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Abstract

The class of robot convergence tasks has been shown to capture fundamental aspects of fault-tolerant computability. A
set of asynchronous robots that may fail by crashing, start from unknown places in some given space, and have to
move towards positions close to each other. In this article, we study the case where the space is uni-dimensional,
modeled as a graph G. In graph convergence, robots have to end up on one or two vertices of the same edge. We
consider also a variant of robot convergence on graphs, edge covering, where additionally, it is required that not all
robots end up on the same vertex. Remarkably, these two similar problems have very different computability
properties, related to orthogonal fundamental issues of distributed computations: agreement and symmetry
breaking. We characterize the graphs on which each of these problems is solvable, and give optimal time algorithms
for the solvable cases. Although the results can be derived from known general topology theorems, the presentation
serves as a self-contained introduction to the algebraic topology approach to distributed computing, and yields
concrete algorithms and impossibility results.

Keywords: Robot gathering, Agreement, Symmetry breaking, Shared memory, Wait-freedom, Combinatorial
topology

Introduction
The family of robot convergence tasks plays a funda-
mental role in the theory of fault-tolerant distributed
computing [21]. It is used to prove the wait-free com-
putability theorem [25] that characterizes the tasks that
are wait-free solvable in a read/write shared memory
environment, and is intimately related to the simplicial
approximate agreement theorem of topology. Roughly
speaking, asynchronous communicating robots cannot
coordinate to converge to a single point because consen-
sus is impossible in the presence of even a single crash
failure [17], but robots can move towards points which
are arbitrarily close to each other, using a solution to
approximate agreement [16]. Robots can also converge
in Euclidean space; see [28] for a recent treatment of a
basic multi-dimensional robot convergence task tolerating
Byzantine faults, including a discussion of applications
to robots, distributed voting and optimization prob-
lems, as well as further related references. Various other
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applications and specific robot convergence tasks appear
in, e.g., [8, 22, 23, 27, 30].
In a robot convergence problem, a collection of n robots

are placed in points of a given space, K, which can be of
any shape and dimension. The robots know K, but they
do not know on which point of K each robot is initially
placed. The goal for the robots is to move to points which
are close to each other. The difficulty is that although
the robots can communicate reliably with each other, and
can jump from one point to any other point of K, the
robots are asynchronous and may crash. The combina-
tion of asynchrony and failures means that it is impossible
to distinguish between a faulty robot that has halted and
a robot subject to slow computation [5]. Thus, a robot
must continue running its algorithm and decide where to
move, independently of which robots it hears from at any
givenmoment (robots do not observe each other positions
directly, but only through communication). In particular,
in a solo run, where a robot does not hear at all from other
robots, the algorithm has to drive the robot to its final
position based only on its initial position.
A specific robot convergence task is defined by the

space K, and rules � stating restrictions on the regions
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on which the robot should converge. For instance, the
space K could be the d-dimensional Euclidean space as
in [28], and robots may be required to converge on regions
spanned by the convex hull of their initial positions; if
all start on the same point, they should remain there,
and if all start in two points, they should converge to
points close to each other along the straight line connect-
ing the two points. Another example is the loop agreement
task [23], where there is a given loop in the space K,
and three given distinguished points v1, v2, v3 on the loop.
The robots are placed on any of these three points. If
the robots start on the same point vi, they should remain
there, if they start on two points, they should converge
on the loop segment connecting these two points. If they
start on the three different points, they can converge any-
where in K, as long as they end up being close to each
other. Whether a specific robot convergence task is solv-
able depends on the space K and the convergence rules
�. Arguably, the most basic (wait-free) unsolvable conver-
gence task is two-set agreement for three processes [14],
which is an instance of loop agreement where K is a
cycle of three edges [23]. Stated using this terminol-
ogy, two-set agreement for three processes corresponds
to robots starting in any of the corresponding three ver-
tices, and having to decide on at most two of the initial
vertices.

Robot convergence problems on graphs
We are interested in studying robot convergence prob-
lems in the case the space K is 1-dimensional. As usual
in combinatorial topology, we consider a discretization of
the space, and represent it by a graph G, where two ver-
tices are defined to be close to each other if and only if they
belong to the same edge (the corresponding points can
be as close as desired, by considering a subdivision of the
space as fine as needed). In the graph convergence prob-
lem, robots may start on any of the vertices of the graph
and must end up on vertices of the same edge. If they all
start in close enough positions, they should stay there: if
they start on vertices of an edge, they should decide ver-
tices of this edge. Otherwise, they can decide on vertices
of any edge.
We introduce a related problem, edge covering, where

the robots have to end in positions close to each other, but
not all on top of each other. Thus, while both problems
require to reach a form of agreement, edge covering addi-
tionally requires symmetry breaking, as robots cannot all
decide the same vertex.
Coordination problems in distributed computing can

be about reaching agreement, often referred to as color-
less problems [8] such as consensus, loop agreement, set
agreement, graph convergence, or more generally robot
convergence, or they can deal with reaching disagreement,
which is usually much more difficult to analyze [19] as in

weak symmetry breaking [11, 19, 25], renaming [4, 12] or
committee decision [13].

Summary of results
The first aim of the paper is to study two basic robot con-
vergence problems in a graph, and to expose differences
between reaching agreement and symmetry breaking. We
formally define and study the graph convergence and
edge-covering problems. We give a full characterization
of the graphs on which these problems can be solved
and provide algorithms where the robots gradually move
until they solve the problem. Our results are the following
(summarized in Table 1):

1. Graph convergence. For the case of two robots, graph
convergence can be solved iff G is connected. If the
number of robots is n ≥ 3, then graph convergence is
solvable iff G is a tree.

2. Edge covering. For the case of two robots, edge
covering can be solved iff G is connected and
contains an odd-length cycle. If the number of robots
is n ≥ 3, then edge covering is unsolvable, whatever
the graph G.

The second aim of the paper is to provide a self-
contained introduction to the topological approach to
distributed computing [21]. The characterization of graph
convergence solvability can in principle be derived from
existing theorems (e.g., Theorem 4.3.1 of the book [21])
which, roughly speaking, implies that graph convergence
has a solution iff there is a continuous map from a given
space to G (more details in “The topology of graph con-
vergence” section). Our algorithms explain how such a
map is constructed, and our impossibility results explain
why there is no such map when G is not connected or
is not acyclic. Similarly, our edge covering results can in
principle be derived from the Asynchronous Computabil-
ity Theorem [25] that requires additionally the continuous
map to preserve identifiers of participants (because edge
covering is not colorless). The topological approach to
distributed computing is useful to prove time complex-
ity results, in addition to computability results [26], and
we also illustrate this aspect of the theory here. We hope
our algorithms and impossibility results provide intuition

Table 1 Summary of results

Two robots n ≥ 3 robots

Graph convergence G is connected G is a tree

Theorem 2 Theorem 1

Edge covering G is connected + Unsolvable

odd-lenght cycle

Theorem 3 Lemma 6
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and shed light on these topological theorems, illustrat-
ing why topological properties are so intimately related to
distributed algorithms.

Related work
Distributed algorithms for robots is a very active research
area (see e.g., [15] for a recent work and further refer-
ences), and in particular problems about robot conver-
gence, gathering at a single location, and scattering to
different locations have been widely studied. Less work
has been devoted to fault-tolerant algorithms, and mostly
in the plane. Gathering algorithms for the case where
at most one robot may crash, or behave in a Byzantine
way, was proposed in [1], and for multiple crash failures
in [10]. However, we are not aware of the use of algebraic
topology techniques in the style of [21] (work about com-
puting topological properties of a space is of a different
nature, e.g., [6]). In our setting, gathering is impossible
(“Impossibility results” section) because, in contrast to
other settings, robots cannot observe directly the posi-
tions of other robots, they need to communicate with each
other to find them. Notice that our two-robot graph con-
vergence algorithms can be extended for any number of
robots tolerating one failure using BG simulation [8].

Outline of the paper
After introducing the model of computation in “Model of
computation” section, we formally define the graph con-
vergence problem and present two round-optimal solu-
tions to it in “The graph convergence problem” section:
an algorithm that solves graph convergence on trees, for
any number of processes, and an algorithm that solves
graph convergence on any connected graph, for two pro-
cesses. Then, in “The edge-covering problem” section, we
define the edge-gathering problem and present a round-
optimal solution for two processes for on any graph. As
we shall see in “Impossibility results” section, these are the
only graphs where these problems are solvable. A topolog-
ical perspective of our results is in “A topological perspec-
tive” section, where also the optimality of our algorithms
is proven.

Model of computation
We assume a standard distributed computing model
(see, e.g., [5, 21] for additional details) where n robots,
p1, . . . , pn, are sequential processes (state machines),
that run asynchronously, namely, the time between
any two consecutive steps of the same robot is arbi-
trarily long. Robots are independent from each other,
and any number of them may fail by crashing at any
time (and cannot recover). We use the terms inter-
changeably robots or processes. They communicate by
atomically writing and reading single-writer/multi-reader
registers.

Robots move on a graph G. We assume robots know the
graph, and can communicate with each other their current
vertex positions using the shared memory. Initially, each
robot knows its initial vertex in G.
A configuration is a vector containing the local state

of each robot. An initial configuration is a configuration
in which all robots are in their initial states. A step is
performed by a single robot, which executes one of its
available local operations. The state machine of a robot pi
models a local algorithm Ai that determines pi’s next step.
A distributed algorithm is a collection A of local algo-
rithms A1, . . . ,An. When a process pi reaches a decided
state, it stays in its current vertex forever.
An execution E is an infinite alternating sequence of

configurations and steps E = C0 s0 C1 . . ., where C0
is an initial configuration and Ck+1 is the configuration
obtained by applying step sk to configuration Ck . The par-
ticipating robots in an execution are those robots that
take at least one step in that execution. Those robots that
take a finite number of steps are faulty (sometimes called
crashed), while the others are correct (or non-faulty). That
is, the correct robots of an execution are those that take
an infinite number of steps. Moreover, a non-participating
process is a faulty process. A participating process can
be correct or faulty. We are interested in wait-free algo-
rithms: in every execution of the system, every correct
robot decide a final vertex, regardless of delays and failures
of the other robots.
We describe our algorithms using operations that can be

implemented wait-free from registers such as immediate
snapshots [9]. Each robot pi invokes the operation with an
input value vi and obtains a set of input values Si, its view,
such that the following three properties are satisfied:

1. Self-inclusion: ∀i : vi ∈ Si.
2. Containment: ∀i, j : Si ⊆ Sj ∨ Sj ⊆ Si.
3. Immediacy: ∀i, j : i ∈ Sj ⇒ Si ⊆ Sj.

For completeness, we now describe the recursive imme-
diate snapshot algorithm of [18] using only read and write
operations. The presentation follows closely that paper
and is repeated here for the convenience of the reader.
In the algorithm, each process pi with input vi, writes
the pair 〈pi, vi〉, to a shared memory associated to that
recursive call ri, and reads (one-by-one, in an arbitrary
order) the registers of all other processes. A shorthand
for the sequence of operations consisting of first writ-
ing and then collecting the inputs of all processes is
WriteCollect. If the set s of values collected is of size
ri, it returns this set as a view and terminates the algo-
rithm; else, the process calls the algorithm recursively with
parameters (vi, ri − 1). The first call of process pi is with
parameters (vi, n). We stress that in each recursive call,
the processes communicate with each other via a new
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Algorithm 1 Code for robot/process pi with input vi.
Initially ri = n
Function RecursiveIS(vi, ri)
1: si ← WriteCollect(〈pi, vi〉)
2: if |si| = ri then
3: return si
4: else
5: RecursiveIS(vi, ri − 1)
6: end if

array of single-writer/multi-reader registers, that is used
only in that recursive call.
Consider the case of three processes, with inputs 1, 2,

and 3, respectively. Interestingly, all their possible out-
puts (running this algorithm) can be graphically rep-
resented through a subdivision of a triangle, as shown
in Fig. 1. Each triangle represents a possible execution,
and the vertices are labeled with the views (outputs) of
each one of the processes at the end of the execution.
The fully concurrent execution, where all three processes
collect the views of each other, and all terminate the
algorithm without a recursive call, is represented by the
triangle at the center. This triangle shares an edge with
three other triangles. These represent executions where
two processes see the inputs of all three processes and
terminate without a recursive call, while the first pro-
cess executes two recursive calls and ends up seeing
only its own input. For more processes, all outputs can
be represented a subdivision of a higher dimensional

object, e.g., for four proceses, a subdivision of tetrahedron
is needed.

The graph convergence problem
In the graph convergence problem on a graph G, each
robot starts with an input vertex ofG and, after communi-
cating with other robots, has to eventually decide a vertex
such that the following two properties are satisfied:

• Agreement: The collection of decided vertices belong
to a single edge of G.

• Validity: If the input vertices are equal, then each
process must decide this vertex; if the input vertices
span an edge, then each process must decide a vertex
of that edge.

Notice that this is exactly the definition of a robot
convergence task [21] specialized to the case of graphs.
In the graph gathering problem, the agreement prop-
erty is replaced by requiring that the decided vertices
are equal. Thus, in principle one could use general
theorems in [21] to identify cases where the prob-
lem is solvable; we elaborate further on this point in
“A topological perspective” section. The optimality of the
two algorithms in the next two sections follows from argu-
ments similar to those in [26]. This is explained in detail
in “Round-complexity optimality” section.

Graph convergence on trees
Recall that the eccentricity of a vertex v is defined as the
greatest distance from v to any other vertex. A center of
a graph is a vertex with minimal eccentricity. The radius

1,{1}

1,{1,2} 1,{1,3}

2,{2}

2,{1,2}

2,{2,3}

3,{3}

3,{1,3}

3,{1,2,3}

3,{2,3}

2,{1,2,3}

1,{1,2,3}

Fig. 1 Graphic description of immediate snapshots. All immediate snapshot views by three processes starting on 1, 2, and 3, respectively
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Algorithm 2 T = (V ,E) is an arbitrary tree. Code for
robot pi.
Function GraphConvergenceTree(vi,T)
1: for ri ← 1 to 2�log diam(T)� do
2: si ← ImmediateSnapshot(ri, vi)
3: ti ← smallest tree of T containing all vertices in si
4: vi ← a center of ti
5: end for
6: return vi

of G is the minimum eccentricity among the vertices
of G and the diameter of G is the maximum eccentric-
ity among the vertices of G. Denoting the centers of a
graph G by center(G), a tree T has |center(T)| = 1 or
|center(T)| = 2. If |center(T)| = 1, the tree is called cen-
tral. If |center(T)| = 2, the tree is called bicentral. For any
graph G, the diameter is at least the radius and at most
twice the radius. Trees have the following property, which
we will exploit in our graph convergence solution.

Remark 1 For a tree T, diam(T) = 2× rad(T) − 1, if T
is bicentral, and diam(T) = 2 × rad(T), if T is central.

The algorithm GraphConvergenceTree (Algorithm 2)
solves graph convergence on trees for any number of
robots. The idea is very simple: robots proceed in a
sequence of rounds, and in every round, each robot pi
communicate to the others its current vertex vi (its input
vertex in the case of the first round) and using the vertices
in its snapshot si (which does not necessarily contain all
vertices of the corresponding round, due to asynchrony),
pi computes a subtree ti of T and “moves” to a center of ti.
Thus, processes converge by gradually moving to the cen-
ter of the trees they see during the computation. In the
algorithm, each round has an associated immediate snap-
shot operation which is indexed with the round number
passed to the operation as an input parameter.
Figure 2 depicts the tress that three robots, p1, p2, and

p3, can obtain in a single round of an execution of algo-
rithm GraphConvergenceTree (the execution involves
more than those processes). In the example, p1 executes
the round before p2 and p2 executes the round before p3.
The properties of the ImmediateSnapshot primitive imply
that the snapshot of p1 contains less information than the
snapshot of p2 (particularly, the snapshot of p1 does not
contain the position of p2 at the beginning of the round)
and, similarly, the snapshot of p2 contains less information
than the snapshot of p3. Namely, s1 ⊂ s2 ⊂ s3. Each snap-
shot si induces a tree Ti, and thus T1 ⊂ T2 ⊂ T3. Finally,
the position of each pi for the next round is the center ci
of Ti. Note that the centers induce a spanning tree that is
strictly contained in T3, the largest tree of the round.

Fig. 2 Optimal graph convergence on a tree. In every round, robots
compute a sequence of trees ordered by containment

Clearly, every non-crashed robot terminates in Graph-
ConvergenceTree as the number of rounds depends only
on the shared tree T . It is also easy to see that the
algorithm satisfies the validity property of the graph con-
vergence problem: If all the initial vertices already span a
vertex, then each non-crashed robot pi returns its initial
vertex as its snapshot in every round ti, its contains the
single initial vertex. Similarly, if all initial vertices span an
edge e, then pi returns a vertex of e because its snapshot in
every round ti is either e or a vertex of e.
The correctness of algorithm GraphConvergenceTree

follows from the following lemma showing that every
round roughly halves the distance between any two ver-
tices, hence implying that the algorithm satisfies the
agreement property. For simplicity, in what follows, we
only consider executions in which all robots decide a
final vertex. Observe that there is no loss of generality
by assuming this, as any execution in which every non-
crashed robot returns, a vertex can be extended to an
execution in which every robot returns a vertex. Intu-
itively, in the extended execution, we think of “faulty”
robots as very slow that take steps only after all “correct”
robots are decided.

Lemma 1 For j = 1, . . . , 2�log diam(T)�, let vji be the
value of vi at the beginning of the j-th iteration, and let
Tj be the smallest subtree of T containing vj1, . . . , v

j
n. Then,

diam(Tj+1) ≤ (diam(Tj) + 1)/2.

Proof The inclusion property of the ImmediateSnapshot
operation implies that the snapshots of the robots in the
j-th round are ordered by containment, and hence there
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are sets S1 ⊂ S2 ⊂ . . . ⊂ Sk =
{
vj1, . . . , v

j
n
}
, for

some k ≥ 1, such that, for each robot pi, its snap-
shot in the j-th round is equal to some Sl. Moreover,
by the immediacy property, every robot whose vertex
is in Sl has its snapshot equal to Sl. For each Sl, let
Rl be the smallest subtree of Tj containing every ver-
tex in Sl. Thus, we have that R1 ⊂ R2 ⊂ . . . ⊂
Rk = Tj, and consequently, vj+1

1 , . . . , vj+1
n are nothing else

than the centers of these trees, center(R1), . . . , center(Rk)
(see Fig. 2). Hence, Tj+1 is the smallest subtree of
Tj containing center(R1), . . . , center(Rk). Let R′

m be the
smallest subtree of Tj containing the first m centers,
center(R1), . . . , center(Rm) (thus R′

k = Tj+1). By induc-
tion of l, one can show that diam(R′

l) ≤ rad(Rl). The
base case l = 1 is obvious as R′

1 is a single vertex.
Once we have assumed the claim holds for l, to show it
holds for l + 1, it is enough to observe that the distance
between any pair center(Rs) and center(Rt), distinct both
from center(Rk), is at most rad(Rl), by induction hypoth-
esis, which is at most rad(Rj+1), by definition; and the
distance from center(Rl+1) to any other center(Rs) is at
most rad(Rl+1) by definition. Thus, when l = k, we have
that diam(Tj+1) ≤ rad(Tj). By Remark 1, it follows that
rad(Tj) ≤ (diam(Tj) + 1)/2, and hence diam(Tj+1) ≤
(diam(Tj) + 1)/2.

Lemma 1 directly implies that after O(log(diam(T)))

rounds, all robots end up spanning a vertex or an
edge of T .

Theorem 1 For any tree T, algorithm GraphConver-
genceTree solves graph convergence on T for n ≥ 2
robots.

Graph convergence for two robots on connected graphs
Let us now focus on two robots solving graph convergence
on a connected graph. In the following, we describe a
modification ofGraphConvergenceTree, tailored for this
case.

In GraphConvergenceTwoRobots (Algorithm 3), we
assume the robots know (or deterministically compute) a
pre-defined shortest path in G between any pair of ver-
tices; thus if the two vertices are the same, the path is
the vertex itself, and if the vertices are adjacent, the path
is the edge between them. The two robots first take an
immediate snapshot to communicate their input vertices.
If a robot pi sees the input of the other, it sets Pi to the
corresponding precomputed path. Due to the view con-
tainment property of immediate snapshots, it cannot be
that both Pi and Pj are equal to ⊥, and if both are distinct
to ⊥, then Pi = Pj. Then, the robots proceed similarly
as in GraphConvergenceTree: they move to the center of
the subpath between their current vertices. Observe that

Algorithm3G = (V ,E) is a connected graph. Code for pi.
Preprocessing: ∀(u, v) ∈ V 2 pre-define a shortest path
from u to v

Function GraphConvergenceTwoRobots(vi,G)
1: si ← ImmediateSnapshot(1, vi)
2: Pi ← ⊥
3: if |si| = 2 then
4: Pi ← precomputed path between vertices in si
5: end if
6: for ri ← 2 to 2�log diam(G)� do
7: si ← ImmediateSnapshot(ri, 〈vi,Pi〉)
8: if |si| = 2 then
9: if Pi = ⊥ then

10: Pi ← other robot path in si
11: end if
12: ti ← smallest subpath of Pi containing si
13: vi ← a center of ti
14: end if
15: end for
16: return vi

the first round guarantees that the robots move along the
precomputed between the initial vertices in all subsequent
rounds. Moreover, the path process pi sets in Pi in the first
round is written in every round because in the case the
other process pj goes faster than pi in the first round, it
will be impossible to pj to know the initial vertex of pi, and
hence set Pj to the path Pi (since a process does not read a
shared memory of a previous round).

Theorem 2 For any connected graph G, algorithm
GraphConvergenceTwoRobots solves graph convergence
on G for two robots.

The edge-covering problem
This section introduces the edge-covering problem and
then presents an algorithm that solves it for two processes
on any connected graph G that has a cycle of odd length.
Our edge-covering solution, EdgeCoveringTwoRobots
(Algorithm 4), is an adaptation of the GraphConver-
genceTwoRobots algorithm in the previous section. Sur-
prisingly, the algorithm cannot be generalized for more
than two robots; as we shall see, edge covering for three or
more processes is impossible on any graph.
In the edge covering problem on a given graph G, each

robot starts with an input vertex ofG and has to eventually
decide a vertex such that:

• Agreement: The collection of decided vertices belong
to a single edge, and not all decided vertices are equal.
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• Validity: If the initial input vertices span an edge, then
each robot must decide a vertex of that edge. If a
robot runs alone, it should decide its input vertex.

Edge-covering for two robots on connected graphs with
odd length cycles
Algorithm EdgeCoveringTwoRobots needs a determin-
istic preprocessing phase that, for any pair of vertices vi
and vj, computes a simple odd length path from vi to vj; if
vi = vj then it is needed a simple odd length cycle (with-
out such a cycle, finding such a path is impossible). First,
if (vi, vj) is an edge, then the path from vi to vj is this edge.
Otherwise, consider a simple cycle C = w1,w2, . . . ,wx,w1
of G of odd length (whose existence is guaranteed by out
initial hypotheses). Since G is connected, there are paths
Pi and Pj from vi to w1 and from w1 to vj, respectively. If
the length of the composed path Pi−Pj is odd, we are done,
otherwise, the length of the path Pi −C − Pj must be odd.
In any case, for every vi and vj, there is a odd length sim-
ple path between them. The cycle C and paths P1 and P2
can be efficiently computed with a classical Breadth First
Search. Note that every precomputed path is bicentral.
Now, as in GraphConvergenceTwoRobots, the two

robots first take a snapshot to communicate its input ver-
tex to the other and if a robot pi sees the input of the
other, it sets Pi to the corresponding precomputed path
(at least one of P1 and P2 is distinct from ⊥). Then, the

Algorithm 4 G = (V ,E) contains an odd length simple
cycle.
Preprocessing: ∀(u, v) ∈ V 2, compute a simple and
shortest odd length path of G from u to v

Function EdgeCoveringTwoRobots(vi,G)
1: si ← ImmediateSnapshot(1, vi)
2: Pi ← ⊥
3: if |si| = 2 then
4: Pi ← precomputed path between the vertices in si
5: end if
6: for ri ← 2 to 2�log diam(G)� do
7: si ← ImmediateSnapshot(ri, 〈vi,Pi〉)
8: if |si| = 2 then
9: if Pi = ⊥ then

10: Pi ← other robot path in si
11: end if
12: vj ← vertex of the other robot in si
13: ti ← smallest subpath of Pi containing vi and vj
14: vi ← center of ti such that the length of the

subpath of ti from that center to vj is odd
15: end if
16: end for
17: return vi

robots move to a center of the subpath between its current
vertices. The difference with algorithms in the previous
section is that each robot now picks a center that guar-
antees that the new positions at the beginning of the
next round are at odd distance from each other. Figure 3
describes the associated process: if the distance between
v1 and v2 is 2d + 1 then, depending on the parity of d, a
robot will move to a position such that the distance to the
other is lowered and still odd, independently of whether
the other moves or not (in Fig. 3, the top case corresponds
to an odd value of d, while the bottom case is when d
is even). This invariant, which holds at the beginning of
any execution because of the precomputed paths (and ulti-
mately because of the existence of an odd length cycle
in G), implies that robots end up at distance exactly one.

Lemma 2 Let P be the precomputed path between the
initial vertices v1 and v2. For j = 1, . . . , 2�diam(G)�, let vj1
and vj2 be the values of v1 and v2 at the beginning of the j-th
iteration, and let Pj be the smallest subpath of P containing
them. Then, |Pj+1| is odd and less or equal to (|Pj| + 1)/2.

Proof First, observe that P1 = P, hence, by construction,
|P1| is odd. Thus, we assume |Pj| is odd. Note that Pj is
a bicentral tree as its length is odd. Let (u, v) be the edge
containing its two centers. Let s1 and s2 be the immediate
snapshots of p1 and p2 in the j-th iteration. We have three
cases:

• |s1| = |s2| = 2. In this case, both s1 and s2 contain vj1
and vj2. Then, both robots p1 and p2 have t1 and t2
equal to Tj. Observe that if the length of subpath of
Tj from u to vj1 is odd (resp. even), then the length of
the subpath from u to vj2 is even (resp. odd). It
similarly happens with v (see Fig. 3). Then, it must be
that either vj+1

1 = u and vj+1
2 = v, or vj+1

1 = v and
vj+1
2 = u. In either case Tj+1 = (u, v).

• |s1| = 1 and |s2| = 2. In this case, s1 only contains v
j
1

while s2 contains v
j
1 and vj2. Then, v

j+1
1 = vj1 and vj+1

2
is the center of Pj such that the length of the subpath
Q from that center to vj1 is odd (as explained in the
previous case, only one center has that property).

Fig. 3 Edge covering for two robots. Each robot moves to a central
vertex that preserves the odd-path path invariant
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Thus, Tj+1 = Q. Remark 1 implies that
Q = (|Tj| + 1)/2.

• |s1| = 2 and |s2| = 1. This case is symmetric to the
previous case.

Lemma 2 shows that at the end of EdgeCoveringT-
woRobots, the two robots end up on vertices that span an
edge of G, hence we have the following.

Theorem 3 For any connected graph G containing a
simple cycle of odd length, algorithm EdgeCoveringT-
woRobots solves the edge covering problem for two robots.

Impossibility results
In this section, we present a series of impossibility results
that fully characterize the solvability of graph convergence
and edge covering.
We first show that if G is disconnected, then graph con-

vergence and edge covering are impossible. The reason is
that a solution to any of these problems on G can be used
to solve wait-free binary consensus, which is known to be
impossible [5, 20]. The following style of proof is known
since the first (1-resilient) task characterization results [7].

Lemma 3 If G is disconnected, then graph convergence
and edge covering on G are impossible for any number of
robots n ≥ 2.

Proof Assume, for the sake of contradiction, that there
is an algorithm A that solves graph convergence on G for
n ≥ 2 robots (the proof is the same when A solves edge
covering). Using A, we solve binary consensus among n
robots, which is known to be impossible [5, 20]. For sake
of simplicity, we focus on the binary consensus problem,
where each robot proposes either 0 or 1, and robots are
required to decide proposed values so that all decisions
are equal.
Let v0 and v1 be vertices of G belonging to dis-

tinct connected components. Let C0 be the connected
component v0 belongs to. We solve binary consensus
as follows. Each robot pi with proposal j ∈ {0, 1},
invokes A with input vj. Let wi be the value A out-
puts to pi. Then, pi decides 0 if wi belongs to C0 and
1 otherwise.
If all proposal are equal to j ∈ {0, 1}, then every robot

receives vj from A, since A is a graph convergence solu-
tion. Then, every robot decides j, which solves consensus.
If robots propose distinct values, then they invoke A with
distinct inputs, v0 and v1. Since A solves graph conver-
gence, it outputs vertices that span a vertex or an edge
of G. Note that it cannot be that some of these vertices
belong to C0 and the rest to G \ C0. Therefore, all robots

decides either 0 or 1 and all decisions are the same, which
solves consensus.

The following lemma shows that cycles are an obstacle
for solving graph convergence and edge covering when the
number of robots is greater or equal than three. The struc-
ture of the proof is similar to proof of the previous lemma:
if there is a solution to a graph with cycles, then one can
solve the well-known set agreement problem [14], which
has been proved to be unsolvable (see [21]).

Lemma 4 If G has a cycle, then graph convergence and
edge covering on G are unsolvable for n ≥ 3 robots.

Proof By contradiction, suppose that there is an algo-
rithm A that solves graph convergence on G for n ≥ 3
robots (the proof for edge covering is the same). We use
A to solve two-set agreement for three processes hence
reaching a contradiction. For the sake of simplicity, we
focus on the inputless version of the (n− 1)-set agreement
problem each process pi has as input its index i, and every
correct process is required to decide an index of a process
that participates in the execution such that at most n − 1
distinct indexes are decided by the processes. It is well-
known that (n − 1)-set agreement is unsolvable. Thus, A
cannot exist because it implies a solution to (n − 1)-set
agreement.
Below we use the following remark that directly fol-

lows from the specification of graph convergence and edge
covering, which are adaptive by nature.

Remark 2 Let G be a graph and suppose there is an
algorithm A that solves graph convergence (edge covering)
on G for n ≥ 3 robots. Then, A solves graph convergence
(edge covering) on G for n − 1 robots.

Therefore, this last remark implies that we can assume
A solves graph convergence on G for three robots.

Algorithm 5 Code for process pi.
Function SetAgreement(i)
1: if i = 3 then
2: xi ← v3
3: else
4: xi ← B.GraphConvergence(vi,P)
5: end if
6: yi ← A.GraphConvergence(xi,G)
7: if for some j = 1, 2, 3, yi = vj then
8: return j
9: else

10: return 1
11: end if
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Let C be a simple cycle of G and let v1, v3, v2 be
three distinct and consecutive vertices of C. Let P be
the simple odd path obtained by removing v3 from C
(see Fig. 4). By Theorem 2, let B be an algorithm that
solves graph convergence on P for processes p1 and
p2. We use A and B to solve two-set agreement for
three robots.
Algorithm 5 solves two-set agreement for three robots,

p1, p2, and p3, using algorithms A and B. The idea of the
solution is that robots use A to “agree” on a vertex or
an edge of G, namely, on at most two distinct vertices,
and then use these information to return at most two
distinct indexes of participating processes. Thus, vertices
of G are mapped to indexes of processes: v3 is mapped
to 3, v2 is mapped to 2 and the remaining vertices are
mapped to 1, as illustrated in Fig. 4. The properties of
A make easy to achieve agreement: at most to distinct
indexes are decided since A solves graph convergence.
What is more complicated to achieve is validity: only
indexes from participating processes can be decided. That
is the aim of algorithm B and actually the most com-
plicated case is when p1 and p2 participate: they use B
to cover a vertex or an edge of P and these vertices
are the inputs the use for A; this step guarantees that
none of them gets v3 from A, so each of them returns
either 1 or 2.
We now show that Algorithm 5 is correct.

• Termination. By assumption, A and B terminate in all
invocations, thus in every execution, a nonfaulty
robot returns a value.

• Validity. We identify three cases, according to the
number of robots that participate and decide in a
given execution.

– One robot pi participates in an execution. If
pi = p3, then it invokes A with input v3, and
consequently obtains v3 from it, by validity
property of edge convergence. Thus, p3
returns 3.
If pi is either p1 or p2, it invokes B with input
vi, and consequently obtains vi from B, by

Fig. 4 Impossibility of graph convergence on cycles. Mapping
vertices of the cycle C to values for set agreement

validity of graph convergence; and hence pi
invokes A with vi and obtains vi as well, for the
same reason, therefore it returns i.

– Two processes pi and pj participate. If pi = p3
and pj is either p1 or p2, then pj invokes solo B
with input vj, hence it obtains vj. Thus, pi and
pj invoke A with inputs vi and vj, respectively,
and thus they obtains these vertices from A
since, by assumption, A solves graph
convergence and, by definition, these vertices
are an edge of G. We conclude that pi returns i
and pj return j.
If pi = p1 and pj = p2, then they obtain from
B two vertices xi and xj, respectively, that
cover a vertex or an edge of P, since B solves
graph convergence on P. Then, pi and pj get
the very same vertices from A since it solves
graph convergence on G, by assumption.
Thus, each of pi and pj returns either 1 or 2
because the only way a process returns 3 is if it
gets v3 from G, but v3 /∈ V (P).

– The three robots participate. From the
pseudocode, it is easy to see that a robot can
only decide 1, 2, or 3. If all processes
participate, any of these decisions satisfy
validity.

• Agreement. The only interesting case is when the
three processes return a value. Since A solves graph
convergence onG, the values it returns y1, y2 and y3 to
p1, p2, and p3, respectively, cover a vertex or an edge
of G, hence at most two distinct indexes are decided.

We conclude that Algorithm 5 solves two-set agreement
for three processes, which, as already explained, is a con-
tradiction, from which follows that such an algorithm A
cannot exist.

Lemmas 3 and 4 together with Theorems 1 and 2
in “The graph convergence problem” section completely
characterize the solvability of graph convergence.

Theorem 4 (Solvability of Graph Convergence) For two
robots, graph convergence on a graph G is solvable if
and only if G is connected. For three or more robots,
graph convergence on G is solvable if and only if G is
acyclic.

We now fully characterize the solvability of the edge-
covering problem. As we will see, the extra requirement
of edge covering that processes always have to cover an
edge, precludes solutions for three or more robots, for any
graph. The next lemma shows a necessary condition for
the solvability of edge covering for two robots.
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Lemma 5 Let G be a graph. If there is an algorithm
that solves edge covering on G for two processes, then G is
connected and has a simple cycle of odd length.

Proof Let G be any graph and suppose there is an algo-
rithm A that solves edge covering on G for two processes.
Lemma 3 implies that G is connected. To show that G has
a simple cycle of odd length, suppose the contrary, namely,
suppose that G has no simplex cycle of odd length. We
will use A to solve weak symmetry breaking (WSB) for two
robots [19]. The WSB for two robots is an inputless prob-
lem in which each robot has to decide 0 or 1 such that in
solo executions, the decision is the same and if the two
robots participate, they decide distinct values. It is known
that WSB for two robots is unsolvable (see [21]).
Before solvingWSB, we observe that G is bipartite since

it has no odd length cycles, hence it has a proper vertex
binary coloring c. To solve WSB, each robot pi invokes
A with a fixed vertex v (the same for both robots), and
decides c(w), wherew is the vertexA outputs to pi. Clearly,
robots decide 0 or 1, since c is a binary coloring. In a solo
execution of any robot pi, A outputs v to pi, by validity of
edge covering, and hence it decides c(v). Finally, if the two
robots participate, they decide distinct values because c is
a binary coloring and A outputs to the robots vertices of
G that span an edge. Thus, using A, we can solve WSB,
which is a contradiction.

Using the previous lemma, we can show that edge
covering is unsolvable for three or more processes.
The proof is that if there is an algorithm that solves
edge covering on a graph G for three or more pro-
cesses, then, by the adaptive nature of edge covering,
this algorithm solves edge covering on G for two pro-
cesses, and hence G has a cycle, by Lemma 5. But this
contradicts Lemma 4.

Lemma 6 For any graph G, there is no algorithm that
solves edge covering on G for three or more robots.

Proof Suppose por contradiction that there is an algo-
rithm A that solves edge covering on G. As observed by
Remark 2 in the proof of Lemma 4, A solves edge cover-
ing on G for two robots. Thus, G has a cycle, by Lemma 5.
Lemma 4 implies that A cannot exist.

Finally, from Lemmas 5 and 6 and Theorem 3 in “The
edge-covering problem” section, we derive a full charac-
terization for the solvability of edge covering.

Theorem 5 (Solvability of Edge Covering) For two
robots, edge covering on G is solvable if and only if G is con-
nected and has a simple cycle of odd length. For three or
more robots, edge covering is unsolvable on any graph G.

A topological perspective
The topological approach to distributed computing [21]
has been useful to understand the nature of fault-tolerant
distributed computing, to prove impossibility results and
to understand why in some case there exists a distributed
algorithm to solve a problem. In this section, we briefly
discuss a topological perspective of graph convergence
and edge covering.

The topology of graph convergence
Our graph convergence problem is a special case of the
robot convergence task defined in [21], which is specified
as follows. A collection of n robots are placed on the ver-
tices of a graph G. The robots are asynchronous, commu-
nicate through read/write shared registers and eventually
(in a wait-freemanner) each one chooses a final vertex and
halts. The final vertices must belong to the same edge (in
the book, to the same simplex of an arbitrary complex).
If they are all placed initially on the same vertex or edge,
then they stay there (although they may move from one
vertex to the other, even they may all move to the same
vertex). If the robots are placed on vertices that do not
belong to the same edge, they can move to any vertices of
G, as long as the vertices belong to an edge.
Formally, a robot convergence task for a graphG is given

by a triple (I ,G,�), where I consists of all the subsets
of V of at most n vertices of G. Such a set I , consisting
of a family of sets closed under containment is called in
topology a simplicial complex. An element σ of I is called
a simplex, and its dimension is |σ | − 1. Thus, σ ⊆ V ,
|σ | ≤ n. For each simplex σ in I , representing possible
simultaneously starting vertices of G, � encodes the con-
vergence rules. Namely,�(σ) is a subgraph ofGwhere the
robots may end up, if their initial positions are in σ . Thus,
�(σ) = σ if σ is either a vertex or an edge of G, and oth-
erwise, �(σ) = G. The following is from the book [21]
(page 88) (see also [24]).

Theorem 6 (4.3.1 [21]) The graph convergence task
(I ,G,�) has a wait-free n-process read/write protocol if
and only if there is a continuous map f : |I| → |G| carried
by �.

This theorem considers G as a continuous space,
denoted by |G|, as if G was embedded in some suffi-
ciently large Euclidean space: vertices of G are points of
the space, and edges are lines connecting their corre-
sponding vertex-points. Similarly, the space |I| consists of
the points where the vertices of I are placed in Euclidean
space, and linear subspaces spanned by vertices belonging
to the same simplex σ of I . The continuousmap f respects
the input/output specification of the task, � (i.e., it is car-
ried by �), in the sense that for each simplex σ ∈ I , f (|σ |)
is in |�(σ)|. In particular, f (v) = v, and f (e) = e for any
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edge e. But f may send a simplex σ which is not an edge
anywhere in G.
Theorem 6 can be used to derive simple impossibility

proofs, as shown below.

Corollary 1 If G is disconnected, graph convergence on
G is unsolvable for n ≥ 2 robots.

Proof Let u, v be vertices of different connected compo-
nents, Gu,Gv. Consider the simplex σ = {u, v} of I . Sup-
pose there is a solution to the task, let f be its associated
map by Theorem 6. Then, f (u) is in connected component
Gu and f (v) is in connected component Gv. It is impossi-
ble to extend f to all of σ , because σ is connected, while
Gu ∪ Gv is disconnected, a contradiction.

Corollary 2 If G has a cycle, graph convergence on G is
unsolvable for n ≥ 3 robots.

Proof LetG be a graph with a cycle C = v1, v2, . . . , vp, v1
(see Fig. 5 for an illustration with p = 4). Then,C is a cycle
of I . Once again, suppose there is a solution to the task,
let f be its associated map by Theorem 6. We have that
f (C) = C, where for each vi, f (vi) = vi, and f (vi, vi+1) =
(vi, vi+1), by the validity requirement of graph conver-
gence. Notice that I is the (n − 1)-skeleton of a simplex
with vertices V , i.e., the set of all simplexes of dimension
at most n − 1. We can view V as a complex (consisting of
the set V and all its faces) which represents a solid ball of
dimension |V |−1. Hence, any cycle on I (its n−1, dimen-
sional skeleton, with n − 1 ≥ 2) is contractible. Thus, C
is contractible in I , but its image, f (C) is not contractible,
because f (C) = C.

The intuition for Theorem 6 becomes clear consider-
ing the effect of processes taking immediate snapshots. As
shown in Fig. 1, all possible views obtained by three pro-
cesses have the effect of subdividing a triangle, which in
turn represent the inputs of the processes. As the immedi-
ate snapshot algorithm is repeated more and more times,
finer and finer subdivisions are obtained, and hence a bet-
ter approximation to a continuous map (see from [21]).

Fig. 5 Topological perspective of graph convergence. Impossibility of
graph convergence on cycle C = v1, v2, v3, v4, v1 by three processes

For more processes, subdivisions of higher dimensional
simplexes are obtained.
Figure 6 illustrates how a solution is obtained for a tree

with three processes, first with a continuous map, which
has to then be approximated by using subdivisions (right-
hand side). Notice that a simplicial map from a subdivision
to the output complex represents the decisions taken in
each vertex.

The topology of edge covering
The underlying topological behavior of the edge covering
problem is more complex, because the problem cannot be
described solely by the vertices of G where robots may
start and may end. In addition, it is necessary to specify
which robot starts or ends in which vertex. The colored
version of a graphG for two robotsA,B, required tomodel
the edge covering problem, denoted G̃ = (Ṽ , Ẽ) , consists
of all pairs of vertices of the form 〈id, v〉, where v ∈ V and
id ∈ {A,B}.
An edge (x, x′) belongs to Ẽ iff x = 〈id, v〉 x′ = 〈id′, v′〉

such that (v, v′) ∈ E (v �= v′), and id �= id′. A vertex 〈id, v〉
represents the situation where robot id ends in vertex v.
Recall that robots have to end in adjacent vertices of G̃.

Figure 7 illustrates that robots A and B have to end in ver-
tices belonging to the same edge ofG, but cannot both end
in the same vertex.
The two-robot edge covering problem for a graph G =

(V ,E) is formally modelled as a colored task 〈Ĩ, G̃, �̃〉,
where the input graph Ĩ is the colored version of the com-
plete graph (including self-loops) on |V | vertices. Thus,
for each pair of vertices of V , (v, v′), not necessarily dis-
tinct, there is an edge (x, x′) ∈ Ẽ with x = 〈A, v〉, x′ =
〈B, v′〉, meaning that it is possible that A starts in v and
B starts in v′. Then, the relation �̃ is defined as follows.
First, if a robot runs solo, it stays in its initial vertex,
�̃(〈id, v〉) = {〈id, v〉}, for every vertex 〈id, v〉. Second, if the
robots start in an edge, they stay there, i.e., ∀(v, v′) ∈ E:

�̃(〈A, v〉, 〈B, v′〉) = {〈A, v〉, 〈B, v′〉, 〈B, v〉, 〈A, v′〉}

Finally, if they do not start in vertices of the same edge,
they can decide on any vertices belonging to the same
edge, i.e., ∀ (

v, v′) �∈ E, �̃
(〈A, v〉, 〈B, v′〉) = G̃.

The wait-free solvability theorem [25] implies that the
edge covering problem for two robots has a solution if
and only if there is a subdivision X of Ĩ and a simplicial
map δ from X to G̃, such that δ preserves ids and edge
adjacencies, and δ respects �̃. It is called a decision map
because it represents the outputs of the distributed algo-
rithm that the robots execute. Namely, when the robots
start in an edge (x, x′) ∈ Ĩ, x = 〈A, v〉 and x′ = 〈B, v′〉, it
is known that the distributed algorithm induces a subdivi-
sion of (x, x′), essentially creating a path, where each edge
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Fig. 6 Topological perspective of graph convergence. Top Solving a tree by three processes. Bottom Trying to solve a tree in one round

of the path represents the final states of the robots in one
of the possible executions starting in (x, x′).

Theorem 7 (3.1 [25]) A task (I ,O,�) has a wait-free
read/write protocol iff there is a chromatic subdivision X
of I and a color-preserving simplicial map δ : X(I) → O
s.t. for each σ ∈ X(σ ), δ(σ ) is carried by �(σ) (see Fig. 8).

A consequence is that the task has a solution for A,B
iff for any two vertices of G there is an odd length path,
corresponding to a path in G̃ alternating vertices with id A
and B.
Notice that the formal specification of the edge cover-

ing problem as a triple 〈Ĩ, G̃, �̃〉, depends on the number
of robots, and indeed we defined it above for A,B. To go
beyond two robots, to three robots, it is necessary to add
to triangles to the graphs, representing positions of three
robots A,B,C, and more generally, simplices of n ver-
tices, labeled with distinct robot ids. Then, the wait-free
solvability theorem [25] is about general dimension com-
binatorial topology simplicial complexes. Roughly speak-
ing, edge covering (and in general non-colorless tasks) is
more difficult that graph convergence, because of a seem-
ingly innocuous, but surprisingly “difficult” requirement:
the simplicial decision map δ is color-preserving. Namely,

while in a colorless task, robots can always adopt each
other outputs (δ can send simplexes to lower dimensional
output simplexes), this is not possible in general tasks (δ
sends a final state’s algorithm simplex to an output simplex
of the same dimension).

Round-complexity optimality
Once the topology of the graph convergence and edge cov-
ering is understood, it is easy to argue that our algorithms
in previous sections are asymptotically round-complexity
optimal.
For graph convergence, consider the simple case in

which two robots, say pu and pv, start on vertices u and v
at distance diam(G). As explained above, this initial con-
figuration is represented with an edge, S0, with its vertices
representing the processes initially standing on those ver-
tices. After a first round, this line is subdivided into three
edges, S1, each of themmodeling the three possible imme-
diate snapshots: pu goes first or viceversa, or pu and pv
go together. For example, the bottom edges in the sub-
division in Fig. 1 correspond to the immediate snapshot
for robots 2 and 3. In a second round, each of these three
edges is subdivided again into three edges to obtain a sub-
division, S2, with nine edges, and so on. In general, the
subdivision Sr of the edge S0 obtained after r rounds has

Fig. 7 Topological perspective of edge-covering. G and colored graph G̃, with input Ĩ and views after one round X (̃I), for robots A, B
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Fig. 8 The wait-free computability theorem. A graphical description of the wait-free computability theorem

3r edges. Thus, the length of the subdivision exponen-
tially grows on the number of rounds, which implies that
afterO(log diam(G)) rounds the length of SO(log diam(G)) is
�(diam(G)).
Now, due to the agreement property of graph conver-

gence, any algorithm that solves this problem must map
the vertices in SO(log diam(G)) to vertices of G satisfying
that the vertices of any edge are mapped to vertices of
G at distance at most 1. Moreover, the validity property
implies that the extreme vertices of the subivision must be
mapped to u and v: these vertices in SO(log diam(G)) repre-
sent the solo executions of the processes, one of pu and
one of pv, and the validity property states that in solo exe-
cutions a process must decides its initial vertex. Thus, the
extreme vertices of SO(log diam(G)) are mapped to u and v
and all other vertices are mapped to vertices of G, satisfy-
ing the agreement property. In other words, SO(log diam(G))

is mapped to a path of G from u to v where each edge of
the subdivision is either mapped to an edge of the path or
“collapsed” to a vertex of the path. This mapping is possi-
ble because the length of SO(log diam(G)) is �(diam(G)), as
explained above.
It is now easy to see that if robots perform only

o(log diam(G)) rounds, they cannot solve graph-
convergence: in such a case the diameter of So(log diam(G))

is o(diam(G)), and hence it is impossible to map

So(log diam(G)) to a path of G from u to v as described
above. Hence, the round-complexity optimality of our
graph-convergence algorithms.
The analysis for edge covering is essentially the same,

the only difference is that, due to the agreement prop-
erty of the problem, each edge of the subdivision must be
mapped to an edge ofG. From this perspective, we can say
more. It is needed the existence of an odd-length path inG
from u to v: SO(log diam(G)) is mapped to a path inG from u
to v, and each edge of the subdivision is mapped to an edge
of the path; however, as explained above, the length of
SO(log diam(G)) is odd (more precisely, 3O(log diam(G))), from
which follows that the length of the path SO(log diam(G)) is
mapped to must be odd.

Conclusion
In this paper, we study two robot convergence problems in
an asynchronous read/write shared memory crash-prone
system, where the base space is a finite graph. The prob-
lems are the graph convergence (robots decide vertices
that belong to the same edge) and edge covering (robots
decide vertices that cover an edge). For both tasks we show
possibility and impossibility results that fully characterize
the graphs on which these problems can be solved. Addi-
tionally, we give a topological perspective of the solvability
of both problems.
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The study of the two robot convergence problems pre-
sented in this paper is of a theoretical nature. The purpose
is to understand which problems are in principle solv-
able, and show inherent limitations of what is possible.
We show that the two robot convergence problems are
unsolvable if G has a cycle, when the number of robots
is at least 3 (Lemma 4). This implies an inherent limita-
tion about robot coordination, even if the robots know G
and can communicate with each other reliably. The limita-
tion comes from the fact that the robots are asynchronous
and they may crash. This means that if one abstracts away
a two-dimensional space that has a hole that must be
avoided by the robots by a graph, the tasks are unsolvable
when n ≥ 3. Another contribution, is to expose the inher-
ent difficulty of requiring the robots to coordinate to cover
an edge: edge covering is unsolvable when the number of
robots is at least 3 (Lemma 6). Indeed, edge covering is a
more subtle problem. We have shown that for two robots,
solving it requires the existence of an odd length cycle
(Lemma 5).
Although the study presented is theoretical, we hope

it motivates to solve solutions to robot convergence
problems in realistic settings. For the cases we provide
impossibility results, it would be interesting to search for
probabilistic solutions. A limitation of our model is that
robots communicate reliably using a shared memory, see
the exact positions of other robots, and may jump directly
to any vertex. In reality robots may have limited visibility
of other robots and see only their approximate positions.
We investigate a more detailed model where robots can
move only to adjacent vertices in G, in [2]. Extending our
algorithms to such situations requires interesting future
research. Also, we consider only crash failures. Interest-
ing future workmay consider Byzantine failure techniques
such as [28]. In contrast, we expect that the assumption
that robots have identifiers is common in practice. In
any case, our algorithms do not make an essential use of
identifiers.
We assume that robots are located on a space that

can be modelled as a graph. Some spaces encountered
in applications can be naturally modeled as graph, or a
graph can be extracted, see [29] for a survey of techniques
for extracting graph representations of the environment.
Further research is needed to extend our results to two
or even three dimensional spaces. We expect that more
sophisticated topological techniques may be needed.
Our two-robot convergence tasks are abstractions

that capture the fundamental difficulty of coordination.
Understanding the inherent difficulty in coordination and
providing sound and proven solutions is a prerequisite
for designing algorithms for real applications; many real-
life situations in distributed robotics, such as cooperative
vehicular communication, or rescuemissions, require that
robots coordinate to get to positions close to each other.

In practice, robots do not have a physical shared mem-
ory to communicate with each other; typically, they
communicate through a weaker communication medium,
sending messages to each other, observing each other, etc.
The model we consider can be simulated on top of a sys-
tem where processes communicate by sending messages
to each other, where a majority of them do not crash [3].
Thus, all our impossibility results hold also in that set-
ting and our algorithms can be translated to such network
system using the simulation in [3].
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