ( 4) and then the study focuses on system [START_REF] Baudouin | Stability analysis of a system coupled to a transport equation using integral inequalities[END_REF].

Assuming ( χe , Y e ) is an equilibrium point of system ( 5), it satisfies χe t = 0, w e t = Ω e and Ẏ e = 0. Therefore, a feedforward open-loop control is introduced as:

ũe 1 = Ω e 1 + k g + q g T e , ũe 2 = T e e 2 -Ω e e 1 b . (6) 
Introducing the error variables χ(x, t) = χ(x, t) -χe (x), u 1 (t) = ũ1 (t)-ũe 1 and u 2 (t) = ũ2 (t)-ũe 2 , the aim is to show the exponential stability of χ to 0 in order to get w t → Ω e and Y → 0. The inputs u 1 and u 2 are assumed to be the results of a strictly proper dynamic controller whose inputs are w t (0, t), w t (1, t) and Y . That means that the measurements are these three variables but it is not possible to apply exactly w t (1) or w t (0), corresponding to the situation where the actuator is bandwidth limited for instance. This assumption is important as the wave can be seen as a neutral system [START_REF] Barreau | Input / output stability of a damped string equation coupled with ordinary differential system[END_REF] and using directly w t means that we can affect directly the neutral part. This phenomena is known to be absolutely non-robust [START_REF] Hale | Effects of small delays on stability and control[END_REF] to small delay for example. Assuming the controller is of order n, it is written for t 0: 2 and K ∈ R 1×2 . The closed-loop system in Riemann coordinates can be rewritten as:

         Ẋc (t) = A c X c (t) + B c1 Y (t) + B c2 wt(0,t) wt(1,t) , u 1 (t) = C 1 Xc(t) Y (t) , u 2 (t) = C 2 X c (t) + KY (t). with C 1 , C 2 ∈ R 1×(n+2) , A c ∈ R n×n , B c1 , B c2 ∈ R n,
         χ t (x, t) = cχ x (x, t), 1-cg 0 0 1-ck χ(0, t) = 0 1+cg 1+ck 0 χ(1, t) -2cgC1X(t) 0 , Ẋ(t) = ÃX(t) + B χ(0,t) χ(1,t) , (7) with initial conditions χ(x, 0) = χ 0 (x), X(0) = X 0 , X = [ X c Y ] and à =   A c B c1 BC 2 A+BK   , B = 1 2   B c2 E 1 0 2,1   1 0 0 1 0 1 1 0
.

Remark 3: A similar control law is proposed in [START_REF] Terrand-Jeanne | Regulation of the downside angular velocity of a drilling string with a P-I controller[END_REF] but the stability is dealt using another Lyapunov functional.

Remark 4: From now on, to ease the reading, the parameter t may be omitted and χ refers to a solution of [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF].

B. Existence and uniqueness

The existence and uniqueness follows the same lines than in [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF]. Define the following set:

H m = R n+2 × H m × H m with m ∈ N.
The space H = H 0 can be equipped with the following norm:

∀(X, χ) ∈ H, (X, χ) H = |X| 2 + 1 2 χ 2 = |X| 2 + c 2 w x 2 + w t 2 .
Using the operator notation [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF], system ( 7) is formulated as follows:

T X χ =   ÃX + B χ(0) χ(1) cχ x   , and 
T : D(T ) → H, with 
D(T ) = (X, χ) ∈ H 1 , 1-cg 0 0 1-ck χ(0) = 0 1+cg 1+ck 0 χ(1) -2cgC1X 0 .
The existence of a continuous solution for (X 0 , χ 0 ) ∈ D(T ) is ensured by applying Lumer-Philips theorem (for example in [23, p.103]) whose conditions are recalled below:

1) there exists a function V : H → R + such that its derivative along the trajectories of ( 7) is negative; 2) there exists λ sufficiently small such that D(T ) ⊆ R(λI -T ) where R is the range operator. The first condition relies on the existence of a Lyapunov functional and is therefore the subject of the following part. The second statement needs some calculations very similar to the one conducted in [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF] or [START_REF] Morgül | A dynamic control law for the wave equation[END_REF]. For a given λ > 0, let (r, f ) ∈ D(T ), the aim is to prove the existence of (X, χ) ∈ D(T ) satisfying the following for x ∈ (0, 1):

   λX -ÃX -B χ(0) χ(1) = r, λχ(x) -cχ x (x) = f (x). That leads to χ(x) = k 1 e λ x c + F (x) with F (x) = c -1 x 0 e λ x-s c f (s)ds ∈ H 1 and k 1 = diag(k 11 , k 12 ), k 11 , k 12 ∈ R.
Using the boundary conditions, we get a system of two equations:

(1 -cg)k 1 = k 2 e λ c (1 + cg)(A + F (1)) -2cg λ C 1 X, (1 -ck)k 2 = k 1 e λ c (1 + ck)(A + F (1))
Since there exists a λ such that à + B χ(0) χ( 1) is not the null matrix, then this system has a unique solution for a given X that ends the proof of existence.

III. EXPONENTIAL STABILITY OF THE DRILLING PIPE A. Main result

The main result of this paper is the α-stability criterion for system [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF] expressed in terms of LMIs, therefore easily tractable. Let us first define the α-stability.

Definition 1: System ( 7) is α-stable (or exponentially stable with a decay-rate of at least α) with respect to the norm • H if there exists γ 1 such that the following holds for (X 0 , χ 0 ) the initial condition:

(X(t), χ(•, t)) H γ (X 0 , χ 0 ) H e -αt .
Considering this definition, we propose a stability theorem for system [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF].

Theorem 1: Let N > 0. Assume there exists

P N ∈ S n+2+2(N +1) + , R, S ∈ S 2
+ such that the following LMI holds:

Ψ N,α -cR N ≺ 0, (8) 
with

Ψ N,α = He((Z N + αF N ) P N F N ) -cG N SG N +cH N (S + R) H N e 2α c , F N = I n+2+2(N +1) 0 n+2+2(N +1),2 , Z N = N N Z N , N N = Ã 0 n+2,2(N +1) B , Z N = c1 N H N -c 1N G N -0 2(N +1),n+2 L N 0 2(N +1),2 , (9) 
G N = -cgC1 01,n+2 0 2,2(N +1) G , G = 0 1+cg 1+ck 0 , H N = 01,n+2 cgC1 0 2,2(N +1) H , H = 1-ck 0 0 1-cg , R N = diag(0 n , R, 3R, • • • , (2N + 1)R, 0 2 ), L N = 0,0 I2 ••• 02 . . . . . . . . . N,0 I2 ••• N,N I2 , 1 N = I2 . . . I2 , 1N = I2 . . . (-1) N I2
, and k,j = (2j + 1)(1 -(-1) j+k ) if j k and 0 otherwise. Then system (7) is α-exponentially stable. The proof of this theorem relies on the construction of a Lyapunov functional described in the following subsections.

Remark 5: A necessary condition for (8) to be fulfilled is that the last 2 × 2 diagonal block of (8) must be definite negative corresponding to the following inequality:

H (S + R)He 2 α c -G SG ≺ 0.
This condition implies:

α α max = max c 2 log (ck + 1)(cg + 1) (ck -1)(cg -1) , 0 . ( 10 
)
Setting g = 0 or k = 0 leads to the same maximal decayrate than in [START_REF] Barreau | Input / output stability of a damped string equation coupled with ordinary differential system[END_REF], [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF], [START_REF] Datko | Two questions concerning the boundary control of certain elastic systems[END_REF]. This condition is also related to the τ -stabilization which is a common phenomenon when considering a wave equation [START_REF] Olgac | A practical method for analyzing the stability of neutral type LTI-time delayed systems[END_REF]. One can notice that for g > 0 and k > 0, the PDE system itself is asymptotically stable, because the two boundary conditions are adding damping. Notice that if one of them is negative, there exist also values of the other coefficient making the system asymptotically stable. Note also that for g = c -1 or k = c -1 leads to α max = +∞ meaning there is no neutral part and the system resumes to a time-delay system. For d > 0, the neutral part is not modified and the same limit can be observed.

Remark 6 (Hierarchy): Define the following set:

C N = {α 0 | Ψ N,α -R N ≺ 0, P N 0, R 0, S 0} ,
and assume this set is not empty. Then, denote α N = sup C N .

The hierarchy property states that α N +1 α N . This can be proved using the same strategy than in [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF], [START_REF] Safi | Tractable sufficient stability conditions for a system coupling linear transport and differential equations[END_REF].

B. Proof of Theorem 1 1) Preliminaries:

The main contribution of this paper relies on the extensive use of Bessel inequality to encompass traditional results. Before stating this inequality, we need to introduce an orthonormal family. The definition is as follows:

Definition 2 (Legendre polynomials): Let N ∈ N, the family of Legendre polynomials of degree less than or equal to N is denoted by {L } ∈[0,N ] with

L (x) = (-1) l=0 (-1) l l +l l x l with l = ! l!( -l)! .
The sequence {L k } is made up of "shifted"-Legendre polynomials on [0, 1]. As seen in [START_REF] Baudouin | Stability analysis of a system coupled to a transport equation using integral inequalities[END_REF], [START_REF] Courant | Methods of mathematical physics[END_REF], [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time delay systems[END_REF], this family is orthonormal in L 2 with the canonical inner product. That leads to the following definition.

Definition 3: Let χ ∈ L 2 . The projection of χ on the th Legendre polynomials is defined as follows:

X := 1 0 χ(x)L (x)dx.
The Bessel inequality is obtained considering the previous definitions and the orthogonal property of the shifted-Legendre family.

Lemma 1 (Bessel Inequality): For any function χ ∈ L 2 and symmetric positive matrix R ∈ S 2 + , the following Bessel-like integral inequality holds for all N ∈ N:

1 0 χ (x)Rχ(x)dx N =0 (2 + 1)X RX . ( 11 
)
This lemma and its short proof can be seen in [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF]. The derivation of X along time is needed in the sequel. Lemma 3 from [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF] deals with this issue.

Lemma 2: For any function χ ∈ L 2 , the following expression holds for any N in N using notations (9):

Ẋ0 . . . ẊN = c1 N χ(1) -c 1N χ(0) -cL N X0 . . . X N .
The link between α-exponential stability and a Lyapunov functional is made by the following lemma.

Lemma 3: Let V be a Lyapunov functional for system (7) and α ≥ 0. Assume there exist ε 1 , ε 2 , ε 3 > 0 such that the following holds for all t 0:

   ε 1 (X, χ) 2 H V (X, χ) ε 2 (X, χ) 2 H , V (X, χ) + 2αV (X, χ) -ε 3 (X, χ) 2 H , (12) 
then system ( 7) is α-exponentially stable.

Proof. Inequalities [START_REF] Hale | Effects of small delays on stability and control[END_REF] bring the following: V (X, w) + α + ε3 ε2 V (X, χ) 0. Then integrating this inequality between 0 and t leads to:

(X(t), χ(t)) 2 H ε 2 ε 1 (X 0 , χ 0 ) 2 H e -2αt .
Once these useful lemmas reminded, a Lyapunov functional can be defined.

2) Lyapunov functional candidate: The aim of this subpart is to build a Lyapunov functional candidate for system [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF]. Following the same methodology than introduced in [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF], a first Lyapunov functional V α for the PDE part is defined with S, R ∈ S 2 + :

V α (χ) = 1 0 e 2 αx c χ (x)(S + xR)χ(x)dx,
The Lyapunov functional candidate is then the summation of a quadratic term and V α . This quadratic term contains the stability of state X but also some terms merging the ODE and the PDE. This is done to enlarge the stability analysis, enabling the study of stability of the whole interconnected system and not of each subsystem independently. This technique, as shown in [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF], is well-suited for the study of an unstable ODE coupled with a PDE for instance. The total Lyapunov function of order N ∈ N is then:

V N,α (X, χ) = X N P N X N + V α (χ) (13) 
with

P N ∈ S n+2+2(N +1) +
and X N = X X 0 . . . X N . The aim now is to prove the existence of ε 1 , ε 2 and ε 3 > 0 to apply Lemma 3 on the functional V N,α and then conclude the proof.

3) Existence of ε 1 : Conditions P N 0 and S, R ∈ S 2 + mean that there exists ε 1 > 0, such that for all x ∈ [0, 1]:

P N ε 1 diag (I n+2 , 0 2 ) , S + xR S ε1 2 I 2 .
These inequalities imply:

V N,α (X, w) ε 1 |X| 2 + 1 2 χ 2 + 1 0 χ (x) S + xR -ε1 2 I 2 χ(x)dx ε 1 |X| 2 n + 1 2 χ 2 ε 1 (X, χ) 2 H .
4) Existence of ε 2 : Since P N , S and R are definite positive matrices, there exists ε 2 > 0 such that:

P N diag ε 2 I n+2 , ε2 4 diag {(2 + 1)I n } ∈(0,N ) , (S + xR) S + R ε2 4 e -2 α c I 2 , ∀x ∈ (0, 1)
. Then, we get:

V N,α (X, χ) ε 2 |X| 2 + ε 2 4 N =0 (2 +1)X X + χ 2 ε 2 |X| 2 + 1 2 χ 2 = ε 2 (X, χ) 2
H . The inequality comes from Bessel inequality [START_REF] Fridman | Bounds on the response of a drilling pipe model[END_REF]. 5) Existence of ε 3 : This part is the most important and shows that system (7) is dissipative [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF], [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]. Differentiating with respect to time [START_REF] He | Adaptive control of a flexible crane system with the boundary output constraint[END_REF] along the trajectories of system [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF] leads to:

VN,α (X, w) = He        Ẋ Ẋ0 . . . ẊN    P N   X X0 . . . X N       + Vα (w).
The goal here is to find an upper bound of VN,α using the extended state: ξ N = X N w t (1) w t (0) . The first step is to derive an expression of Vα . Similarly to [START_REF] Barreau | Lyapunov stability analysis of a string equation coupled with an ordinary differential system[END_REF], we get: Using the previous equation, Lemma 2 and equation ( 4), we note that [START_REF] Datko | Two questions concerning the boundary control of certain elastic systems[END_REF]. Then we can write:

Vα (χ) = 2c
X N = F N ξ N , ẊN = Z N ξ N , χ(0) = G N ξ N , χ(1) = H N ξ N where matrices F N , Z N , H N , G N are given in
VN,α (X, χ) = ξ N Ψ N,α ξ N + c N =0 X (2 + 1)RX -c 1 0 χ (x)Rχ(x)e 2 αx c dx -2αV N,α (X, χ).
Denoting by W N,α (X, χ) = VN,α (X, χ) + 2αV N,α (X, χ), the previous equality implies the following upper bound:

W N,α (X, χ) ξ N Ψ N,α ξ N + c N =0 (2 + 1)X RX -c 1 0 χ (x)Rχ(x)dx. (14)
Since R 0 and Ψ N,α ≺ 0, there exists ε 3 > 0 such that:

R ε3 2 I 2 , Ψ N,α -ε 3 diag I n+2 , 1 2 I 2 , 3 2 I 2 , . . . , 2N+1 2 I 2 , 0 2 . (15) 
Using ( 15) and Bessel's inequality, equation ( 14) becomes:

W N,α (X, χ) -ε 3 |X| 2 + 1 2 χ 2 -ε 3 (X, χ) 2 H ,
and that concludes the proof.

IV. EXAMPLES AND DISCUSSION

In this section, we illustrate the proposed theorem by using values taken from [START_REF] Saldivar | Analysis and Control of Oilwell Drilling Vibrations: A Time-Delay Systems Approach[END_REF], [START_REF] Saldivar | The control of drilling vibrations: A coupled PDE-ODE modeling approach[END_REF] and shown in Table I. The simulation is based on a finite-difference method of order 2. The two cases under study here are summarized below:

1) the feedforward control with n = 0 (using only u e 1 and u e 2 in ( 6)) and

C 1 = [ 0 0 ] , C 2 = 0, K = [ 0 0 ] . (16) 
2) a dynamic control with the following parameters:

à = -800 0 0 -150 , B c1 = 0 2,2 , B c2 = I 2 , C 1 = [ 800 0.015 0.01 -0.1 ] , C 2 = [ 0 -0.0718 ] , K = [ -82.2 10.4 ] . (17) 
The dynamic controller is obtained considering two lowpass filters. Denote by s ∈ C the Laplace variable, the two transfer functions for the low-pass filters are u1 wt(0) = 1 1+sωc1 and u1 wt(1) = 1 1+ωc2 with the cut-off frequencies ω c1 = 800 and w c2 = 150. Gain K has been chosen such that the eigenvalues of A + BK are -2.4603 ± 0.1230i. C 2 has been chosen to cancel the dependence on w t (1, •) in the ODE.

With the feedforward controller only, it is possible to estimate the decay-rate of the solution. Indeed, there is no real coupling between the ODE and the PDE and the decayrate of the interconnected system will be the smallest between their respective ones. Here, the PDE has a decay-rate given by equation (10) of 1.2302 and the ODE is 0.2159. The results of Theorem 1 is given in Table II. The maximum decay-rate for the feedforward case is obtained for N 1 and is, as expected, the decay-rate of the ODE.

Figure 2 shows the time response of system [START_REF] Challamel | Rock destruction effect on the stability of a drilling structure[END_REF] in the two cases. The initial state for this computation is X 0 = 0, w(x, 0) = 2-Ω e x and w t (x, 0) = Ωe-qT e k x-u e 1 -Ωe g

(1-x) for x ∈ (0, 1). Of course states X 1 and X 2 are much faster, which results from the direct influence of static feedback gain K but also the speed w t (1), which is more regular and converges faster to 0. Indeed, as shown in Table II, the speed is much faster in the situation with the dynamic control. The hierarchy of Remark 6 is clearly visible and reaches its maximum value (up to three a 3 digits precision) at N = 2. If d > 0, one can notice a slightly higher decay rate but the limit remains the same. One of the drawback of such a system is the angular speed w t (x, •) for x ∈ (0, 1), which increases significantly compared to the first case as it is possible to see on Figure 3.

Remark 7: A backstepping control law could have been considered with a target system of arbitrary large decayrate. Compared to this method, the price to pay for a finite dimension controller is seen by equation [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF]. Indeed, it is not possible to accelerate the system with an arbitrary large decayrate. Other differences are that there is no design methodology using LMI yet and the control is a finite-dimension statefeedback using the knowledge of only Y , w t (0) and w t (1) with strictly proper controllers. [START_REF] Olgac | A practical method for analyzing the stability of neutral type LTI-time delayed systems[END_REF]. αmax IS CALCULATED USING [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF].

V. CONCLUSION

We have studied the stability of a drilling mechanism, which dynamics can be modeled as a coupled ODE/PDE. Approximating this model around a desired equilibrium point leads to an interconnected ODE / damped wave equation. Therefore, the stability of this coupled system is studied using a Lyapunov approach and the stability condition of such a system has been expressed in terms of LMI. Using Bessel inequality, we provided a hierarchy of LMI conditions for this kind of interconnected system with linear feedback controllers. Using only strictly proper hand-designed controllers, a control law has been derived improving subsequently the decayrate of the system. Further studies would investigate how to automatically design such controllers.
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 218 Fig. 2. Simulation on the feedforward and dynamic controlled system.
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 3 Fig. 3. Angle velocity wt in the situation with dynamic control.

TABLE I COEFFICIENT

 I VALUES TAKEN FOR THE SIMULATIONS.

TABLE II MAXIMUM

 II DECAY-RATE α USING THEOREM 1 AT AN ORDER N . THE FEEDFORWARD CONTROLLER REFERS TO (16) WHILE THE DYNAMIC CONTROLLER IS WITH
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