
HAL Id: hal-01745576
https://laas.hal.science/hal-01745576

Submitted on 28 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Web Services Based on Asynchronous
Checkpointing

Mariano Vargas-Santiago, Luis Morales-Rosales, Saúl Eduardo Pomares
Hernández, Khalil Drira

To cite this version:
Mariano Vargas-Santiago, Luis Morales-Rosales, Saúl Eduardo Pomares Hernández, Khalil Drira.
Autonomic Web Services Based on Asynchronous Checkpointing. IEEE Access, 2018, 6, pp.5538-
5547. �10.1109/ACCESS.2017.2756867�. �hal-01745576�

https://laas.hal.science/hal-01745576
https://hal.archives-ouvertes.fr


Autonomic Web Services Based on
Asynchronous Checkpointing

Mariano Vargas-Santiago1, Luis Morales-Rosales2, Saul
Pomares-Hernandez 243 and Khalil Drira 34

1Department of Computer Science, National Institute for Astrophysics, Optics and Electronic
(INAOE) , Tonantzlintla, Puebla, Mexico

2Faculty of Civil Engineering, Universidad Michoacana de San Nicolas de Hidalgo, Morelia,
Michoacan, Mexico

3CNRS, LAAS, 7 avenue du Colonel Roche, Toulouse, France
4Univ de Toulouse, LAAS, Toulouse, France

Email: mariano.v.santiago@inaoep.mx, lamorales@conacyt.mx, spomares@inaoep.mx,

khalil@laas.fr

The evolution of business software technologies is constant and becoming more
and more complex which leads to a greater probability of software/hardware
failures. In particular, business processes are based on Web services, as
they allow the creation of complex business functionalities. To attack the
problem of failures presented by Web services organizations are extrapolating
the autonomic computing paradigm to their business processes as it enables
them to detect, diagnose, and repair problems and therefore improve their
dependability. Nowadays there exist sophisticated solutions that increase systems
dependability. However, such approaches have some drawbacks, for example,
they affect the systems performance, they have a high implementation costs,
and/or they can jeopardize the scalability of the system. To evolve systems to
self-management, systems must implement the Monitoring, Analyzing, Planing
and Execution (MAPE) control loop. In this paper we propose to tackle the
MAPE loop of autonomic computing in a distributed and efficient manner by using
communication-induced checkpointing (CiC), attacking the dependability problem
for Web services. Our contribution is twofold. First, we present an approach for
Web services compositions that gives support to fault tolerance based on CiC
mechanism. Second, we present an algorithm aimed at Web services compositions
based on autonomic computing and checkpointing mechanism. Experimental

results show the feasibility of the former.

Keywords: Autonomic computing; Web Services; Autonomic Systems; Internet Technologies;
Checkpointing

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Businesses are always searching for ways to improve
their overall competitiveness. In business software,
technologies help the evolution and growth of their
businesses. For of large-scale systems, the entire system
becomes less reliable and the fault rate probability
augments as the number of component counts increment
[1]. Usually under these circumstances Web services
carry out complex business processes, known as
compositions; frequently working with the Business
Process Execution Language (BPEL) engine for
orchestration [2]. These Web services can be locally
deployed or they can collaborate with other Web
services, over distributed heterogeneous environments,
most common situation seen in real world deployments.

Distributed enterprise applications are usually built
following the Service-Oriented Architecture (SOA)
paradigm in general [3]. Following the SOA
architectural model for composite services it enables,
even dynamically, the creation of distributed software
intensive systems built from a combination of diverse
independently developed services [4]. SOA can be seen
as the platform for distributed systems and a bridge
between all these spatially separated loosely-coupled
services that can be easily discovered through a well-
known interface. These interfaces are leveraged by the
Web services paradigm which follow and apply open-
standards, for interoperability; in specific Web services
support service composition and application evolution
[5]. Nonetheless, even though Web services are used

The Computer Journal, Vol. ??, No. ??, ????



2 M. Vargas-Santiago, L.A. Morales-Rosales, S.E. Pomares-Hernandez, K. Drira

within complex business collaborative environments
they are error prone because of the unreliable
Internet behavior during runtime and yet are required
to function correctly and be available on demand.
Failures may lead to terrible consequences for instance
augmenting the execution time, higher costs of the
running applications, live lost, systems destroyed, and
system breaches. As consequence organizations must
obtain a way of making their systems (in many cases
business processes) as dependable as possible before
they intent to automate them [6]. To anticipate these
errors organizations which have as core Web services for
their business processes, require efficient and seamless
solutions. For such purpose to attack the problem of
failures presented by Web services organizations are
extrapolating the autonomic computing paradigm to
their business processes as it enables them to detect,
diagnose, and repair problems, and therefore improve
their dependability.
IBM introduced the Autonomic Computing paradigm,
where systems are considered to be self-manageable
these should be able to give themselves maintenance
and corrective actions with minimal human intervention
[7]; for this purpose of evolving to self-management,
Kephart proposed the MAPE (Monitoring, Analysis,
Planning and Execution) control loop [8]. In achieving
such IBM introduces the notion of autonomic managers
and managed elements. Autonomic managers are in
charge for the interaction and communication with
the outside world, in other words interpreted as
human computer interaction and interactions with
other elements and also, as a bridge with the managed
elements. The Monitoring phase is in charge of
recollecting data, which afterwards is used by the
Analysis phase for diagnosis purposes to identify the
cause of a detected symptom. The Planning phase must
plan ahead, if possible, what actions to take. Finally,
the Execution phase executes actions regarding previous
phases.
Nowadays there exists sophisticated solutions for Web
services dependability enhancement. However, such
approaches have some drawbacks for example they
affect the systems performance, they have a high
implementation costs [5], and/or they can jeopardize
the scalability of the system [9]. One open challenge
for Web services is to increment their reliability [4]
a particular feature of dependability which considers
many more aspects like: reliability, availability, security,
maintainability among others [10].
In this paper we propose to tackle the MAPE loop
of autonomic computing in a distributed and efficient
manner by using communication-induced checkpointing
(CiC), attacking the dependability problem for Web
services. CiC has proved being worthy and has gain a
great level of maturity specially for distributed systems,
solving issues like rollback recovery, software debugging
and software verification among others [11]. In general,
CiC aims at building consistent global snapshots (CGS)

or simply checkpoints (one from each process) avoiding
dangerous patterns: like zigzag paths and zigzag cycles
[12] as stipulated by the authors. The purpose of
building CGS is to checkpoint process on nonvolatile
storage to rollback or survive process failures. As
consequence, for decoupled systems, an architectural
model type is chosen; the autonomic behavior can be
incorporated into preexisting non-autonomous systems,
such as Web services. In this category is that the
checkpointing protocols can be applied. The research
is aiming to merge the following technologies:

• Autonomic Computing which provides the MAPE
loop for self-manageable systems.

• Web Services which follow open standards for
interoperability.

• Checkpointing Protocols which save consistent
states to which the system can rollback to in case
of undesired functioning of the system.

We first introduce and give the motivation to be
studied, and then in Section 2 we analyze the model
for checkpointing. In Section 3 we discuss the related
work that increase Web services’ dependability. Section
4 analyses the environment and considerations around
our proposed solution, a case study is presented as
well as an algorithm. Finally Section 5 gives the
results to support our approach, showing its feasibility.
Conclusions are drawn in Section 6 where we also
suggest further work.

2. THE MATHEMATICAL MODEL

2.1. Communication Patterns

Distributed systems have the following characteristics,
there is no global notion of time, processes do not share
common memory and communicate solely by message
passing. In this context distributed computation
consists of a finite set of processes P = {P1, P2, . . . , Pn},
in our particular case Web services. We assume that
channels have an unpredictable yet finite transmission
delay and that these are reliable and asynchronous.
To have the ability of using checkpointing mechanisms,
two types of events must be considered: internal and
external. Internal events are those that change the
processes state, for instance a checkpoint, a finite set
of internal events are denoted by Ei. External events
are those that affect the global state of the system, for
instance send and delivery events. Let m be a message,
send(m) is the emission of m by a process p ∈ P and
delivery(q,m) is the delivery event of m to participant
q ∈ P where p 6= q. The set of events associated to M
is

Em = {send(m) : m ∈M}∪{delivery(p,m) : m ∈M∧p ∈ P}

Thus the whole set of events is

E = Ei ∪ Em

The Computer Journal, Vol. ??, No. ??, ????



Autonomic Web Services Based on Asynchronous Checkpointing 3

2.2. Definitions

The Happened Before Relation. This relation
establishes causal precedence dependencies over a set
of events. The HBR is a strict partial order (transitive,
irreflexive and antisymmetric). It is defined as follows
[13]:

Definition 2.1. The HBR, denoted by →, is defined
by the following three rules and it is the smallest relation
on a set of events E.

1. If a and b are events of the same process, and a
was originated before b then a→ b.

2. If a is the event send(m) and b is the event
delivery(pi,m) then a→ b.

3. If a→ b and b→ c, then a→ c.

The partially-ordered set Ê = (E,→) models the
distributed computation.
Immediate Dependency Relation. The HBR in
practice is expensive since it has to keep track of the
relation between each pair of events. In order to
avoid such the Immediate Dependency Relation (IDR)
identifies and attaches the minimal amount of control
information per message to ensure causal ordering. The
IDR is the transitive reduction of the HBR, and it is
denoted by “↓”, defined as follows [14]:

Definition 2.2. Two messages a and b ∈ E have an
IDR a↓b if the following restriction is satisfied:

a ↓ b ⇔ [a→ b ∧ ∀c ∈ E,¬(a→ c→ b)]

Checkpoint and communication pattern CCP. It
is represented by its distributed computation consists
on a set of incoming and outgoing messages and
associated local checkpoints [15]

Definition 2.3. A communication and checkpoint
pattern (CCP) is a pair (Ê, Ei) where Ê is a partially-
ordered set modeling a distributed computation and Ei

is a set of local checkpoints defined on Ê.

An example of a CCP is exhibited in Fig. 1; showing the
checkpoint interval denoted Ixk , with sequence of events
occurring at pk between Cx−1

k and Cx
k (x > 0)

Pi . . .
C0

i C1
i C2

i C3
i

A
A
A
AU

A
A
A
AU �

�
�
��

�
�
�
�� A

A
A
AU

A
A
A
AU �

�
�
��

�
�
�
��

m2

m3

m6

m7
Pj . . .
C0

j C1
j C2

j C3
j

A
A
A
AU

A
A
A
AU �

�
�
��

�
�
�
�� A

A
A
AU

A
A
A
AU

A
A
A
AU

A
A
A
AU

m1
m4

m5
m8I2j

Pk . . .
C0

k C1
k C2

k C3
k

I1k I2k I3k

FIGURE 1. A Checkpoint and Communication Pattern
(CCP) [12].

2.3. Building Consistent Global Snapshots

In distributed systems process take their checkpoints
independently so that in case of a failure the system
can restart its execution from the last saved consistent
global snapshot (CGS).

Definition 2.4. A CGS does not contain any HBR
causally related checkpoints, in other words, for any pair
of checkpoints A and B satisfies that:

¬(A→ B) ∧ ¬(B → A)

As stipulated by Netzer and Xu in [16].

3. RELATED WORKS

Dependability has been a wide area of research, a
whole taxonomy about it can be found in [19]. Many
different aspects of the system affects its dependability:
reliability, availability, security, maintainability and
consider systems to be self-manageable [10]. Yet,
neither today to address the self-manageable issues for
systems there is no unified or standardized form; nor
for implementing the MAPE loop within Web services.
Some work treat each one of the MAPE loop phases as
an individual Web service [20]; others only tackle the
self-healing feature of autonomic computing [21]. In
[22] the authors suggest to address the entire MAPE
loop by adding extra interfaces to confront functional
and non-functional requirements of Web services.

Marzouk et al., illustrate in [2], that Web services
are implemented to follow a business logic, they could
be deployed either locally inside an enterprise or they
could cooperate in a distributed environment, either
way Web services are crucial and must implement
fault tolerance mechanisms. The authors principal
concern is about ensuring self-adaptivity of composite
services. They provide an approach for adapting Web
service composition based on strong mobility code;
achieved with generic source code transformation. The
authors identified that the strong mobility approach
for Web services-BPEL processes requires periodic
checkpointing. When self-adaptivity is a necessity one
or several instances of the orchestration process will
be migrated to the previous checkpoint and resumed
starting from the interruption point; beginning from
their last captured checkpoint. However using strong
mobility requires replicating services, if possible, but
in other cases finding similar services becomes a
complicated task. This due to services format, for
instance, one service uses an integer instead of a float.

Marzouk et al. discuss, in [18], that their approach
pursues the self-healing property whereas in case of
failure the orchestration process is migrated to a
different server and in case of QoS violation a subset
of running instances may be migrated to a new server
in order to decrease the initial host load. The
authors argue that, their solution has no risk of non
deterministic execution when recovering flow activities

The Computer Journal, Vol. ??, No. ??, ????



4 M. Vargas-Santiago, L.A. Morales-Rosales, S.E. Pomares-Hernandez, K. Drira

TABLE 1. Web Services and Checkpointing.

Parameter / Article [2] [6] [17] [18]

Goal Ensure self-adaptivity
of composite ser-
vices in particular for
BPEL.

Restore attacked
business processes
with the aid of
fault-tolerance based
on checkpoint and
rollback.

Increase dependabil-
ity of business pro-
cesses.

Propose a solution
for strong mobility of
composed WS.

Environment Distributed enter-
prises business logic.

Distributed systems
(Busineess).

Distributed systems. Web-services orches-
tration.

Evaluation The travel agency
(BPEL orchestra-
tion).

Recovery Time. Recovery Time. The travel agency
(BPEL).

Used CP ? ? ? Checkpointing poli-
cies.

Recovers BPEL process. Business processes. Performance time in
terms of delivery of
messages.

Orchestration process
using self-healing.

since they always save a unique state for each instance.
But, a recovery state is built after synchronizing
all flow branches which permit saving a consistent
checkpoint. Yet, to our believe using synchronization
for constructing a consistent checkpoint makes this
approach expensive because of the barrier imposed from
synchronizing; hence this solution is slow and with no
concurrency. It is because, other proposed works do
not use checkpointing techniques and have to start the
whole Web service composition or orchestration.

Varela et al. identified, in [6], that while executing
business processes they are susceptible to intrusion
attacks, which can be the cause of severe faults. Fault
tolerance techniques tackle such issues, decreasing risk
of faults and therefore being more dependable, with
the aim of achieving dependability before business
processes automation. The authors claim that, to
resists faults related to integrity attacks fault tolerance
techniques can be applied. Varela and Mart́ınez
proposed OPUS, a framework with many capabilities
developed following the Model-Driven Development
(MDD) and the Model Driven Architecture (MDA).
This framework has four layers: Modeling, Application,
Fault Tolerance and Services. Where the Fault
Tolerance layer is based on checkpointing and rollback
recovery. However, the authors do not mentioned which
checkpointing mechanism they use; often, new and
improved checkpointing mechanisms are proposed in
the literature, we believe that the recovery overhead
time can be reduced making use of such improved
protocols.

In [17], Varela et al. argue that companies need
to intercommunicate exchanging information between
business logics, thus deciding to deploy what is called
Business Process Management System (BPSM). BPSM
aids to automate business processes, but in this context
systems are error prone and can not guarantee a perfect
execution over time. Therefore a new paradigm called
Business Process Management (BPM) arises, defined
as a set of concepts, methods and techniques to aid
the modeling, design, administration, configuration,
enactment and analysis of business processes. For the
business processes life cycle the BPM paradigm follows
diverse stages: design and analysis, configuration,
enactment and diagnosis however each stage may
introduce different fault kinds. For companies a
mean to gain dependability in early design stages,
is indispensable; promoting the reduction of possible
faults and risks. In this work, the authors propose to
follow traditional or classic fault tolerant ideas such
as replication, checkpointing among other, focusing
on the service-oriented business processes context.
However, such approach requires the introduction of
extra components (sensors) into the business process
design, extra time to check each sensor and recovery of
business process service in rollback.

Table 1 summarizes the related works. It exhibits the
aim, the technology used and the environment under
which the authors propose their solutions. Despite
of what the different proposals address with their
solutions, some questions remain open such as: How to
integrate Web services in dynamic environments in an

The Computer Journal, Vol. ??, No. ??, ????



Autonomic Web Services Based on Asynchronous Checkpointing 5

autonomic way? Are the checkpoints taken for rollback
recovery strategies consistent? Are solutions impacting
negatively systems’ performance?

4. AUTONOMIC WEB SERVICES BASED
ON ASYNCHRONOUS CHECKPOINT-
ING MECHANISM

4.1. Architecture

The proposed approach is suitable in distributed
heterogeneous environments; it leverages the Enterprise
Service Bus (ESB) infrastructure which provides
an integration backbone for systems integration.
Additionally the ESB ensures interoperability and offers
several features such as: service discovery, intelligent
routing, message processing and service orchestration
assuring proper format between service providers and
consumers, no matter which programming language
they are written on [23].
In general the functional properties or functional
contract of a Web service are exposed by the Web
Service Description Language (WSDL), in other words
how the service must behave. Whereas the non-
functional properties of a Web service are represented
by the Quality of Service (QoS) parameters, also for
Web service composition, which must be monitored
and analyzed in order to conclude if the service is
behaving in an adequate form or not. Monitoring
an individual Web service, and global Web services
compositions is challenging because of the particularity
presented in each case; since each Web service is
unique. Performance parameters can be monitored
under diverse scopes, for instance by the client side
obtaining parameters like latency, throughput and error
rate to name a few.
The architecture is designed to provide interoperability
between diverse services and systems having different
technologies through standards-based adapters and
interfaces that use Web services technology (as shown
in Fig. 2). Furthermore, each Web service follows the
MAPE loop from the autonomic computing paradigm.
The service layer represents the invocation or the
execution of a required task or service from which
performance information will be extracted.

4.2. Performance measurements

We proposed an asynchronous checkpointing mecha-
nism to support fault tolerance, therefore, we measure
systems’ performance before and after implementing
the CiC mechanism system architecture.

We have chosen the performance measurements per-
tinent to network traffic to evaluate the performances
before and after applying CiC architecture. We mea-
sured the average response time αt and the throughput
βt, in terms of Transactions Per Second (TPS), for mea-
suring the application services and CiC performance.

Web Service
MAPE loop

Service Layer

Custom
Applications

Web Service
MAPE loop

Service Layer

Service 
Orchestration

Web Service
MAPE loop

Service Layer

Java 
Applications

Web Service
MAPE loop

Service Layer

Enterprise
Applications

Web Service
MAPE loop

Service Layer

Legacy
Applications

FIGURE 2. ESB with MAPE loop Architecture.

4.2.1. Average response time (AV GRT )
It is defined as the average time taken by Web service
from the time of sending request by a client till the
time of receiving the reply from the Application Server.
To calculate the response time we use two timestamps,
when the client sends a request (t1) and the time when
the response is received (t2). Then the response time is
calculated as:

RT = t2 − t1 (1)

This is done for each request/response in the system
in play. Latter we average all exchanged messages in
the system, as consequence obtaining AV GRT .

4.2.2. Throughput (βt)
For interactive systems, the system’s throughput is
defined as the ratio of total number of request to the
total time, which has a correlation with response time.
We define the Web services systems performance βt as
the amount of data processes by a Web service in a
given time interval.

4.3. MAPE Cycle

Business processes must be dependable so they are
available when requested; solutions that suggest
augmenting Web services dependability must also be
scalable and even autonomic [22]. In this work we
propose an approach which follows the autonomic
computing MAPE cycle based on CiC protocols (as
shown in Fig. 3).
As illustrated in Fig. 3, the Monitoring module will
initiate the petition, sending a request through the
Enterprise Service Bus system; which is in charge of
routing, adapting or mediating the request if necessary,
in other words the service layer is called. Then the
Monitoring module computes the QoS parameters as
are response time and the throughput. These events
shall be converted into XML-based messages and stored
in a common knowledge base, shared by all Web
services. The Analyze module uses a Diagnosis Engine
that checks the extracted information to decide if the
behavior of the Web service is normal or if it suffers any

The Computer Journal, Vol. ??, No. ??, ????



6 M. Vargas-Santiago, L.A. Morales-Rosales, S.E. Pomares-Hernandez, K. Drira

Monitoring

Analyze Planing

Execution

SP1 SP2 SPN

……..

Request
service

Knowledge
Base

Update
Checkpoint/

rollback

Taskx

Result

Request Response

Actions:
 Restart WS
 Redirect to 

anoter WS
 Rollback 
 No action

FIGURE 3. Autonomic Web services based on CiC protocols.

anomaly or fault. In other words, identifies patterns
in the logs looking for specific problems that occurred
[20]. If the Web service presents normal parameters
then it is immediately returned from Analysis module
to the Web service invoking a service. However, the
message is forward to the analysis process that checks
the new aggregate values with the aim of predicting the
immediate future state of the system, based on Hidden
Markov Model (HMM) [24], Bayesian Networks [25, 26]
or any other method that supports prediction. When
the QoS parameters are predicted as abnormal, an alert
will be sent to the scheduler who will schedule the
next forced checkpoint(s). So that later the Execution
module realizes them. After that if the degradation
happens and the system can not continue then we would
enter the rollback recovery stage.

4.4. Scenario

The autonomic Web services based on communication-
induced checkpointing can be better explained through
an example like the Stock Quote composite Web service
system. Where many consumers of a service invoke
multiple stocks brokers to find out on which to invest,
for clients that pay a subscription, premium users, they
are able to receive in real-time the stock quote service.
The most simple case is shown in Fig. 4 where two
service consumers make a petition to a stock broker or
service provider, however it shows the need for building
consistent global snapshots (CGS). As stipulated by
Netzer and Xu in presence of zigzag paths and causal
paths cannot constitute a CGS [16]. The Fig. depicts
that M0 and M1 build CGS while C1

c1, C2
c2 and C2

p1

cannot be part of a CGS; because of messages m4
and m5 for instance, although no causal path exists
between C1

c1 and C2
p1 a zigzag path does formed by the

aforementioned messages. This means that no CGS can
be formed from the checkpoints involved in a zigzag
path, in other words no CGS can be built that contains
C1

c1 and C2
p1.

WSc1

WSc2

WSp1

m1

m2

m4

m5

W
e
b
 S

e
rv

ic
e
s

Cc1

0

Cc2

0

Cp1

0

Cc1

1

Cc2

1

Cp1

1

Time

M0

m3

Cc1

2

Cc2

2

Cp1

2

M1Consistent Global

 Snapshot

Inconsistent Global

Snaphots

Consistent Global

 Snapshot

FIGURE 4. Example Scenario.

4.5. Algorithm

We present an Algorithm 1 that aims at implementing
the autonomic computing paradigm and integrating
checkpointing mechanism. The aim of our algorithm
is to tackle Web services composition.
Algorithm 1 suggests to initialize all variables (lines
1 to 5), for instance line 4 builds and assigns to C
the systems initial consistent global snapshot (CGS).
The MAPE loop is represented by lines 6 to 31; for
each web service the algorithm starts the Monitoring
by checking the web service policies and process level
at the time of calling the CHECKPOLICIES. Checking
that Web service satisfy the constraints stipulated in
their policies. During any time of this computation
period a new CGS can be build. VALIDATE is used
to detect a set of symptoms returning a non-empty set
when the Web service specifications and policies are not
met. For the best case, when the entire composite is
functioning correctly a no problem is returned (lines
10 and 11). Otherwise in order to have a consistent
view of the system and to have a proper verification
and diagnostic the last known CGS is retrieved from
the common Knowledge Base (KB), line 13.
Then the vector containing the set of symptoms is
Analyzed to find the best known diagnosis, retrieved
from the KB, this is done for each individual Web

The Computer Journal, Vol. ??, No. ??, ????



Autonomic Web Services Based on Asynchronous Checkpointing 7

Algorithm 1 Autonomic Composite Web Services

1: procedure Initialization
2: Initially
3: S ← ∅, P ← ∅, D ← null
4: C ← BUILD INITIAL CGS(WS1,WS2, . . . ,WSn)
5: end procedure
6: procedure MAPE((WS1,WS2, . . . ,WSn))
7: for WS[i], i = 1 to n do
8: FWS[i] ← CHECKPOLICIES(m)
9: end for

10: if FWS[i] == ∅∀FWS[i], i = 1, 2, . . . , n then
11: return “No problem found for Composite WS”
12: else
13: GET LAST CGS((C))
14: for ∀FWS[i], i = 1, 2, . . . , n do
15: if FWS[i] 6= ∅ then
16: D[]← FIND BEST DIAGNOSTIC(FWS[i])
17: if D[] = NULL then
18: D[] ←

CLASSIFY SIMPTOMS(FWS[i])
19: P []← GENERATE PLAN(D[])
20: else
21: P []← FIND BEST PLAN(D[])
22: end if
23: end if
24: end for
25: end if
26: DG ← BUILD GLOBAL DIAGNOSTIC(D[])
27: PG ← FIND BEST GLOBAL PLAN(DG[])∩P []
28: for action ∈ PG do
29: EXECUTE(action, PG)
30: end for
31: end procedure
32: procedure CheckPolicies(m)
33: wsdescr ← GET WS DESCR(wsid[e])
34: wspolicy ← GET WS POLICY (wsdescr)
35: processpolicy ← GET PROCESS POLICY (pid[e])
36: policy ← processpolicy ∩ wspolicy
37: S ← validate(m, policy, wsdescr)
38: return (S)
39: end procedure

service of the composition. When no diagnosis is found,
line 17, the symptoms are classified, line 18, and a
new diagnosis is generated as well as a new plan, line
19. Contrarily, when the diagnostic is found, line 21,
a Plan is retrieved from the KB. This is suitable for
individual Web service, however concerning a composite
Web service the system must build a global diagnostic
of how the overall composite is behaving, line 26. Same
case is applied to individual plans a global plan must
be generated from the known plans and for the overall
system, line 27. Finally, each action must be executed
from the overall global plan carrying out a series of
actions, lines 28 to 29, like rollback, restart a specific
Web service etc.

5. RESULTS AND DISCUSSION

In order to show autonomic Web services based on asyn-
chronous checkpointing (specifically communication-
induced checkpointing) does not have a great impact on
the overall performance of the systems, we performed
several performance tests. Specifically, we measured
response time and transactions per second as a key
performance indicators. For testing we implement our
proposed solution within the following hardware: on a
workstation with 16 GB RAM with Windows 7 64-bit as
operating system. The WSO2 Application Server was
used to deploy to Web services, and for performance
tests diverse concurrent Java clients were emulated, in
order to have an approximate real world deployment.

5.1. Experimental results

Fig. 5 and Fig. 6 show the behavior of the system
when evaluating its performance. For this purpose
several iterations of the scenarios were performed (in
particular each scenario was executed 100 times). That
is, for 20 consumers, 2,000 samples were collected, for
30, 3,000 were collected in increments of 10 to reach
200 where 20,000 samples were collected. Subsequently,
their average was obtained for the response time and
for the transactions per second. The response time
measures the time from when the customer sends a
request to the credit approval service until he receives
his response. Transactions per second measure how
many transactions are executed over a certain period
of time.
From Fig. 5 in a quantitative way, it can be observed
that although the average response time AV GRT

is increased, approximately 30%, this increase is
maintained for both 20 customers requesting the credit
approval service and 200 clients. We observed during
the initial emulation with low number of consumers,
the average response time is slightly higher than the
existing solution without the CiC mechanism. However,
with increasing clients’ requests, more user using Web
services concurrently, our CiC mechanism performs
better with reduced average response time. Interactive
environments present diverse challenges, one of them
has to due with their resource usage, yet our approach
remains constant even when the number of consumers
increases.

The emulation results for the systems’ throughput
(βt), in terms of Transactions Per Second (TPS), are
shown in Fig. 6. Its behavior is quite similar to
the one exhibit by the average response time. In
the early stage of the emulation we observe not much
enhancement in β in comparison to Web services that do
not implement the CiC mechanism. Nevertheless, when
many clients are in play a maximum gain is observed
in throughput. Generally, the enhancements in all the
performance measurements were observed by applying
our approach on the existing Web services considering
many concurrent consumers.

The Computer Journal, Vol. ??, No. ??, ????



8 M. Vargas-Santiago, L.A. Morales-Rosales, S.E. Pomares-Hernandez, K. Drira

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Number of processes

T
im

e
in

m
s

Web Services’ Average Response Time

RT no CiC
RT CiC

FIGURE 5. Response Time Measurement for the system implementing and without implementing CiC.

0 20 40 60 80 100 120 140 160 180 200
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Number of processes

T
P

S

Web services’ Average TPS

TPS no CiC
TPS CiC

FIGURE 6. Transactions per second Measurement for the system implementing and without implementing CiC.

The Computer Journal, Vol. ??, No. ??, ????



Autonomic Web Services Based on Asynchronous Checkpointing 9

TABLE 2. Response Time
#ofProcesses RTnoCiC RTCiC Inc%

20 11.89 18.89 59%
30 11.64 18.91 62%
40 12.42 19.36 56%
50 13.0 19.82 52%
60 14.08 20.83 48%
70 15.05 22.12 47%
80 15.91 21.52 35%
90 16.25 23.65 46%
100 16.79 23.58 40%
110 17.41 24.70 42%
120 18.66 29.52 58%
130 21.17 30.15 42%
140 23.00 32.14 40%
150 22.92 25.81 13%
160 22.33 25.34 13%
170 22.00 25.19 15%
180 19.91 26.26 32%
190 24.49 25.92 15%
200 23.18 26.16 12%

38%

The aforementioned figures give guide to argue that
our approach is scalable and with low implementation
cost (in terms of performance impact). Since the
values recommended by ITU G.1010, which attempts to
standardize the use of Web services, are not violated for
the response time. ITU stipulates the following values:
preferred = 0 − 2 seconds, acceptable = 2 − 4 seconds
and unacceptable = 4 to infinity
Table 2 shows the incremented percentage for the
response time while adopting or not the CiC
mechanism. When 200 clients use concurrently the
same scenario, case most seen in real life, saving
snapshots from the system incurs some performance
degradation. However, adding a fault tolerance feature
under which the system can restore its execution from
previous executed events.
Table 3 shows the systems’ performance degradation,
here we compare system throughput when implement-
ing the CiC mechanism and when not implementing it.
Therefore, given evidence from the performance tests
we can conclude that system performance is not
affected when the mechanism of communication-
induced checkpointing (CiC) is implemented, the
underlying actions corresponding to the rest of the
MAPE loop should be seamlessly executed.

6. CONCLUSIONS AND FUTURE WORK

First, we present an algorithm aimed at Web services
compositions based on autonomic computing and
checkpointing mechanism. Second, we suggested an
approach that implements the Monitoring Analyze
Plan and Execute (MAPE) loop within Web services
based on checkpointing protocols. Afterwards we
presented a Web services compositions to support

TABLE 3. Throughput
#ofProcesses TPSnoCiC TPSCiC Inc%

20 0.064 0.097 34%
30 0.060 0.104 42%
40 0.062 0.110 43%
50 0.064 0.099 35%
60 0.069 0.111 38%
70 0.075 0.116 36%
80 0.079 0.112 30%
90 0.081 0.124 35%
100 0.084 0.124 32%
110 0.090 0.131 32%
120 0.095 0.135 32%
130 0.111 0.140 30%
140 0.120 0.154 21%
150 0.108 0.146 22%
160 0.108 0.148 27%
170 0.119 0.150 28%
180 0.119 0.164 21%
190 0.121 0.167 27%
200 0.123 0.160 23%

31%

fault tolerance using an asynchronous communication-
induced checkpointing (CiC) which is domino effect
free. To prove the feasibility we have presented
an algorithm that leverages the communication-
induced checkpointing, and it is oriented for Web
services compositions interactions. Our algorithm
can be applied to Web services since it supports an
asynchronous communication and a non-coordinated
execution. Our approach reduces forced checkpoints by
establishing certain triggering rules that we call safe
checkpoint conditions. The results show that the CiC
mechanism does not introduce high overhead to current
Web services compositions.
Merging these two widely used paradigms, autonomic
computing and checkpointing protocols, is a challenge
that remains open. However, we showed in this
paper how a CiC mechanism can help upon autonomic
computing . Besides, we consider that an adaptive
CiC based on the systems performance will be
considered. Therefore, the implementation developing
of an Autonomic Service Bus (ASB) based on CiC
protocols will be taken into account.
Another area of interest concerns optimizing the
number of checkpoints, a good strategy since it reduces
a large amount of communication overhead that is
generated by the communication-induced checkpointing
mechanisms. The aforementioned strategy can be
carried out by predicting quality of service variation,
which represents how the systems behave during a
certain period.

ACKNOWLEDGMENT

This work was supported by the National Council
for Science and Technology of Mexico (CONACYT)

The Computer Journal, Vol. ??, No. ??, ????



10 M. Vargas-Santiago, L.A. Morales-Rosales, S.E. Pomares-Hernandez, K. Drira

through the project ID PDCPN2013-01-215421.

REFERENCES

[1] Moody, A., Bronevetsky, G., Mohror, K., and Supinski,
B. D. (2010) Design, modeling, and evaluation of
a scalable multi-level checkpointing system. High
Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for, pp.
1–11. IEEE.

[2] Marzouk, S., Maalej, A., Bouassida, I., and Jmaiel,
M. (2009) Periodic checkpointing for strong mobility
of orchestrated web services. Services-I, 2009 World
Conference on, pp. 203–210. IEEE.

[3] Alferez, G. H. and Pelechano, V. (2011) Context-aware
autonomous web services in software product lines.
Software Product Line Conference (SPLC), 2011 15th
International, pp. 100–109. Ieee.

[4] Immonen, A. and Pakkala, D. (2014) A survey
of methods and approaches for reliable dynamic
service compositions. Service Oriented Computing and
Applications, 8, 129–158.

[5] Yin, J., Chen, H., Deng, S., Wu, Z., and Pu, C. (2009)
A dependable esb framework for service integration.
Internet Computing, IEEE, 13, 26–34.

[6] Vaca, A. and Gasca, R. (2010) Opbus: Fault tolerance
against integrity attacks in business processes. In
Herrero, l., Corchado, E., Redondo, C., and Alonso,
n. (eds.), Computational Intelligence in Security for
Information Systems 2010, Advances in Intelligent and
Soft Computing, 85, pp. 213–222. Springer Berlin
Heidelberg.

[7] Solomon, B., Ionescu, D., Litoiu, M., and Iszlai, G.
(2010) Autonomic computing control of composed web
services. Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, pp. 94–103. ACM.

[8] Kephart, J. and Chess, D. (2003) The vision of
autonomic computing. Computer, 36, 41–50.

[9] Al-Hadid, I. (2011) Airport enterprise service bus
with self-healing architecture (aesb-sh). International
Journal of Aviation Technology, Engineering and
Management (IJATEM), 1, 1–13.

[10] Dan, A. and Narasimhan, P. (2009) Dependable
service-oriented computing. Internet Computing,
IEEE, 13, 11–15.

[11] Elnozahy, E., Alvisi, L., Wang, Y.-M., and Johnson,
D. (2002) A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys
(CSUR), 34, 375–408.

[12] Simon, A., Hernandez, S. P., and Cruz, J. P. (2013)
A delayed checkpoint approach for communication-
induced checkpointing in autonomic computing. WET-
ICE, pp. 56–61. IEEE.

[13] Lamport, L. (1978) Time, clocks, and the ordering of
events in a distributed system. Communications of the
ACM, 21, 558–565.

[14] Hernandez, S. P., Fanchon, J., and Drira, K. (2004)
The immediate dependency relation: an optimal way
to ensure causal group communication. Annual Review
of Scalable Computing, 3, 61–79.

[15] Wang, Y.-M. and Fuchs, W. K. (1993) Lazy checkpoint
coordination for bounding rollback propagation. Reli-
able Distributed Systems, 1993. Proceedings., 12th Sym-
posium on, pp. 78–85. IEEE.

[16] Netzer, R. and Xu, J. (1995) Necessary and sufficient
conditions for consistent global snapshots. IEEE
Transactions on Parallel and distributed Systems, 6,
165–169.

[17] Vaca, A., Gasca, R., Borrego, N., and Hidalgo, S. P.
(2011) Fault tolerance framework using model-based
diagnosis: towards dependable business processes.
International Journal on Advances in Security, 4, 11–
22.

[18] Marzouk, S., Maalej, A., and Jmaiel, M. (2010)
Aspect-oriented checkpointing approach of composed
web services. In Daniel, F. and Facca, F. (eds.),
Current Trends in Web Engineering, Lecture Notes in
Computer Science, 6385, pp. 301–312. Springer Berlin
Heidelberg.

[19] Avizienis, A., Laprie, J., Randell, B., and Landwehr,
C. (2007) Basic concepts and taxonomy of dependable
and secure computing. Nato security through science
series e human and societal dynamics, 23, 10.

[20] Gurguis, S. and Zeid, A. (2005) Towards autonomic
web services: Achieving self-healing using web services.
ACM SIGSOFT Software Engineering Notes, 30, 1–5.

[21] Moga, A., Soos, J., Salomie, I., and Dinsoreanu,
M. (2006) Adding self-healing behaviour to dynamic
web service composition. Proceedings of the 5th
WSEAS International Conference on Data Networks,
Communication and Computers, Bucharest, Romania,
pp. 206–211.

[22] Tian, W., Zulkernine, F., Zebedee, J., Powley, W., and
Martin, P. (2005) Architecture for an autonomic web
services environment. WSMDEIS, pp. 32–44. Citeseer.

[23] Chappell, D. (2004) Enterprise service bus. O’Reilly
Media, Inc.

[24] Halima, R. B., Guennoun, M. K., Drira, K., and Jmaiel,
M. (2008) Providing predictive self-healing for web
services: a qos monitoring and analysis-based approach.
Journal of Information Assurance and Security, 3, 175–
184.

[25] Koh-Dzul, R., Vargas-Santiago, M., Diop, C., Exposito,
E., Moo-Mena, F., and Gómez-Montalvo, J. (2014)
Improving esb capabilities through diagnosis based on
bayesian networks and machine learning. Journal of
Software, 9.

[26] Koh-Dzul, R., Vargas-Santiago, M., Diop, C., Exposito,
E., and Moo-Mena, F. (2013) A smart diagnostic model
for an autonomic service bus based on a probabilistic
reasoning approach. Ubiquitous Intelligence and
Computing, 2013 IEEE 10th International Conference
on and 10th International Conference on Autonomic
and Trusted Computing (UIC/ATC), pp. 416–421.
IEEE.

The Computer Journal, Vol. ??, No. ??, ????




