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Abstract. In this work we present a novel abstraction that allows a set of distributed processes, aware
of their respective positions in space, to collectively maintain information associated to an area in the
physical world. This abstraction is a logical object shared between participating processes and provides
two operations, namely read and write, as for traditional registers.
This paper provides a specification and implementation of such a shared object for non concurrent
writes and multiple readers, then describes a possible extension to concurrent writes.
We also provide insights on how this kind of objects could be useful to program location-aware appli-
cations.

1 Introduction

1.1 Motivation

The advent of massively distributed systems in which every user carries an entity with full computing
power, including communication and positioning capabilities, allows us to envision many new applications
and services, truly decentralised by nature and tightly coupled to the position of entities. Nevertheless, the
deployment of such systems imposes the de?nition of new formalisms that capture the new features of these
systems and allow algorithms to be developed and reasoned about.

Indeed, for the first time ever, there exists a strong coupling between the graph of possible interactions
between entities and the geographical distribution of nodes. The strength of the classical Internet model was
to abstract all communication links into a complete graph, where any two nodes willing to cooperate could
open a connection. This clique-based system modelling can no longer be applied to distributed dynamic
systems where entities can communicate using short-range wireless technologies.

Two main issues arise when trying to deal with such large-scale and location-aware systems:
– the evolvable nature of such systems imposes any mechanism built for them to be resilient to mobility-

and failure-induced changes to the composition and/or topology of the system,
– new features of such systems are not represented in traditional distributed models, namely their dynam-

icity and locality, and more specifically the geographical distribution of entities.

Our research efforts are focussed on providing suitable abstractions to reason on mobile, large scale and
geographically aware systems. More specifically, in this paper we introduce a software abstraction, namely
geo-registers, that can be used to associate some values to a geographic location. This abstract object is shared
among all the processes that move inside a specified area in the surroundings of the object position and can
be accessed, as a traditional register, through read and write operations. Since our primary motivation is to
tackle the geographical aspects of such systems, we consider systems composed of correct entities that move
in a geographical space. Unlike traditional failure mode assumptions, such as crash of processes or byzantine
behaviors, we solely consider movements as the only source of uncertainty in the system. The paper provides
specifications for both a serial writes and concurrent reads geo-register and a concurrent reads and writes
geo register. A distributed algorithm implementing the former specification is also provided.



Outline of the paper The paper is made of five parts. This first section introduces the problem we solve
and presents related works. In the next section, we define the formal model of the system, and identify the
basic abstractions our work is based on. Section 3 presents the main contribution of our work. We define
the geo-register abstraction in the case of non-concurrent write operations, provide an implementation in
the case of one-hop ad-hoc networks, and prove that the implementation satisfies its specification. Section 4
proposes an extension to the concurrent writers model, and the last Section concludes the paper.

1.2 Related works

Shared storage objects are very attractive abstractions that can be used for indirect process communication
and that simplify the development of applications. In mobile environments some solutions have been proposed
to implement such shared objects.

In [4], an atomic memory implementation for mobile ah hoc networks is presented. This implementation
is a quorum based one and implements an atomic register in a region of the space where nodes can move.
The authors abstract the mobility of nodes by introducing a static concept: the focal point. A focal point is a
region where nodes can move and can have a state, depending on the number of nodes inside the region. The
authors point out that, in order to implement this shared object, some additional constraints must be put
on these focal points, e.g. only a fraction of focal points are allowed to fail. As a result, this model introduces
some limitations on node motions and density over time.

In [12] these constraints are reduced and only a small set of mobility constraints are considered to
implement the atomic register. In particular, the main novelty with respect to Dolev’s work is the possibility
of tolerating unlimited number of focal point failures during the entire system lifetime. In fact, Tulone’s
mobility constraints only require a minimum coverage of the mobile nodes without additional constraint on
movements.

Both approaches mentioned above differ from the one presented in this paper because their aim is to build
a register maintained by a set of geographic regions (the focal points) while our aim is to build a register in
a given geographic region. While previous works focus on using geographic dispersion of nodes to tolerate
failures, we are interested in the orthogonal problem of defining a shared storage in an area, in isolation with
the remainder of the system.

As a result, our work considers a different semantics for the geo-localized register; we remove any con-
straint on nodes movements and allow the register to loose its state if no node is in the area covered by the
register.

In order to build such shared objects, nodes need to communicate. In a mobile environment, algorithms
have been introduced [6, 7, 9, 2] to provide a geocast with probabilistic guarantees. In Dolev’s and Tulone’s
approachs, a deterministic geocast is required in order to implement such atomic memories. Deterministic
guarantees are given in [11, 5, 3] for multicast and in [10] for broadcast in MANET. In [1] are shown some
impossibility results defining under which assumptions it is possible to implement a geocast. In our work, we
concentrate our attention on a single and limited area and, since our model is similar to the one considered
in [10], we can assume to have a reliable communication primitive to implement our geo-localized register.

1.3 Application example motivation

Current personal navigation systems based on the use of GPS calculate a route that optimizes journey
duration only based on static data, like the maximum allowed speed for each road segment. In the best case
the navigation system can take into account historical data to match your journey with trip times experienced
in the past by other users on the same journey (e.g. TomTom IQ Routes technology). Traffic alert services
are sometimes integrated in these devices, but they are provided through a centralized infrastructure.

A decentralized and geographically aware storage service could be used to store dynamic information
on traffic that can be used by the navigation system to plan journeys taking into account current traffic
conditions on public roads.

The shared geo-localized register proposed in this paper can be used as a basic block to build a completely
distributed application for traffic jam reduction. In particular, users can access the geo-located register to
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gather information on the traffic state in a certain zone when approaching it and can report their experience
with the traffic, i.e. the detection of a traffic congestion state, when leaving the area covered by the register.
Using the information contained in the register, the navigation system of the cars can adjust the planned
route in order to avoid congested roads. The novelty of this approach is in the complete distribution of the
traffic detection state that can be achieved only with the resources provided by the users.

2 Architecture and model

2.1 Formal system model

Entities The system is composed of entities (pi)i=1,2,... of an infinite set Π that evolve in a 2-dimensional
space, or geographic space. The entities are correct, i.e. execute correctly the algorithms and do not crash,
and anonymous, i.e. execute the same algorithm and do not own a unique identifier.

Communication and positioning All entities are equipped with a positioning device and wireless network
capabilities. The entities are aware of their position at every time with infinite precision. They can move in
the space continuously with a bounded maximal speed Vmax.

Area of interest An area A is a geographic surface, i.e. a continuous subset of the space.
At every instant t, let activeA(t) be the set of processes in A. Since processes are correct and move

continuously, activeA(.) evolves by additions or removals of entities :

∀t,∃ε :

{
activeA(t + ε) ⊂ activeA(t) leave operation
∨ activeA(t) ⊂ activeA(t + ε) join operation

Definition 1. The area A is valid if ∀t, activeA(t) is a clique w.r.t. communication capabilities, i.e. any
two processes in the set can communicate.

Notice that this definition is very general, and can represent either an area that is a disc of radius equal
to half the communication radius, or a multi-hop network equipped with a routing algorithm that guarantees
a complete communication graph.

2.2 Execution model

In this paper we are only interested in operations that take place in a particular area, say A. As a result,
an execution for an area A corresponds to a set of operations performed in this area. Since all entities are
supposed to be correct, we also assume that every operation takes a finite amount of time.

To simplify reasoning, in the following we will refer to the starting and the ending of a given operation Op
using two operators, Begin(Op) and End(Op). By definition, Begin(Op) corresponds to the (external observer)
time of invocation by the caller pi of the operation Op, and Begin(Op) is defined by the end of the operation
Op from the system’s point of view.

Definition 2 (Execution). Let A be an area, and O be the set of possible operations available in A. An
execution in A is a set of operations E such that ∀Op ∈ E,Begin(Op) < End(Op)

Definition 3 (Concurrency). Two operations Op1 and Op2 in an execution E are non-concurrent if
(
(End(Op1) < Begin(Op2)) ∨ (End(Op2) < Begin(Op1)

)

If the above statement does not hold, Op1 and Op2 are concurrent.
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Fig. 1. Architecture for a given area A

2.3 Architecture of the System

In this paper, we are interested in providing an abstraction, or building block, that can be directly used by
an application. The shared geo-localized storage service, or geo-register, will be built on more simple building
blocks.

Even though the systems we consider are large-scale, we focus on an area of interest A for which some
basic abstractions are available, as shown in Figure 1.

Recall that we suppose that a perfect positioning service is available, and that wireless communication
is possible within the whole area A. On top of these two basic, hardware-oriented service, we suppose that
a geo-reliable broadcast service is implemented. The goal of this service, presented in the next subsection, is
to merge geographical and communication-based information to produce a reliable message passing service
in the area A with known maximum transfer time.

Our contribution lies in the definition, implementation and proof of the geo-register service, that is
presented in the next section, and could be used directly by an application to handle storage in an area A.

2.4 Geo-Reliable Broadcast

A geo-reliable broadcast is a communication primitive that guarantees that all processes4 located in an area
A receive the broacasted message. This primitive is built on top of wireless communication described in the
previous section.

More formally the geo-reliable broadcast is defined as follows:

Definition 4 ((δ, A)−geo-reliable broadcast). Let δ be a positive number and A be an area. A (δ, A)−geo-
reliable broadcast enjoys the following properties:

– every process p ∈ A can issue a broadcast(m)
– if m is a message broadcasted at time t by a correct process p that is in the area A from time t to time

t + δ, then all correct processes remaining in A between t and t + δ deliver m by time t + δ.

This definition is relatively weak, since it does not take into account the processes that may enter or leave
the area during the broadcast, and only focuses on entities that stay in the area for the whole duration of a
broadcast. The δ period of time can be either fixed and known in advance or not. In this paper we consider
that δ is fixed for a given A, and known by processes5.

Such a primitive is implementable when the area A remains valid (the communication graph is a complete
graph) for the whole period of time δ.
4 Recall that, in our model, all processes are correct
5 Notice that, in practice, δ is related to the diameter of A. A larger area needs a larger δ to ensure a reliable

dissemination
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Definition 5 (Core region).
Let A be a valid area equipped with a (δ, A)−geo-reliable broadcast.
A core region A′ associated to A is a subset of A such that every message m sent at time t by any process
p in A′ using (δ, A)−geo-reliable broadcast will be delivered (by time t + δ) by every process q that was in A′

at time t.

Notice that this definition abstracts away some physical parameters of the system. In particular, the
definition implies that a process that is in A′ at time t will be in A at time t + δ.

3 Geo-Registers

A geo-register is the abstraction of a storage mechanism attached to a particular area, that can be used to
store and retrieve collectively pieces of information.

Since no assumption is made neither on the number of entities nor on their density, the area of interest may
sometimes be populated, and sometimes be empty. As a consequence, data persistence cannot be guaranteed
for the whole execution.

Intuitively, a geo-register implements a temporally ordered sequence of (traditional) registers. Every
element of the sequence corresponds to a temporal interval where entities populate the node. As soon as the
area becomes empty, the state of the storage is lost, and when entities reenter the area, a new instance has
to be created.

3.1 Non Concurrent Writers Geo-Register

Intuitively, a geo-register is an abstraction of shared storage attached to a surface in space which provides a
write operation and a read operation. Inspired by the seminal paper of Lamport [8], we provide a specifi-
cation of a non-concurrent safe register, then extend it to the case of concurrent writers in the next Section.

write and read operations are not instantaneous, and require a finite amount of time. The register is
said to be non concurrent writers if it does not support concurrent writes. Notice that it does not require
that a single process is allowed to perform a write operation. It only states that, whenever multiple processes
call write operations, no two write operations can occur concurrently.

The semantics of the non concurrent writers geo-register is defined with respect to 1) the most recently
completed write operation and 2) the write operations possibly concurrent with a given read operation, that
can be defined as follows:

Definition 6 (most recently completed write operation). Let Op be an operation performed on the
register. The most recently completed write operation before Op is by definition Wy such that

End(Wy) = max{End(Wz) : End(Wz) < Begin(Op)}

Definition 7 (possible outcomes of a read operation on a non concurrent writers register). Let
R be a read operation performed on the register, and Wy the most recently completed write operation before
R. Let CW be the set of write operations that are concurrent with R, and V the set of values written by
operations in CW ∪ {Wy}. V is the set of possible outcomes of the read operation R.

Definition 8 (non concurrent writers geo-register). Let A be a valid area, and A′ its associated core
region. A safe geo-register for (A, A′) provides a read and a write operations such that

– a read operation can be issued at time t by processes in activeA(t)
– a write operation can be issued at time t by processes in activeA′(t)6

6 an operation Op called by pi could also be said to be valid if pi remains in A from Begin(Op) to End(Op), but this
alternative model would require further assumptions such as movements control
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operation. It only states that, whenever multiple process call write operations,
no two write operations can occur concurrently.

The semantics of the single writer geo-register is defined with respect to 1)
the most recent write operation and 2) the write operations possibly concurrent
with a given read operation, that can be defined as follows:

Definition 6 (most recent completed write operation). Let Op be an
operation performed on the register. The most recent completed write operation
before Op is by definition Wy such that

End(Wy) = max{End(Wz) : End(Wz) < Begin(Op)}

Definition 7 (possible outcomes of a read operation on a single writer
register). Let R be a read operation performed on the register, and Wy the most
recent completed write operation before R. Let CW be the set of write operations
that are concurrent with R, and V the set of values written by operations in
CW ∪ {Wy}. V is the set of possible outcomes of the read operation R.

Definition 8 (single writer geo-register). Let A be a valid area, and A′ its
associated core region. A safe geo-register for (A, A′) provides a read and a write
operations such that

– a read operation can be issued at time t by processes in activeA(t)
– a write operation can be issued at time t by processes in activeA′(t)6
– Let a read operation Rx be issued by a process in activeA(Begin(Rx)). Let

Wy be the most recent write operation before Rx and V be the set of possible
outcomes of Rx. The semantics of the read operation Rx is as follows:

(Partial Amnesia): if, since Wy, there exists an instant t1 s.t. activeA′(t1) =
∅, it returns either a value in V or ⊥.

End(Wy)︷ ︸︸ ︷
∃t∈[End(Wy),Begin(Rx)]:(activeA′ (t)=∅)

! Begin(Rx) : x ∈ V ∪ {⊥}

(Safety) if activeA′ has never been empty from End(Wy) to Begin(Rx), it re-
turns a value in V .

End(Wy)︷ ︸︸ ︷
∀t∈[End(Wy),Begin(Rx)]:(activeA′ (t) &=∅)

! Begin(Rx) : x ∈ V

3.2 Implementation for 1-hop communication

We propose an implementation of a geo-register that respects the specification
defined above. This implementation works with a geo-localized broadcast imple-
mented by a single wireless broadcast, that is a 1-hop communication broadcast.
6 an operation Op called by pi could also be said to be valid if pi remains in A from

Begin(Op) to End(Op), but this alternative model would require further assumptions
such as movements control
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Fig. 2. Example of possible outcomes for a read operation. Here, V = {y, z, t}

– Let a read operation Rx be issued by a process in activeA(Begin(Rx)). Let Wy be the most recently
completed write operation before Rx and V be the set of possible outcomes of Rx. The semantics of the
read operation Rx is as follows:

(Partial Amnesia): if, since End(Wy), there exists an instant t1 s.t. activeA′(t1) = ∅, it returns either a
value in V or ⊥.

End(Wy)︷ ︸︸ ︷
∃t∈[End(Wy),Begin(Rx)]:(activeA′ (t)=∅)

! Begin(Rx) : x ∈ V ∪ {⊥}

(Safety) if activeA′ has never been empty from End(Wy) to Begin(Rx), it returns a value in V .

End(Wy)︷ ︸︸ ︷
∀t∈[End(Wy),Begin(Rx)]:(activeA′ (t) &=∅)

! Begin(Rx) : x ∈ V

3.2 Implementation for 1-hop communication

In this section we propose an implementation of a geo-register that complies with the specification defined
above.

Target system Our solution implements the geo-reliable broadcast by a simple wireless broadcast, that is a
1-hop communication broadcast. This primitive implements a (δ, A)-geo-reliable-broadcast only if any pair
of processes in A are in wireless range of communication, i.e. the diameter of A must be smaller than R, the
(common) wireless range of communication7. The parameter δ is a known period of time fixed by the geo-
reliable-broadcast primitive from lower parameters; it abstracts the implementation details of the primitive
that may include more than one broadcast due to message collisions.

We define A′, the core region of A, as the maximal region (included in A) such that any entity in A′

cannot leave A in less than 4δ time. Since entities have a bounded maximal speed Vmax, the area A′ can
also be defined geographically as the set of points in A that are at least at distance 4δ ∗ Vmax from A’s
boundaries.

Algorithm With these definitions of A and A′, we propose an implementation of a geo-register in Figure 4.
In our implementation, each entity in A maintains a local register Rp of the geo-register.

The main part of the code (first control thread) consists in the initialization of this local register when
an entity enters in A, and freeing the local register when the entity leaves A.

Explainations of the first wait for 2δ time The first wait for 2δ is needed to ensure that the initialization of
the local register Rp is correctly made. Otherwise it may happen that a process p initializes its local register
to an old value that has been replaced (by a more recent write). In the following we give an example of such
a bad initialization:
7 From this observation it appears that the maximal available zone A for our geo-register implementation corresponds

to a disk of radius R
2 , which corresponds to the constraints of our simplistic geo-reliable broadcast implementation
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Let us consider a process p that arrives in A just after a write operation Wx has been initialized by
some process q. Without waiting 2δ, p is not guaranteed to receive the value x, as shown in Figure 3. If p
does not wait for 2δ, it may receive (before 2δ) a reply REP (y) corresponding to a REQ (made by him or
another process) with a value y += x; indeed this reply may be sent by a process r just before the end of q’s
write operation (so just less than δ time after the entrance of p in A). Since both the REQ and the reply
may respectively take up to δ time to arrive p has to wait for 2δ.

Note that this delay of 2δ can be reduced to δ if we suppose that requests include identity of the process
that makes the request and a sequence number of requests made by this process. The id allows to differentiate
requests from different processes, whereas the sequence number is needed to differentiate two requests from
the same process.

Geographically controlled thread:

when p enters A:
Rp ← void;
wait for

! (W (x) is received) : Rp ← x; exit;
! (2δ time delay elapsed)

RB send(REQ)
wait for

! (REP (v) is received) : Rp ← v;
! (W (x) is received) : Rp ← x;
! (2δ time delay elapsed) : Rp ← ⊥;

when p leaves A:
free(Rp);

Communication controlled thread:

upon reception of (REQ) : if (Rp #= void) then RB send(REP (Rp))
upon reception of (W (x)) : Rp ← x

Read and Write operations:

When p is in A:
read() : wait until (Rp #= void) then return(Rp);

When p is in A′:
write(x) : RB send(W (x));

Fig. 4. Implementation
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3.3 Proof of Correctness

Duration of read/write operations The write operation consists only in one geo-reliable broadcast; then any
write operation will terminate in at most δ time. The read operation is most of the time instantaneous,
since it consists mainly in a local memory access; however if a process p initiates a read soon after entering
A, the operation may be delayed upto at most 4δ (maximum time needed to initialize the local register Rp).
Both operations take then always a finite amount of time to complete.

Semantics of the read operation With respect to the specification, it is obvious from the implementation
that the read operation always returns either a written value, or ⊥. Then we prove that (1) in case of non
concurrent write operation, a read operation returns either the value corresponding to the most recently
completed write or ⊥, (2) in case of non concurrent write operation and if A′ remains non-empty from the
end of the most recently completed write to the beginning of a read operation, then this read can not return
⊥ (and then returns the value of the most recently completed write operation), (3) in case of a concurrent
write operation then in both previous cases, the value being currently written can also be returned by the
read operation.

(1) Suppose there is no concurrent write operation during a given read operation R performed by a process
p. Let Wx be the most recently completed write operation before R as defined in the previous section. Two
cases have to be considered:

– p was in A at Begin(Wx) and remains in A until Begin(R). p has then received the value x, has updated
its local register Rp to x, and thus returns x for the operation R.

– p has entered A (for the last time) at time tp > Begin(Wx). p may have received the written value x,
that is then similar to the previous case, or it may have missed the written value x. In the latter case,
before p can terminate its read operation R, it has to update its local register Rp. This update can only
be performed by the first control thread (since there is no concurrent write operation), that implies
the update can occur only 2δ time after tp. Any broadcast received by p after tp + 2δ can not have
been initialized before tp + δ > Begin(Wx) + δ > End(Wx), i.e. such a broadcast has been initialized
after End(Wx); thus any process (if any) that may reply to p’s REQ has received W (x). Consequently
p receives a reply REP (x) and initializes its local register either to x or to ⊥ (if no process was able to
transmit the current value of the register).

(2) Let us suppose that A′ remains non-empty since the most recently completed write operation Wx, we
want to prove that the value ⊥ cannot be returned by the read operation R performed by p. Let us prove
first, by induction, the following property P: any process that spends some time in A′ between End(Wx) and
Begin(R) has its local register set to x during (at least) all the time spent in A′. Secondly we will deduce
that p has then necessarily updated its own local register to x before its read operation R.

– Any process that is in A′ at time t = End(Wx) has received W (x) and then has updated its local register.
Indeed if a process is in A′ at t, it was already in A at time t − δ and remained in A from t − δ to t,
which implies from the definition of the geo-reliable-broadcast that it has received the write.
Suppose the property P is true until some time tq with End(Wx) < tq < Begin(R) when a process q is
entering A′. At that time q has been in A for at least 4δ (due to the definition of A′), thus its local register
has then been initialized (Rq(tq) += void). The last update has been done (a) either by receiving a write
operation, (b) or by receiving (or not) a REP in the first control thread. The case (a) implies that q has
received W (x) since this is the most recent one. The case (b) implies that q enters in A after Begin(Wx)
(since it missed W (x)). q made a request 2δ period of time after entering A; the request is then made at
time treq > Begin(Wx) + 2δ > End(Wx) + δ. If q receives a reply, it cannot have been initialized before
treq − δ > End(Wx). Then any reply received by p contains necessarily the value x. It remains to prove
that p receives indeed a reply before entering in A′. This is due to the fact that treq < tq − 2δ8 and by

8 This inequality is obtained by the fact that A′ has radius 4δ smaller than A
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hypothesis A′ remains non-empty from End(Wx) to tq; it implies that at least one entity has received p’s
request (between treq and treq + δ), then this entity sends a reply with value x that is received by p at
most at time treq + 2δ < tq. Thus q updates its local register to x before entering in A′. By induction P
remains true until Begin(R).

– p’s read operation R waits for p to update its local register; the reasoning done for q in the previous
point can be applied to p provided p remains in A, from which we can conclude that p updates its local
register to x, the most recently written value and then returns x.

(3) Suppose now there is one concurrent write operation W (y) during a given read operation R performed
by a process p. In that case, the previous reasonning remains correct except that now p can also update its
local register with the communication controlled thread if W (y) is received by p before the end of R.

4 Concurrent Writers Version

In the previous sections we specified the properties of a geo-register that support multiple readers and
multiple writers with the restriction that write operations are not concurrent.

Now we extend that specification to take into account multiple concurrent writes that act on the same
geo-register. Exactly like in the previous case, we assume each write operation Wx to be characterized by
Begin(Wx), the instant in time when the write operation begin, and End(Wx), the instant in time when the
write operation ends. The actual write of the value x in the register can generically happen at any instant
of time t ∈ [Begin(Wx),End(Wx)]

Without loss of generality, as done by Lamport in [8], we assume that there is an initial operation W⊥
that is not concurrent with any other operation.

If we consider an execution on a geo-register, we can separate it in subset of operations where no concur-
rent writes occur. Within these subsets we can identify sequences of operations that can be totally ordered.

Definition 9 (write sequence). Let W(t) be a set of write operations executed on a geo-register. We define
a write sequence w as an ordered set [W 0 → . . . → W j ] of non concurrent write operations:

– ∀W i ∈ w : W i ∈ W(t),
– W 0 = W⊥,
– ∀i ∈ [0, j − 1] : End(W i) < Begin(W i+1).

These sequences of writes are intersting only when they are maximal, in the sense that no write operation
can be added to sequence without adding concurrency:

Definition 10 (maximal write sequence). Let w = [W 0 → . . . → W j ] be a write sequence on W(t). w
is maximal w.r.t. W(t) if any write operation of W(t) \ w is concurrent with w:

– !W ∈ W(t) \ w, ∃i ∈ [0, j − 1] : End(W i) < Begin(W ) ∧ End(W ) < Begin(W i+1).
– !W ∈ W(t) \ w, End(W j) < Begin(W )

Consider the example depicted in Figure 5 where distinct entities execute concurrent writes on a same
geo-register. In this scenario the set of maximal write sequences in W(Begin(Rx)) includes the following
entries:

W⊥ → W1 → W3

W⊥ → W2

Definition 11 (most recent write in sequence). Given a write sequence w we define the most recent
write operation in the sequence as the last operation in the ordered set.

Note that, given the set W(t) of all the maximal write sequences in W(t), the set constituted by the most
recently completed write operations from all the sequences contains write operations that are all concurrent.

With the help of maximal write sequences we can now define the new possible outcomes of a read
operation. It follows directly the definition of concurrent writers geo-register that is the same as the non-
concurrent one, except on the set of possible outcomes values of a read operation.
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Fig. 5. An execution scenario with concurrent writes from distinct processes.

Definition 12 (possible outcomes of a read operation on a multi writer register). Let R be a read
operation performed on the register. Let RW be the set of most recent write operations from the maximal
sequences in W(Begin(Rx)), and CW be the set of write operations that are concurrent with R. Let V be the
set of values written by operations in CW ∪RW. V is the set of possible outcomes of the read operation R.

Definition 13 (concurrent write/read geo-register). Let A be a valid area, and A′ its associated core
region. A safe geo-register for (A, A′) provides a read and a write operations such that

– a read operation can be issued at time t by processes in activeA(t),
– a write operation can be issued at time t by processes in activeA′(t),
– Let Rx be a read operation. Let Wy be the most recently completed write operation before Rx and V be

the set of possible outcomes of Rx. The semantics of the read operation Rx is as follows:

(Partial Amnesia): if, since Wy, there exists an instant t1 s.t. activeA′(t1) = ∅, it returns either a value
in V or ⊥.
(Safety) if activeA′ has never been empty from End(Wy) to Begin(Rx), it returns a value in V .

Applying this definition to the example depicted in figure 5 the read operation Rx should return one
of the values written by the write operations W2 and W3 (because these operations are in RW) or the
value written by the write operation W4 (because this operation is in CW). The value ⊥ cannot be returned
because the area A′ is always non-empty between the end of the operation W3 and the beginning of the read
Rx.

5 Conclusion

In this paper we provided the specification, implementation and proof of a geo-localized storage service for
mobile systems. Differently from other research works on similar systems, we are interested in providing a
local-only abstraction that can be used by applications that require to store information only when entities
populate the area where data are to be stored.

As an example, we briefly explained how this kind of register could be used to improve personal navigation
systems, but we believe this abstraction can be useful to any application that enjoys the following property:
“When no user is in the area A then the state of the storage service can be lost”. This kind of behavior
can be found in many geo-localized, collaborative applications such as augmented reality games or localized
service offering (e.g. car seat sharing offering).

To provide an implementation and a proof of the register, we based our work on a reliable, timed
broadcast. Although this assumption seems strong, it can be implemented in a mobile system provided
the area of interest considered is relatively small.
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We also provided insights on the behavior of our implementation in the case of concurrent writes, and
showed that it enjoys reasonably strong semantics, similar to the safe registers of Lamport[8].

Future research directions we focus on include the introduction of process failures, and the possibility of
providing stronger semantics.
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