
HAL Id: hal-01731365
https://laas.hal.science/hal-01731365

Submitted on 14 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Approach for Software Architectures’
Description Discovery

Mariam Chaabane, Ismael Bouassida Rodriguez, Khalil Drira, Mohamed
Jmaiel

To cite this version:
Mariam Chaabane, Ismael Bouassida Rodriguez, Khalil Drira, Mohamed Jmaiel. Mining Approach
for Software Architectures’ Description Discovery. IEEE/ACS 14th International Conference on Com-
puter Systems and Applications (AICCSA), Oct 2017, Hammamet, Tunisia. 12p. �hal-01731365�

https://laas.hal.science/hal-01731365
https://hal.archives-ouvertes.fr

Mining Approach for Software
Architectures’ Description Discovery

Mariam Chaabane
∗

ReDCAD Laboratory
University of Sfax

Sfax, Tunisia

Ismael BOUASSIDA RODRIGUEZ
ReDCAD Laboratory

Digital Research Center of Sfax
Sfax, Tunisia

Khalil DRIRA
University of Toulouse

CNRS, LAAS
Toulouse, France

Mohamed JMAIEL
ReDCAD Laboratory

Digital Research Center of Sfax
Sfax, Tunisia

Abstract

System of Systems (SoS) is a new class of complex software systems resulting from the integration of
several independent systems working together. Within a SoS, many participant systems may be integrated
and deleted operationally over the time. Each system has an Architecture Model modeled at design time.
Thus, the SoS’ software architecture description is represented by an aggregated Architecture Model. This
aggregated Architecture Model represents participant systems but not necessarily their interactions and
communications over the time. In literature, several research studies addressed issues related to SoS. However,
we noticed a lack of studies that address the problem of how to describe the whole SoS’ software architecture
for each change of a participant system over the time. Moreover, studies dealing with checking conformity
between the whole SoS’ software architecture description and the aggregated Architecture Model, are still
lacking. This paper presents an approach for the discovery of SoS’ software architecture description from
execution traces. For this purpose, the proposed approach records execution traces of all participant systems
belonging to the SoS, their interactions and communications in a data base. Then, our approach relies on
mining techniques to extract software architecture from the data base and describes it via a model called
Architecture Model. In addition, this paper offers a solution for checking conformity between the aggregated
Architecture Model and the Discovered Model. The diagnosis results may suggest new rules/constraints
to enhance the aggregated Architecture Model

I. Introduction

The massive development of communica-
tion technologies and the integration of
several independent systems working to-

gether have led to the appearance of large and
complex software systems referred as Systems
of Systems(SoS). SoS have arisen as a result of
the integration of various independent systems,
developed with different technologies and for
diverse purposes, too[11].

∗Corresponding author: mariam.chaabane@redcad.org

Operationally integration of these indepen-
dent systems provide more complex functions
which could not be provided by any only ex-
istent system. Since each system is designed
and developed separately, the software Archi-
tecture Model of each system represents only its
functionalities. So, in a SoS, the architecture
description is an aggregation of Architecture
Models. Because of the operational integration,
the aggregated Architecture Model may be not
able to represent the provided functionalities
and interactions within the SoS. In fact, there

1

Mining Approach for Software Architectures’ Description Discovery • October 2017

is a lack of consensus on how better dealing
with SoS software architecture descriptions, as
well as with aspects of the SoS architectural
descriptions that require further investigation
[6].

Our approach aim to discover the whole
SoS’ Architecture Model from execution traces.
Hence, the main contribution of this paper is
making the execution traces visible by monitor-
ing the communications of all the actors of SoS
and recording the intercepted communications
on a data base. Then, the proposed approach
entitled Architecture Mining allows to discover
and to mine the software architecture of the
whole SoS from the execution traces recorded
on the data base and to represent it as a model
called Discovered Model. The second step of our
approach allows verifying conformity between
the Discovered Model and the aggregated Ar-
chitecture Model composed from the separated
Architecture Models of participant systems. The
third step intends to enhance the aggregated
Architecture Model based on alignment with the
Discovered Model.

The rest of the paper is organized as fol-
lows: Section 2 presents related work. Sec-
tion 3 presents a motivating scenario. Section 4
introduces our approach entitled Architecture
Mining. In Section 5 we explain how we ap-
plied our approach on the motivating scenario.

II. Related Work

In literature, there are several studies dealing
with discovering the actual architecture from a
source code for checking conformity with the
designed model. Nevertheless, it is observed
that there is a lack of research studies that
present solutions to discover architecture from
execution traces.

The approach of Caracciolo et al. [3] pro-
poses a Domain Specific Language (DSL) to
describe architecture at design time. To unify
the functionality provided by existing tools for
checking conformity between the de facto ar-
chitecture and its theoretical counterpart, the
author proposes a tool coordination framework
that verifies rules written with DSL.

Meffort et al. [10] used UML as a descrip-
tion language. They relied on data mining
techniques to extract the actual architecture
from a source code. In addition, they proposed
a methodology that uses the extracted archi-
tecture patterns and provided an algorithm
of checking conformity that detects both ab-
sences and divergences. As result, they identi-
fied many architectural violations proving that
only 40% were confirmed by a senior software
developer.

Weinreich et al. [14] proposed an architec-
ture meta-model, called the LISA model, for de-
scribing heterogeneous component-based soft-
ware architectures. The LISA model supports
various concepts for dealing with the typical
characteristics of SOA. The author extended
this work [13] to Checking conformity between
the architecture extracted from the source code
and the LISA model. They presented an ap-
proach for automatic reference architecture con-
formance checking of SOA-based software sys-
tems.

The approach of Alshara et al. [1] deals
with recovering software architecture from
object-oriented source code. This approach
propose transforming object-oriented code to
component-based one guided by the recov-
ered architecture of the corresponding object-
oriented software. This approach allows to
reveal component-based architecture to materi-
alize the recovered architecture.

For checking conformity of a dynamic soft-
ware architectures, Cavalcante et al. [4] pro-
pose a Statistical Model Checking (SMC). The
authors introduce a novel notation to formally
express architectural properties as well as an
SMC-based toolchain for verifying dynamic
software architectures described in pi-ADL. For
this purpose, they used a flood monitoring sys-
tem.

We note that all previous approaches discov-
ered the software architecture from the source
code. A key limitation of these research is that
they does not address the problem of SoS’ soft-
ware architecture discovery. As many systems
may be integrated or deleted over the time in
SoS, the previous techniques don’t allows to

2

Mining Approach for Software Architectures’ Description Discovery • October 2017

discover the SoS architecture for each change
of a system belonging to the SoS.

The approach of Loukil et al. [9] investi-
gated the extraction of a software architecture
from execution traces at runtime to obtain a
‘Model at runtime’. At design time, the au-
thors use the Architecture Analysis and Design
Language (AADL) for describing the architec-
ture of dynamically adaptive component-based
systems. Nevertheless, the proposed checking
conformity model can’t detect absence cases
and doesn’t allow recording execution traces
in the data base to check conformity with the
AADL model.

We observe that most of these studies use
declarative language for architecture descrip-
tion. In fact, according to various studies,
ADLs fall short in fulfilling requirements such
as extensibility, usability and multifaceted mod-
eling. According to Caracciolo et al. [3], ADLs
provide poor support for extensibility and ne-
glect aspects that are of most concern to stake-
holders. It needs to be simple and intuitive
enough to communicate the right message to
the stakeholders involved in the architecting
phase. Otherwise, many ADLs do not support
multiple viewpoints.

Other than ADL, Bouassida et al. [2] provide
generic and scalable solutions of architecture’s
description for automated self-reconfiguration
systems. The author elaborates a graph-based
modelling approach where vertices correspond
to deployment nodes and software services.
On the other hand, the author uses rule-
oriented techniques, such as graph grammar
productions and graph transformation to spec-
ify rules for changing deployment architecture
while being in conformance with the architec-
tural style.

Through our study, we noted that most of
previous studies extract the software architec-
ture from source code and do not take into ac-
count SoS characteristics. In fact, in SoS, the ag-
gregation of systems within an SoS may lead to
new functionalities. Moreover, many systems
may be integrated or deleted operationally over
the time. So the aggregated Architecture Model
will be incomplete for each change. In this

study, a new technique to recover the architec-
ture of an SoS is suggested. To discover the
Architecture Model of participating systems on
SoS, our approach proposes the mining of the
software architecture of the whole SoS from
the execution traces recorded in the data base.

Although, the mining in data field, called
‘Data Mining’, is a set of methods and tech-
niques to extract useful information through
rapid and efficient discovery of unknown or
hidden information inside large databases. [8].
In the process field, ‘Process Mining’ is to dis-
cover, monitor and improve real processes by
extracting knowledge from the event log. It
describes a family of analysis techniques ex-
ploiting the information recorded in the event
log [7][12].

Taking inspiration from data mining and pro-
cess mining techniques that consist in the ex-
traction of knowledge from large databases
or from events logs, we defined our approach
that consists on mining actual SoS’ software
architecture, entitled Architecture Mining. To
design the Architecture Model of each partici-
pant system, we chose graphs as architecture
description language. According to this choice,
we decide to use research of homomorphism in
graphs to detect both absences and divergences
between the aggregated Architecture Model of
the SoS and the Discovered Model mined from
the data base.

III. Architecture Mining

Approach

In this section, we present our approach of Ar-
chitecture Mining and we detail its three steps,
namely, Discovery, Conformance and Enhance-
ment.

Figure 1 illustrates the basic elements of our
approach. At design time, an Architecture Model
that is supposed to be respected at runtime is
designed. In the case of SoS, participant sys-
tems are integrated or deleted from operational
viewpoint over time. Thus, the SoS’ aggregated
Architecture Model represents only participant
systems but don’t illustrates all provided func-
tionalities, interactions and communications

3

Mining Approach for Software Architectures’ Description Discovery • October 2017

within the SoS.
Our approach consists in deploying a moni-

tor next to each component belonging to par-
ticipant systems in the SoS. These monitors
intercept the messages exchanged between all
the components and record the recovered data
in the data base to extract the whole model of
the SoS. These monitors are software entities
used to intercept messages and enrich them
with personalized data according to the need
of the developer such as the time of sending
a request, the component name and the occur-
rence of sending a request.

At runtime, the monitored execution traces
of the SoS are sequentially recorded in the data
base. The first step of Architecture Mining is
discovery. It aims to discover and mine the
software architecture of all parts of the SoS
from the data base. The second step is Confor-
mance and the third is Enhancement.

i. Discovery

The first step of Architecture Mining is discov-
ery. In fact, monitors deployed in each compo-
nent of the SoS, intercept exchanged messages
between different components of running sys-
tems and record them in a data base. So, moni-
toring allows us to obtain execution traces.

The starting point of the discovery step is
collecting events and correlating events from
execution traces to isolate end-to-end instances
of the same scenario. This generates an execu-
tion trace corresponding to a scenario instance.
An execution trace is a sequentially recorded
collection of events, where each event refers to
a message and is related to a particular compo-
nent.

In the discovery step, mining techniques col-
lect data from the data base to represent the
Discovered Model in terms of a Petri net, Busi-
ness Process Modeling Notation, Graphs, etc.
This step allows to extract monitored events
from the data base, discover the actual architec-
ture of SoS and illustrate it by a model called
Discovered Model. This step makes possible the
discovery of all parts of the SoS, their inter-
actions, communications and to obtain a Dis-

covered Model from the execution traces. The
Discovered Model may be used for discussing
problems among stakeholders of different par-
ticipant systems to have a shared view of the
real model.

ii. Conformance

The second step of Architecture Mining is con-
formance. This step aims to check if reality,
expressed by the Discovered Model, conforms
with the aggregated Architecture Model. Confor-
mance is used likewise to diagnose the differ-
ences between the mined behavior represented
by the Discovered Model and the modeled behav-
ior represented by the aggregated Architecture
Model. This diagnosis allows us to locate the
missing elements and relations between the
components belonging to the SoS in the aggre-
gated Architecture Model.

The step of conformance checking uses the
agregatedArchitecture Model and the Discovered
Model as input. For conformance checking,
the modeled behavior and the observed be-
havior are compared. Conformance checking
techniques relate events in the data base to
messages and components in the model.

Conformance checking can be used to iden-
tify deviating cases and SoS’ parts where most
deviations occur and to locate the missing ele-
ments and relations between the components
within the SoS in the aggregated Architecture
Model. In addition, this step allows us to contin-
uously evaluate the quality of new Discovered
Model using conformance checking. Finally,
conformance checking is used as a starting
point for the third step which is enhancement.

iii. Enhancement

The third step of Architecture Mining is enhance-
ment. This step aims to enrich and extend the
aggregated Architecture Model with the mined
behaviors from execution traces represented as
a Discovered Model. So, the enhancement step
can enrich and extend the aggregated Architec-
ture Model of the SoS. This step is based on di-
agnosis’ results of the differences between the

4

Mining Approach for Software Architectures’ Description Discovery • October 2017

Data BaseRecords the actual
 behavior

Models

Discovered ModelAggregated Architecture Model

Conformance

Enhancement

Discovery

Meter

DroneHumidity
 sensor

Turbine

Valve

Manager

Energy Production
 Center

 Dam
Sensor

"System of Systems"

Figure 1: Architecture Mining

aggregated Architecture Model and the Discov-
ered Model. Moreover, monitoring results may
contain information about timestamps and the
occurrence of each request.

Thus, the aggregated Architecture Model of
the SoS can be corrected using the diagnostics
provided by the alignment with the Discovered
Model. After alignment, it is possible to replay
the discovery step.

IV. Motivating Scenario

This section presents a scenario that will be
reused throughout the paper to specify and
illustrate our contribution. This scenario is
an example of SoS dealing with smart grids
and taking place in the agricultural domain.
This SoS is the result of the integration of four
independent systems, which were developed
separately and at different periods.

The first system is the dam. Initially, the
dam provides water for an Agricultural Cen-
ter (AC) which is responsible for an irrigation
system. The Agricultural Center is the second
participant system in our SoS. Then, channels
of potable water are installed from the tank
of the dam to the city. The potable water is

managed by the Utilities Agency (UA). So a
third system is added. Later, a fourth system
interferes to take another part of water from
the dam’s tank. This system is an Energy Pro-
duction Center (EPC) that needs to produce
electricity from a stream of moving water com-
ing from the dam’s tank and going through a
hydraulic turbine. Thus, we obtain four sys-
tems participating in our SoS, each one of them
having a different objective.

The main system in our case study is the
dam. It is modeled to manage the need of wa-
ter upon request. The dam has three levels that
describe the state of the water in the tank: over-
full, medium and drought. Each participant
system has a priority degree. The UA has the
highest priority, the AC has the second priority
and the EPC has the third and last priority. The
software architecture relative to the dam con-
siders a rule which takes the water level and
the priority of the system as input and decides
to accept the request, to reduce the required
amount of water or to decline the request. A
definite amount of water is taken daily, upon
request, for the Utilities Agency even in case of
drought. An amount of water is given, upon
request, to the Agricultural Center to be shared

5

Mining Approach for Software Architectures’ Description Discovery • October 2017

among different irrigated fields only in cases
of an overfull or a medium level of water in
the tank. An amount of water is provided to
the Energy Production Center, upon request,
only in case of overfull. The managers of Util-
ities Agency, Agricultural Center and Energy
Production Center send request to the dam
manager to provide the required amount of
water and the system priority. To respond to
each request, the dam manager consults the
water level in the tank and decides to open
the associated valve or to decline the request.
If more than a request is sent to the dam, its
manager must take a decision according to the
priority of each system and the level of water
in the tank. It can accept all requests, decline
some requests, accept partially the request by
reducing the amount of required water, etc. Fi-
nally, the sum of provided amounts of water
must not exceed a defined volume daily.

In this case study, many system are inte-
grated over the time. Thus, we know only
their components, objectives and software ar-
chitecture separately but not their behaviours,
interactions and rules within the SoS.

The Utilities Agency aims to obtain the re-
quired amount of water for potation. The Agri-
cultural Center intends to obtain more water
for irrigation. The Energy Production Center
aims to increase energy production. The dam
manager’s role is to manage water in the tank.
Six components belong to the dam system: a
manager, an engine, a valve assigned to the
Utilities Agency, a valve assigned to the Agri-
cultural Center, a valve assigned to the Energy
Production Center and a sensor to detect water
level in the tank. The UA has two component:
a manager and an engine. The AC has four
components: a manager, an engine, humidity
sensors and drones that include a GPS chip and
a thermal camera. Thus, they can fly over the
field to detect the parts that need to be watered.
The EPC has four components: a manger, an
engine, a hydraulic turbine producing electric-
ity from a stream of moving water coming from
the dam when the associated valve is opened,
and a meter that knows the need of electricity.

In the Utilities Agency, the manager triggers

the UA engine daily. This one sends a request
to the dam manager to open the UA valve. In
the Agricultural Center, the manager triggers
the AC engine daily. This one asks the AC
sensors and the AC drones if the humidity
indicator is down. If that is the case, the AC
engine sends a request to the dam manager to
open the AC valve. In the Energy Production
Center, the manager triggers the EPC engine
daily. This one asks the EPC meter if it’s a
lack of electricity. In case of requirement of
energy, the EPC engine sends a request to the
dam manager to open the EPC valve. The
dam’s manager, who manages diverse requests
of water, can accept the request and open the
associated valve, decline the request or reduce
the required amount of water, based on water
levels provided by the Dam sensor and the
system priority.

After our SoS has been operating for a cer-
tain period, the dam’s manager notices that he
can’t always satisfy the AC’s demands because
the daily allowed volume of water is reached
although the water level is medium. Since the
aggregated Architecture Model of the whole SoS
don’t represent interactions between partici-
pant systems within the SoS, we can not dis-
cover the problem leading to this observation.
Moreover, more systems may be added to this
SoS in the future, other may be deleted. Thus,
we need to know the software architecture of
the SoS for each change over the time.

As mentioned earlier, our approach entitled
Architecture Mining aims to discover the soft-
ware Architecture Model of the whole SoS to
represent interactions and behaviours within
the SoS and locate each emergent problem. The
proposed approach intends to record the exe-
cution traces of all participant systems of the
SoS at runtime in the data base. Then, our ap-
proach aims at using these execution traces to
mine the deployment architecture of the whole
SoS, and to locate the problems leading to the
wrong management of water and each other
problems.

6

Mining Approach for Software Architectures’ Description Discovery • October 2017

EPC-Meter:WS

Dam-Sensor:WS
Dam-Engine:

Orchestrator

UA-Valve: WS

AC-Sensor:WSAC-Drone: WSAC-Manager:

 Client

 AC-Engine:

Orchestrator

UA-Manager:

 Client

 UA-Engine:

Orchestrator
Dam-Manager:

 Client

AC-Valve: WS

EPC-Valve: WS

EPC-Engine:

Orchestrator

EPC-Manager:

 Client

The Dam system

The EPC system

The AC system

The UA system

Figure 2: Case Study Implimenting

V. Experiments

To illustrate the motivating case study men-
tioned above, a simulation was performed
based on SOA technologies. To implement
this simulation, we have used a composition
of Web Services by orchestration [5]. We used
eclipse development environment that is based
on Java EE. We profit of the benefits of the
combined use of Tomcat Server and implemen-
tation of Axis2 Web Services. Thus, the Web
Services orchestrators execute the described
process by BPEL language. This allows to in-
voke atomic Web Services in order to obtain
composed Web Service. The composed Web
Service is equally presented in WSDL but de-
ployed in Apache-Ode, which is deployment
engine for orchestration process.

The type of service-oriented application that
we have developed is composed of three types
of entities: the atomic Web Services (WS), Web
Services orchestrators (Orchestrator) and Web
Services clients (Client). As indicated in Figure
2, the UA Valve, the AC Valve, the EPC Valve,
the Dam Sensor belonging to the Dam system,

the Meter belonging to the EPC system, the
Sensors and the Drones belonging to the AC
system are represented by WS. The Dam En-
gine, the UA Engine, the AC Engine and the
EPC Engine are represented by Orchestrators.
The Dam Manager, the UA Manager, the AC
Manager and the EPC Manager are represented
by Clients.

Then, we deployed monitors next to each en-
tity belonging to the SoS as indicated in Figure
2. The monitors intercept the SOAP messages
exchanged between the entities and save the re-
covered data in the database to mine the whole
architecture of the proposed SoS.

A monitor is a software entity used to in-
tercept SOAP messages [5]. It enriches SOAP
messages with personalized data according to
the need of the user such as the identifier and
the name of the message, the identifier and the
name of the source and target Web Service, etc.
We implemented a Web Service side monitor,
an Orchestrator side monitor and a Client side
monitor. The Client side monitor intercepts
messages exchanged between the Client and
the Orchestrator. The Web Service side monitor

7

Mining Approach for Software Architectures’ Description Discovery • October 2017

intercepts the messages exchanged between the
Orchestrator and the Web Service. The Orches-
trator side monitor intercepts all the messages
entering and leaving the Orchestrator. All the
monitors communicate with the database to
save the data resulting from the interception of
the messages.

To simulate the software architecture of our
SoS, we have executed the test scenario men-
tioned in section IV, 180 times.

i. Discovery

To recover the software architecture of our SoS,
we mined data resulting from the interception
of the messages stored in the database during
the execution of the test scenario 180 times. Af-
ter mining the data recorded in the database,
we performed some calculations to obtain the
necessary data to generate the Discovered Model,
namely the invocation number of each entity
(WS, Orchestrator, Client) and the execution
number of each operation. These calculations
allow us to know the occurrence of each com-
munication.

In the discovery step, mining algorithm col-
lects data from the data base to represent the
Discovered Model in terms of a Petri net, Busi-
ness Process Modeling Notation, Graphs, etc.
In this paper, we chose to describe the Dis-
covered Model as a graph which represent a
powerful and versatile tool for modelling real
systems in diverse domains such as distributed
systems[2]. In the proposed graph, a node
corresponds to an entity that interacts with an-
other; a link illustrates the flow of the messages
transmitted between two nodes. Each node is
represented by: the entity ID displayed on the
node, the entity name and the invocation num-
ber of the entity. Each link is illustrated by: the
operation name(parameter) and the execution
number of the operation.

To obtain such a graph, we recorded mined
and collected data in an xml file. Each entity
is illustrated by a < node > tag. The entity’s
ID is displayed on the node, the entity name
and the invocation number of the entity are
represented as attributes for the < node > tag.

Each link is illustrated by an < edge > tag. The
operation name, the execution number of the
operation, the source node and the target node
are represented as attributes for the < edge >
tag.

Finally, we need to illustrate graphically the
Discovered Model and convert the Discovered
Model from xml form to a graphic form. So, we
generated a graph from the xml file using the
open source Java module entitled ‘Blueprints’.
This module uses an xml file as input and pro-
vides a labelled graph as output. We obtained
the graph illustrated in Figure 3 that illustrates
the execution of our test scenario 180 times.

We noticed first of all that the Dam Manager
can’t satisfy all the requests of the AC Engine
and the EPC Engine. In Figure 3, the AC En-
gine sends a request to the Dam Manager ‘AC-
Request(AC, qte)’ 50 times, but the Dam Engine
opens the AC Valve ‘Dam-Open(AC)’ only 40
times. Likewise, the EPC Engine sends a re-
quest to the Dam Manager ‘EPC-Request(EPC,
qte)’ 50 times, but the Dam Engine opens the
EPC Valve ‘Dam-Open(EPC)’ only 30 times. Al-
though the operation ‘Dam-Open(EPC)’ is ex-
ecuted only 30 times by the Dam Engine to
open the EPC Valve as shown in the message
on the link, the EPC Valve is invoked 50 times,
as shown in the message on the node ‘D6, EPC-
Valve, 50’. So the EPC Valve is opened 20 times
by another entity.

The first step of Architecture Mining called
Discovery makes possible the discovery of the
whole SoS’s architecture through the mining of
the execution traces recorded in the database.
Based on the conformance checking, the de-
signer can diagnose the differences between
the Discovered Model and the aggregated Archi-
tecture Model and enhance the software archi-
tecture of the SoS by adding more rules.

ii. Conformance

Taking inspiration from the process mining
field [12], we applied the conformance check-
ing techniques to diagnose the differences be-
tween the Discovered Model and the aggregated
Architecture Model of our SoS.

8

Mining Approach for Software Architectures’ Description Discovery • October 2017

EPC4EPC3

EPC2

EPC1

D1 D2

D6

D3

D5

D4

UA2

UA1

AC2

AC1 AC3 AC4

name="EPC-Turbine"

nb= 20

name="EPC-Meter"

nb= 60name="EPC-Manager"

nb= 60

name="EPC-Valve"

nb= 50

name="Dam-Sensor"

nb= 160

name="Dam-Engine"

nb= 160

name="AC-Valve"

nb= 40

name="UA-Valve"

nb= 60

name="AC-Sensor"

nb= 60

name="AC-Drone"

nb= 60

name="AC-Manager"

nb= 60

name="AC-Engine"

nb= 60

name="UA-Manager"

nb= 60

name="UA-Engine"

nb= 60

name="Dam-Manager"

nb= 160

20

30

160

40

60

16060

60

50

60

60

60

60

60
20

Turbine-Open(EPC)

Dam-Open(EPC)

Dam-Open(UA)

Dam-Open(AC)

Dam-Request

EPC-Request(EPC,qte)
EPC-Request

EPC-Request

EPC-Request(EPC,qte)

60

UA-Request

UA-Request(UA,qte)

AC-Request

AC-Request
AC-Request

AC-Request(AC,qte)

Dam-Request

name="EPC-Engine"

nb= 60

Figure 3: Discovered Model

For this purpose, we applied the footprint al-
gorithm [12] which is a matrix showing causal
dependencies between entities and interactions.
For example, the footprint of an execution trace
may show that the node x receives sometimes
a request from the node y but never the other
way around. If the footprint of the aggregated
Architecture Model shows that x never receives
a request from y, then the footprints of the ex-
ecution trace and the aggregated Architecture
Model disagree on the ordering relation of x
and y.

When observing the Discovered Model, we
notice that there is a link between the EPC
engine’s node and another node called ‘EPC-
Turbine’, and the link between this node and the
EPC valve’s node. These links illustrate a re-
quest from the EPC Engine to the EPC-Turbine
‘EPC-Request(EPC, qte)’ to open the EPC valve
without the permission of the Dam Engine. Ac-
cording to the Discovered Model illustrated in

Figure 3, the EPC-Turbine executed an opera-
tion called ‘Turbine-Open(EPC)’ to open the EPC
Valve 20 times. However, the request ‘Turbine-
Open(EPC)’ does not exist in the aggregated
Architecture Model illustrated in Figure 4.

The conformance algorithm allows us to lo-
cate the problem and to know why the volume
of water allowed daily is reached before the
Dam Manager can respond to the requests of
the AC Engine and the EPC Engine. In fact, the
monitor deployed in the EPC engine intercepts
the communication between the EPC Engine
and the EPC-Turbine. Likewise, the monitor
deployed next to the EPC Valve intercepts the
communication between the EPC-Turbine and
the EPC Valve. These monitors discover the
EPC-Turbine node and their communications
with the other entities in our SoS.

9

Mining Approach for Software Architectures’ Description Discovery • October 2017

EPC3

EPC2

EPC1

D1 D2

D6

D3

D5

D4

UA2

UA1

AC2

AC1 AC3 AC4

name="EPC-Meter"name="EPC-Manager"

name="Dam-Sensor"

name="Dam-Engine"

name="AC-Valve"

name="UA-Valve"

name="AC-Sensor"name="AC-Drone"name="AC-Manager"

name="AC-Engine"

name="UA-Manager"

name="UA-Engine"

name="Dam-Manager"

60

Dam-Open(EPC)

Dam-Open(UA)

Dam-Open(AC)

Dam-Request

EPC-Request

EPC-Request

EPC-Request(EPC,qte)

UA-Request

UA-Request(UA,qte)

AC-Request

AC-Request AC-Request

AC-Request(AC,qte)

Dam-Request

name="EPC-Valve"

name="EPC-Engine"

Figure 4: Aggregated Architecture Model

iii. Enhancement

The third step of Architecture Mining allow us
to extend or improve the aggregated Architec-
ture Model. This step is based on the diag-
nostics provided by the alignment of the ag-
gregated Architecture Model and the Discovered
Model. Moreover, monitored data may contain
information about timestamps and the occur-
rence of each communication.

The alignment of the aggregated Architecture
Model and the Discovered Model allows us to
enrich the aggregated Architecture Model. Thus,
we propose a constraint that prohibits the ‘EPC-
Turbine’ from sending a request ‘Open(EPC)’ to
the EPC Valve. This rule restrict sending a re-
quest ‘Open(EPC)’ to any valve for the Dam
Engine. Thus, in the new Architecture Model,
the ‘EPC-Turbine’ must never receives a re-
quest from the EPC engine. Likewise, the EPC
Valve must never receives a request ‘Turbine-
Open(EPC)’ from the node ‘EPC-Turbine’.

VI. Conclusion

In this paper, we have introduced a new ap-
proach entitled Architecture Mining. This ap-
proach addresses the problem of describing
the evolution of SoS’ software architecture. For
this purpose, we have monitored performed
events and recorded execution traces of the
SoS in a data base. Particular attention is paid
for mining the SoS’ software architecture from
the data base to illustrate it via a model called
the Discovered Model. The originality of our
solution lies in the fact that it allow the discov-
ery of the actual architecture of SoS for each
time when a participant system is integrated
or deleted. Moreover, to our knowledge, this
is the first study that allows the discovery of
interactions between systems belonging to an
SoS and not illustrated in the aggregated Archi-
tecture Model.

This approach has been developed for an SoS
dealing with smart grids and taking place in
the agricultural domain. This SoS is the result
of the integration of four independent systems,

10

Mining Approach for Software Architectures’ Description Discovery • October 2017

even tough they were developed separately:
The dam, which is the main system, the Utili-
ties Agency, the Energy Production Center and
the Agricultural Center. We have developed
and deployed a monitor next to each entity of
the SoS to record the execution traces in the
data base.

We applied the first step of Architecture Min-
ing called Discovery. Discovery consists in min-
ing the whole SoS’ software architecture from
the data base and describing it via a Discovered
Model as a graph. Then, we applied the sec-
ond and the third steps of Architecture Mining,
namely conformance checking and enhance-
ment. Conformance checking approves us to
diagnose the differences between the Discovered
Model and the aggregated Architecture Model of
our SoS, locate and explain the encountered
problems and deviations. Enhancement allows
us to enrich and extend the aggregated Archi-
tecture Model with new constraints based on
the monitored communications recorded in the
data base and represented by the Discovered
Model.

In future research we intend to apply our
approach on a larger SoS to address the scal-
ability issue. Moreover, experiments will be
needed to verify if our new mining technique
offers the same results with a larger SoS.

References

[1] Z. Al-Shara, A.-D. Seriai, C. Tibermacine,
H. L. Bouziane, C. Dony, and A. Shat-
nawi. Materializing Architecture Recov-
ered from OO Source Code in Component-
Based Languages. In European Conference
on Software Architecture, 2016.

[2] I. Bouassida Rodriguez, K. Guennoun,
K. Drira, C. Chassot, and M. Jmaiel. Imple-
menting a rule-driven approach for archi-
tectural self configuration in collaborative
activities using a graph rewriting formal-
ism. In CSTST, pages 484–491, 2008.

[3] A. Caracciolo, M. F. Lungu, and O. Nier-
strasz. A unified approach to architecture

conformance checking. In WICSA, pages
41–50, 2015.

[4] E. Cavalcante, J. Quilbeuf, L.-M.
Traonouez, F. Oquendo, T. Batista,
and A. Legay. Statistical Model Checking
of Dynamic Software Architectures, pages
185–200. 2016.

[5] M. Chaabane, F. Krichen, I. Bouassida Ro-
driguez, and M. Jmaiel. Monitoring of
service-oriented applications for the re-
construction of interactions models. In
ICCSA, pages 172–186, 2015.

[6] M. Guessi, V. V. G. Neto, T. Bianchi, K. R.
Felizardo, F. Oquendo, and E. Y. Naka-
gawa. A systematic literature review on
the description of software architectures
for systems of systems. In Proceedings of
the 30th Annual ACM Symposium on Ap-
plied Computing, pages 1433–1440, 2015.

[7] G. Lakshmanan and R. Khalaf. Leveraging
process-mining techniques. IT Professional,
15(5):22–30, 2013.

[8] B. N. Lakshmi and G. H. Raghunandhan.
A conceptual overview of data mining.
In Innovations in Emerging Technology, Na-
tional Conference on, pages 27–32, 2011.

[9] S. Loukil, S. Kallel, and M. Jmaiel. Run-
time adaptation of component based sys-
tems. In Proceedings of the first International
Conference on Networked Systems, volume
7853, page 284âĂŞ288, 2013.

[10] C. A. Maffort, M. T. Valente, R. Bigonha,
A. Hora, N. Anquetil, and J. Menezes.
Mining architectural patterns using associ-
ation rules. In SEKE, pages 375–380, 2013.

[11] E. Y. Nakagawa, M. Gonçalves, M. Guessi,
L. B. R. Oliveira, and F. Oquendo. The
state of the art and future perspectives in
systems of systems software architectures.
In Proceedings of the 1st Int. Workshop on
SESOS, pages 13–20, 2013.

[12] W. Van der Aalst. Process mining:
Overview and opportunities. ACM Trans.
Manage. Inf. Syst., 3(2):7:1–7:17, 2012.

11

Mining Approach for Software Architectures’ Description Discovery • October 2017

[13] B. Weinreich. Automatic reference ar-
chitecture conformance checking for soa-
based software systems. In WICSA, pages
95–104, 2014.

[14] R. Weinreich, C. Miesbauer, G. Buchgeher,
and T. Kriechbaum. Extracting and fa-
cilitating architecture in service-oriented
software systems. In WICSA-ECSA, pages
81–90, 2012.

12

	Introduction
	Related Work
	Architecture Mining Approach
	Discovery
	Conformance
	Enhancement

	Motivating Scenario
	Experiments
	Discovery
	Conformance
	Enhancement

	Conclusion

