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DISTRIBUTIONALLY ROBUST POLYNOMIAL

CHANCE-CONSTRAINTS UNDER MIXTURE AMBIGUITY SETS

JEAN B. LASSERRE AND TILLMANN WEISSER

Abstract. Given X ⊂ Rn, ε ∈ (0, 1), a parametrized family of probabil-

ity distributions (µa)a∈A on Ω ⊂ Rp, we consider the feasible set X∗ε ⊂ X
associated with the distributionally robust chance-constraint

X∗ε = {x ∈ X : Probµ[f(x, ω) > 0] > 1− ε, ∀µ ∈Ma},
where Ma is the set of all possibles mixtures of distributions µa, a ∈ A. For

instance and typically, the family Ma is the set of all mixtures of Gaussian

distributions on R with mean and standard deviation a = (a, σ) in some com-
pact set A ⊂ R2. We provide a sequence of inner approximations Xd

ε = {x ∈
X : wd(x) < ε}, d ∈ N, where wd is a polynomial of degree d whose vector

of coefficients is an optimal solution of a semidefinite program. The size of
the latter increases with the degree d. We also obtain the strong and highly

desirable asymptotic guarantee that λ(X∗ε \Xd
ε) → 0 as d increases, where λ

is the Lebesgue measure on X. Same results are also obtained for the more
intricated case of distributionally robust “joint” chance-constraints.

1. Introduction

Motivation. In many optimization and control problems uncertainty is often mod-
eled by a noise ω ∈ Ω ⊂ Rp (following some probability distribution µ), which
interacts with the decision variable of interest1 x ∈ X ⊂ Rn via some feasibility
constraint of the form f(x, ω) > 0 for some function f : X → R. In the robust
approach one imposes the constraint x ∈ XR := {x ∈ X : f(x, ω) > 0, ∀ω ∈ Ω}
on the decision variable x. However, sometimes the resulting set XR of robust
decisions can be quite small or even empty.

On the other hand, if one knows the probability distribution µ of the noise
ω ∈ Ω, then a more appealing probabilistic approach is to tolerate a violation of
the feasibility constraint f(x, ω) > 0, provided that this violation occurs with small
probability ε > 0, fixed à priori. That is, one imposes the less conservative chance-
constraint Probµ(f(x, ω) > 0) > 1 − ε, which results in the larger “feasible set”
of decisions

(1.1) Xµ
ε := {x ∈ X : Probµ(f(x, ω) > 0) > 1− ε }.

In both the robust and probabilistic cases, handling XR or Xµ
ε can be quite chal-

lenging and one is interested in respective approximations that are easier to handle.
There is a rich literature on chance-constrained programming since Charnes and

*The work of the two authors was supported by the European Research Council (ERC) via an
ERC-Advanced Grant for the # 666981 project TAMING.

1As quoted from R. Henrion, the biggest challenge from the algorithmic and theoretical points
of view arise in chance constraints where the random and decision variables cannot be decoupled.

https://www.stoprog.org/what-stochastic-programming
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Cooper [8], Miller [36], and the interested reader is referred to Henrion [18, 19],
Dabbene [5], Li et al. [34], Prékopa [39] and Shapiro [41] for a general overview
of chance constraints in optimization and control. Of particular interest are uncer-
tainty models and methods that allow to define tractable approximations of Xµ

ε .
Therefore an important issue is to analyze under which conditions on f , µ and the
threshold ε, the resulting chance constraint (1.1) defines a convex set Xµ

ε ; see e.g.
Henrion and Strugarek [19], van Ackooij [1], Nemirovski and Shapiro [38], Wang
et al. [42], and the recent work of van Ackooij and Malick [2]. For instance, in
[2] the authors consider joint chance-constraint (f(x, ω) ∈ Rk) and show that Xµ

ε

is convex for sufficiently small ε if ω is an elliptical random vector and f is con-
vex in x. A different approach to model chance constraints was considered by the
first author in [27]. It uses the general Moment-Sums-of-Squares (Moment-SOS)
methodology described in [30]. Related earlier work by Jasour et al. [23] have also
used this Moment-SOS approach to solve some control problems with probabilistic
constraints.

However, one well-sounded critic to these probabilistic approaches is that it
relies on the knowledge of the exact distribution µ of the noise ω, which in many
cases may not be a realistic assumption. Therefore modeling the uncertainty via a
single known probability distribution µ is questionable, and may render the chance-
constraint Probµ(f(x, ω) > 0) > 1−ε in (1.4) counter-productive. It would rather
make sense to assume a partial knowledge on the unknown distribution µ of the
noise ω ∈ Ω.

To overcome this drawback, distributionally robust chance-constrained problems
consider probabilistic constraints that must hold for a whole family of distributions
and typically the family is characterized by the support and first and second-order
moments; see for instance Delage and Ye [11], Edogan and Iyengar [14], and Zymler
et al. [51]. For instance Calafiore and El Ghaoui [6] have shown that when f is bilin-
ear then a tractable characterization via second-order cone constraints is possible.
Recently Yang and Xu [49] have considered non linear optimization problems where
the constraint functions are concave in the decision variables and quasi-convex in
the uncertain parameters. They show that such problems are tractable if the un-
certainty is characterized by its mean and variance only; in the same spirit see also
Chao Duan et al. [7], Chen et al. [9], Hanasusanto et al. [16, 17], Tong et al. [45],
Wang et al. [42], Xie and Ahmed [46, 47] and Zhang et al. [50] for other tractable
formulations of distributionally robust chance-constrained for optimal power flow
problems.

The uncertainty framework. We also consider a framework where only partial
knowledge of the uncertainty is available. But instead of assuming knowledge of
some moments like in e.g. [49], we assume that typically the distribution µ can be
any mixture of probability distributions µa ∈ P(Ω) for some family {µa}a∈A ⊂
P(Ω) that depend on a parameter vector a ∈ A ⊂ Rt. That is:

µ(B) =

∫
A

µa(B) dϕ(a), ∀B ∈ B(Ω),

where ϕ ∈P(A) can be any probability distribution on A. If dµa(ω) = u(ω,a) for
some density u, then by Fubini-Tonelli’s Theorem [13, Theorem p. 85], the above
measure µ is well-defined. For instance, for Value-at-Risk optimization (where f
is bilinear) El Ghaoui et al. [15] suggest mixtures of Gaussian measures, see [15,
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§1.3], and more generally, families of probability measures with convex uncertainty
sets on first and second-order moments2.

Notice that in this framework no mean, variance or higher order moments have
to be estimated. Hence it can be viewed as an alternative and/or a complement to
those considered in e.g. [11, 6, 14, 49] when a good estimation of such moments
is not possible. Indeed in many cases, providing a box (where the mean vector
can lie) and a possible range δ I � Σ � δ I for the covariance matrix Σ, can be
more realistic than providing a single mean vector and a single covariance matrix.
Below are some examples of possible mixtures. In particular it should be noted that
mixtures of Gaussian measures (Ex. 1.1) are used in statistics precisely because of
their high modeling power. Indeed they can approximate quite well a large family
of distributions of interest in applications; see e.g. Dizioa et al. [12], Marron and
Wand [35], Wang et al. [44], and the recent survey of Xu [48]. Similarly, the family
of measures on Ω with SOS-densities (Ex. 1.7) discussed in de Klerk et al. [10]
also have a great modeling power with nice properties.

Example 1.1 (Mixtures of Gaussian’s). Ω = R, a = (a, σ) ∈ A := [a, a]× [σ, σ] ⊂
R2, with σ > 0, and

dµa(ω) =
1√
2πσ

exp(− (ω − a)2

2σ2
) dω,

that is µ is a mixture of Gaussian probability measures with mean-deviation couple
(a, σ) ∈ A.

Example 1.2 (Mixtures of Exponential’s). Ω = R+, a = a ∈ A := [a, a] ⊂ R with
a > 0, and

dµa(ω) =
1

a
exp(−ω/a) dω,

that is, µ is a mixture of exponential probability measures with parameter 1/a,
a ∈ A.

Example 1.3 (Mixtures of elliptical’s). In [2] the authors have considered chance-
constraints for the class of elliptical random vectors. In our framework and in the
univariate case, Ω = R, a = (a, σ) ∈ A := [a, a] × [σ, σ] ⊂ R2, with σ > 0. Let
θ : R+ → R be such that

∫∞
0
tkdθ(t) <∞ for all k, and let p =

∫
R θ(t

2)dt. Then:

dµa(ω) =
1

pσ
θ

(
(ω − a)2

σ2

)
dω, a ∈ A.

Example 1.4 (Mixtures of Poisson’s). Ω = N and a = a ∈ A := [a, a] ⊂ R with
a > 0, and

µa(k) = exp(−a)
ak

k!
, k = 0, 1, . . . ; a ∈ A,

that is, µ is a mixture of Poisson probability measures with parameter a ∈ A.

Example 1.5 (Mixtures of Binomial’s). Let Ω = {0, 1, . . . , N} and a = a ∈ A :=
[a, a] ⊂ [0, 1], and

µa(k) =

(
N

k

)
ak(1− a)N−k, k = 0, 1, . . . N.

2This more general uncertainty framework can also be analyzed with our approach (hence with
arbitrary polynomial f).
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Example 1.6. With Ω = R one is given a finite family of probability measures
(µi)i=1,...,p ⊂P(Ω). Then a = a ∈ A := {1, . . . , p} ⊂ R, and

dµ(ω) =

p∑
a=1

λa dµa(ω);
∑
a∈A

λa = 1; λa ≥ 0,

that is, µ is a finite convex combination of the probability measures (µa).

Example 1.7 (Mixtures of SOS densities). Recently, de Klerk et al. [10] have
introduced measures with SOS densities to model some distributionally robust op-
timization problems because of their high modeling power. This family also fits
our framework. Let φ be a reference measure on Ω with known moments. Then
A = Σ[x]d and dµa(ω) = p(ω) dφ(ω) for some p ∈ Σ[ω]d such that

∫
Ω
p dφ = 1,

where Σ[ω]d is the space of SOS polynomials of degree at most 2d. A measure
µa ∈Ma is parametrized by the Gram matrix a = X � 0 of its density p ∈ Σ[ω]d.
For illustration purpose consider the univariate case Ω ⊂ R and p ∈ Σ[ω]2. Then

p(ω) =

 1
ω
ω2

T ·
 X11 X12 X13

X12 X22 X23

X13 X23 X33

 ·
 1

ω
ω2

 ·
and for every integer k, the moment

∫
Ω
ωk dµa(ω) =

∫
Ω
ωk p(ω) dφ(ω) is a linear

function of the coefficients of p and hence of the parameter a = X. If Mφ denotes
the moment matrix of the reference measure φ on Ω, then A = {X = XT ∈
R3×3 : X � 0; 〈Mφ,X〉 = 1} is a compact and convex basic semi-algebraic set.3

Additional bound constraints on moments are easily included as linear constraints
on the coefficients of p.

All families Ma described above share an important property that is crucial for
our purpose: Namely, all moments of µa ∈ Ma are polynomials in the parameter
a ∈ A. That is, for each β,

∫
Ω
ωβdµa(ω) = pβ(a) for some polynomial pβ ∈ R[a].

Remark 1.8. Another possible and related ambiguity set is to consider the family
of measures µ on Ω whose first and second-order moments a = (m,σ) belong to
some prescribed set A. The resulting ambiguity set has been already used in several
contributions like e.g. [9, 15, 16, 17, 51]; however, as discussed in [10], the resulting
ambiguity set might be too overly conservative (even in the case where A is the
singleton {(m,σ)}). The methodology developed in this paper also applies with
some ad-hoc modification; see §5.1.

In this uncertainty framework one now has to consider the set:

(1.2) Ma := {
∫

A

dµa(ω)ϕ(da) : ϕ ∈P(A) },

where P(A) is the set of probability measures on A, and in a distributionally robust
chance-constraint approach, with ε > 0 fixed, one considers the set:

(1.3) X∗ε := {x ∈ X : Probµ(f(x, ω) > 0) > 1− ε, ∀µ ∈Ma },
as new feasible set of decision variables. In general X∗ε is non-convex and can even
be disconnected. Therefore obtaining accurate approximations of X∗ε is a difficult

3Write the characteristic polynomial of X in the form t 7→ t3 − p2(X) t2 + p1(X) t − p0(X)
with p2, p1, p0 ∈ R[X]. Then A = {X : pi(X) ≥ 0, i = 0, 1, 2; 〈Mφ,X〉 = 1}.
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challenge. Our ultimate goal is to replace optimization problems in the general
form:

(1.4) min
x
{u(x) : x ∈ C ∩ X∗ε},

(where u is a polynomial) with

(1.5) min
x
{u(x) : x ∈ C ∩ W },

where the uncertain parameter ω has disappeared from the description of a suitable
inner approximation W of X∗ε, with W := {x ∈ X : w(x) ≤ 0} for some polynomial
w. So if C is a basic semi-algebraic set4 then (1.5) is a standard polynomial opti-
mization problem. Of course the resulting optimization problem (1.5) may still be
hard to solve because the set C ∩W is not convex in general. But this may be the
price to pay for avoiding a too conservative formulation of the problem. However,
since in formulation (1.5) one has got rid of the disturbance parameter ω, one
may then apply the arsenal of Non Linear Programming algorithms to get a local
minimizer of (1.5). If n is not too large or if some sparsity is present in problem
(1.5) one may even run a hierarchy of semidefinite relaxations to approximate its
global optimal value; for more details on the latter, the interested reader is referred
to [30].

Contribution. We consider approximating X∗ε as a challenging mathematical prob-
lem and explore whether it is possible to solve it under minimal assumptions on
f and/or Ma. Thus the focus is more on the existence and definition of a proto-
type “algorithm” (or approximation scheme) rather than on its “scalability”. Of
course the latter issue of scalability is important for practical applications and we
hope that the present contribution will provide insights on how to develop more
“tractable” (but so more conservative) versions.

Our contribution is not in the line of research concerned with “tractable approx-
imations” of (1.3) (e.g. under some restrictions on f and/or the family Ma) and
should be viewed as complementary to previously cited contributions whose focus
is on scalability.

Given ε > 0 fixed, a family Ma (e.g. as in Examples 1.1, 1.2, 1.3, 1.4, 1.5, 1.6)
and an arbitrary polynomial f , our main contribution is to provide rigorous and
accurate inner approximations (Xd

ε)d∈N ⊂ X∗ε of the set X∗ε, that converge to X∗ε
in a precise sense as d increases. More precisely:

(i) We provide a nested sequence of inner approximations of the set X∗ε in (1.3),
in the form:

(1.6) Xd
ε := {x ∈ X : wd(x) < ε }, d ∈ N,

where wd is a polynomial of degree at most d, and Xd
ε ⊂ Xd+1

ε ⊂ X∗ε for every d.

(ii) We obtain the strong and highly desirable asymptotic guarantee:

(1.7) lim
d→∞

λ(X∗ε \Xd
ε) = 0,

where λ is the Lebesgue measure on X. To the best of our knowledge it is the first
result of this kind at this level of generality. Importantly, the “volume” convergence

4A basic semi-algebraic set of Rn is of the form {x ∈ Rn : gj(x) ≥ 0, j ∈ J} for finitely many

polynomials (gj)j∈J .
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(1.7) is obtained with no assumption of convexity on the set X∗ε (and indeed in
general X∗ε is not convex).

(iii) Last but not least, the same approach is valid with same conclusions for the
more intricate case of joint chance-constraints, that is, probabilistic constraints of
the form

Probµ(fj(x, ω) > 0, j = 1, . . . , sf ) > 1− ε, ∀µ ∈Ma,

(for some given polynomials (fj) ⊂ R[x, ω]). Remarkably, such constraints which
are notoriously difficult to handle in general, are relatively easy to incorporate in
our formulation.

We emphasize that our approach is a non trivial extension of the numerical
scheme proposed in [27] for approximating X∗ε when Ma is a singleton (i.e., for
standard chance-constraints).

Methodology. The approach that we propose for determining the set Xd
ε defined

in (1.6) is very similar in spirit to that in [21] and [23], and a non trivial extension
of the more recent work [27] where only a single distribution µ is considered. It
is an additional illustration of the versatility of the Generalized Moment Problem
(GMP) model and the moment-SOS approach outside the field of optimization.
Indeed we also define an infinite-dimensional LP problem P in an appropriate
space of measures and a sequence of semidefinite relaxations (Pd)d∈N of P, whose
associated monotone sequence of optimal values (ρd)d∈N converges to the optimal
value ρ of P. An optimal solution of this LP is a measure φ∗ on X × Ω. In its

disintegration φ̂∗(dω|x) dx, the conditional probability φ̂∗(dω|x) is a measure µa(x),
for some a(x) ∈ A, which identifies the worst-case distribution at x ∈ X.

At an optimal solution of the dual of the semidefinite relaxation (Pd), we obtain
a polynomial wd of degree 2d whose sub-level set {x ∈ X : wd(x) < 0} is precisely
the desired approximation Xd

ε of X∗ε in (1.3); in fact the sets (Xd
ε)d∈N provide a

sequence of inner approximations of X∗ε.
As in [27], the support Ω of µ ∈ Ma and the set {(x, ω) : f(x, ω) > 0} are

not required to be compact, which includes the important case where µ can be a
mixture of normal or exponential distributions.

As already mentioned, our methodology is not a straightforward extension of
the work in [27] where Ma is a singleton and the moments of this distribution
are assumed to be known. Indeed in the present framework and in contrast to the
singleton case treated in [27], we do not know a sequence of moments because we do
not know the exact distribution µ of the noise ω. For instance, some measurability
issues (e.g. existence of a measurable selector) not present in [27], arise. Also
and in contrast to [27], we cannot define outer approximations by passing to the
complement of X∗ε.

Importantly, we also describe how to accelerate the convergence of our approx-
imation scheme. It consists of adding additional constraints in our relaxation
scheme, satisfied at every feasible solution of the infinite-dimensional LP. These
additional constraints come from a specific application of Stokes’ theorem in the
spirit of its earlier application in [27] but more intricate and not as a direct ex-
tension. Indeed, in the framework of our infinite-dimensional LP, it is required
to define a measure with support on X×Ω×A (instead of X×Ω in [27]) which
when passing to relaxations of the LP, results in semidefinite programs of larger size
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(hence more difficult to solve). However, this price to pay can be profitable because
the resulting convergence is expected to be significantly faster (as experienced in
other contexts).

Pros and cons. On a positive side, our approach solves a difficult and challenging
mathematical problem as it provides a nested hierarchy of inner approximations
(Xd

ε)d∈N of X∗ε which converges to X∗ε as d increases, a highly desirable feature.
Also for every (and especially small) d, whenever not empty the set Xd

ε is a valid
(perhaps very conservative if d is small) inner approximation of X∗ε which can be
exploited in applications if needed.

On a negative side, this methodology is computationally expensive, especially to
obtain a very good inner approximation Xd

ε of X∗ε. Therefore and so far, for accurate
approximations this approach is limited to relatively small size problems. But
again, recall that this approximation problem is a difficult challenge and at least,
our approach with strong asymptotic guarantees provides insights and indications
on possible routes to follow if one wishes to scale the method to address larger size
problems. For instance, an interesting issue not discussed here is to investigate
whether sparsity patterns already exploited in polynomial optimization (e.g. as in
Waki et al. [43]) can be exploited in this context.

2. Notation, definitions and preliminaries

2.1. Notation and definitions. Let R[x] be the ring of polynomials in the vari-
ables x = (x1, . . . , xn) and R[x]d be the vector space of polynomials of degree at

most d whose dimension is s(d) :=
(
n+d
n

)
. For every d ∈ N, let Nnd := {α ∈ Nn :

|α| (=
∑
i αi) ≤ d}, and let vd(x) = (xα), α ∈ Nnd , be the vector of monomials, i.e.,

the canonical basis (xα)|α|≤d of R[x]d. A polynomial p ∈ R[x]d can be written

x 7→ p(x) =
∑
α∈Nn

pα xα = 〈p,vd(x)〉,

for some vector of coefficients p = (pα) ∈ Rs(d). For a real symmetric matrix A
the notation A � 0 (resp. A � 0) stands for A is positive semidefinite (psd) (resp.
positive definite (pd)). Denote by Σ[x]d the convex cone of polynomials that are
sums-of-squares (SOS) of degree at most 2d, i.e.,

p ∈ Σ[x]d ⇐⇒ p(x) =
∑
k

pk(x)2, ∀x ∈ Rn,

for finitely many polynomials pk ∈ R[x]d. The convex cone Σ[x]d is semidefinite
representable. Indeed: p ∈ Σ[x]d if and only if there exists a real symmetric metric
X � 0 of size s(d) such that pα = 〈X,Bα〉 for all α ∈ Nn, and where the symmetric
matrices (Bα)α∈Nn2d come from writing:

vd(x) vd(x)T =
∑
α∈Nn2d

xα Bα.

For more details the interested reader is referred to [30].
Given a closed set X ⊂ R`, denote by B(X ) the Borel σ-field of X , P(X ) the

space of probability measures on X and by B(X ) the space of bounded measurable
functions on X . We also denote by M (X ) the space of finite signed Borel measures
on X and by M+(X ) its subset of finite (positive) measures on X .
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Moment matrix. Given a sequence y = (yα)α∈Nn , let Ly : R[x]→ R be the linear
(Riesz) functional

f (=
∑
α

fα xα) 7→ Ly(f) :=
∑
α

fα yα.

Given y and d ∈ N, the moment matrix associated with y, is the real symmetric
s(d)× s(d) matrix Md(y) with rows and columns indexed in Nnd and with entries

Md(y)(α, β) := Ly(xα+β) = yα+β , α, β ∈ Nnd .

Equivalently Md(y) = Ly(vd(x)vd(x)T ) where Ly is applied entrywise.

Example 2.1. For illustration, consider the case n = 2, d = 2. Then:

M2(y) =


y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 .

A sequence y = (yα)α∈Nn has a representing measure µ if yα =
∫

xα dµ for all
α ∈ Nn; if µ is unique then µ is said to be moment determinate.

A necessary condition for the existence of such a µ is that Md(y) � 0 for all d.
Except for in the univariate case n = 1, this is only a necessary condition. However
the following sufficient condition in [30, Theorem 3.13] is very useful:

Lemma 2.2. ([30]) If y = (yα)α∈Nn satisfies Md(y) � 0 for all d = 0, 1, . . . and

(2.1)

∞∑
k=1

Ly(x2k
i )−1/2k = +∞, i = 1, . . . , n,

then y has a representing measure, and in addition µ is moment determinate.

Condition (2.1) due to Nussbaum is the multivariate generalization of its earlier
univariate version due to Carleman; see e.g. [30].

Localizing matrix. Given a sequence y = (yα)α∈Nn , and a polynomial g ∈
R[x], the localizing moment matrix associated with y and g, is the real symmetric
s(d)× s(d) matrix Md(g y) with rows and columns indexed in Nnd and with entries

Md(g y)(α, β) := Ly(g(x) xα+β)

=
∑
γ

gγ yα+β+γ , α, β ∈ Nnd .

Equivalently Md(g y) = Ly(g(x) vd(x)vd(x)T ) where Ly is applied entrywise.

Example 2.3. For illustration, consider the case n = 2, d = 1. Then the localiza-
tion matrix associated with y and g = x1 − x2, is:

M1(gy) =

 y10 − y01 y20 − y11 y11 − y02

y20 − y11 y20 − y21 y21 − y12

y11 − y02 y21 − y12 y12 − y02

 .
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Disintegration. Given a probability measure µ on a cartesian product X × Y of
topological spaces, we may decompose µ into its marginal µx on X and a stochastic
kernel (or conditional probability measure) µ̂(dy|·) on Y given X , that is:

• For every x ∈ X , µ̂(dy|x) ∈P(Y), and
• For every B ∈ B(Y), the function x 7→ µ̂(B|x) is measurable.

Then

µ(A×B) =

∫
A

µ̂(B|x)µx(dx), ∀A ∈ B(X ), B ∈ B(Y).

2.2. The family Ma. Let Ω ⊂ Rp be the “noise” (or disturbance) space. Let
A ⊂ Rt be a compact set and for every a ∈ A, let µa ∈P(Ω).

Assumption 2.4. The set {µa : a ∈ A} ⊂P(Ω) satisfies the following:
(i) For every B ∈ B(Ω), the function a 7→ µa(B) is measurable.
(ii) For every β ∈ N:

(2.2)

∫
Ω

ωβ dµa(ω) = pβ(a), ∀a ∈ A,

for some polynomial pβ ∈ R[a].
(iii) For every a ∈ A and every polynomial g ∈ R[ω], µa({ω : g(ω) = 0}) = 0.
(iv) For every bounded measurable (resp. bounded continuous) function q on X×Ω,
the function

(x,a) 7→ Q(x,a) :=

∫
Ω

q(x, ω) dµa(ω),

is bounded measurable (resp. bounded continuous) on X×A.

For instance if dµa(ω) = θ(a, ω) dω for some measurable density θ(a, ·) on Ω, then
Assumption 2.4(i) follows from Fubini-Tonelli’s Theorem [13], moreover Assumption
2.4(iii) is also satisfied. Assumption 2.4(ii) is satisfied in all Examples 1.1-1.7, as
well as in their multivariate extensions. Assumption 2.4(iv) is satisfied in Example
1.1, 1.2, 1.3, 1.6, 1.7, and their natural multivariate extensions. For instance, in
Example 1.1 where Ma is the set of all possible mixtures of univariate Gaussian
probability distributions with mean and standard deviation (a, σ) ∈ A, the function

Q(x,a) :=

∫
Ω

q(x, ω) dµa =
1√
2π

∫
Ω

q(x, (σ ω + a)) exp(−ω2/2) dω,

is bounded measurable (resp. continuous) in a ∈ A whenever q is bounded mea-
surable (resp. continuous) on X×Ω.

If the disturbance space Ω is non-compact, we need in addition:

Assumption 2.5. (If Ω ⊂ Rp is unbounded):
There exists c, γ > 0 such that for every i = 1, . . . , p:

(2.3) sup
a∈A

∫
Ω

exp(c |ωi|) dµa(ω) < γ.

Note that this assumption is satisfied in Example 1.1, 1.2, 1.3, 1.6, 1.7, and
their natural multivariate extensions.

Definition 2.6. The set Ma ⊂ P(Ω) is the space of all possible mixtures of
probability measures µa, a ∈ A. That is, µ ∈ Ma if and only if there exists
ϕ ∈P(A) such that

(2.4) µ(B) =

∫
A

µa(B) dϕ(a), ∀B ∈ B(Ω).
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(By Assumption 2.4(i), µ is well-defined.) In particular µa ∈Ma for all a ∈ A.

Let X ⊂ Rn and A ⊂ Rt be compact basic semi-algebraic sets and let λ be the
Lebesgue measure on X, scaled to be a probability measure on X. We assume that
X is simple enough so that all moments of λ are easily calculated or available in
closed-form. Typically X is a box, a simplex, an ellipsoid, etc. The set Ω ⊂ Rp is
also a basic semi-algebraic set not necessarily compact (for instance it can be Rp
or the positive orthant Rp+).

Definition 2.7. Given a measure ψ on X×A define ψ′ on X×A×Ω by:

ψ′(B,C,D) =

∫
B×C

µa(D) dψ(x,a), B ∈ B(X), C ∈ B(A), D ∈ B(Ω),

which is well defined by Assumption 2.4(i). Its marginal ψ′x,a on X ×A is ψ and

ψ̂′(·|x,a) = µa, for all (x,a) ∈ X×A.

Recall that B(X×Ω) is the space of bounded measurable functions on X×Ω.
Define the linear mapping T : B(X×Ω)→ B(X×A) by:

(2.5) g 7→ Tg(x,a) :=

∫
Ω

g(x, ω) dµa(ω), a ∈ A,

which is well-defined by Assumption 2.4(iv). Therefore one may define the adjoint
linear mapping T∗ : M (X×A)→M (X×Ω) by:

〈g,T∗ψ〉
(

=

∫
X×Ω

g(x, ω) dT∗ψ(x, ω)

)
= 〈Tg, ψ〉(

=

∫
X×A

(∫
Ω

g(x, ω) dµa(ω)

)
dψ(x,a)

)
,

for all g ∈ B(X×Ω) and all ψ ∈M (X×A).

Lemma 2.8. Let T be as in (2.5). Then for every ψ ∈M+(X×A), T∗ψ = ψ′x,ω
where ψ′x,ω is the marginal on X × Ω of the measure ψ′ ∈ M+(X × A × Ω) in
Definition 2.7.

Proof. Let g ∈ B(X×Ω) be fixed. Then:

〈g,T∗ψ〉 = 〈Tg, ψ〉 =

∫
X×A

(∫
Ω

g(x, ω)µa(dω)

)
dψ(x,a)

=

∫
X×A

(∫
Ω

g(x, ω) ψ̂′(dω|x,a)

)
dψ(x,a)

=

∫
X×A×Ω

g(x, ω) dψ′(x,a, ω)

=

∫
X×Ω

g(x, ω) dψ′x,ω(x, ω) = 〈g, ψ′x,ω〉.

As this holds for every g ∈ B(X×Ω), it follows that T∗ψ = ψ′x,ω. �

Lemma 2.9. Let Assumption 2.4 hold. Then the mapping T in (2.5) extends to
polynomials. Moreover, T(R[x, ω]) ⊂ R[x,a] and

(2.6) 〈h,T∗ψ〉 = 〈Th, ψ〉, ∀h ∈ R[x, ω], ∀ψ ∈M+(X×A).
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Proof. Let h ∈ R[x, ω] be fixed, arbitrary and write h(x, ω) =
∑
αβ hαβ xα ωβ .

Then by Assumption 2.4(ii):

Th(x,a) :=
∑
α,β

hαβ xα
∫

Ω

ωβ dµa =
∑
α,β

hαβ xα pβ(a) ∈ R[x,a].

Hence 〈Th, ψ〉 =
∫
x×A

∑
α,β hαβxα pβ(a) dψ(x,a). Next, recalling the definition of

ψ′ and ψ′x,ω:∫
X×A

∑
α,β

hαβ xα pβ(a) dψ(x,a) =

∫
X×A

(∫
Ω

h(x, ω)µa(dω)

)
dψ(x,a)

=

∫
X×Ω×A

h(x, ω) dψ′(x, ω,a)

=

∫
X×Ω

h(x, ω) dψ′x,ω(x, ω)

=

∫
X×Ω

h(x, ω) dT∗ψ = 〈h,T∗ψ〉,

which yields (2.6). �

3. An ideal infinite-dimensional LP problem

Let X ⊂ Rn, Ω ⊂ Rp and A ⊂ Rt be basic semi-algebraic sets. The sets X
and A are assumed to be compact. The ambiguity set Ma is defined in (1.2). Let
f ∈ R[x, ω] be a given polynomial and with ε > 0 fixed, consider the set X∗ε defined
in (1.2). Let

K := {(x, ω) ∈ X×Ω : f(x, ω) ≤ 0}(3.1)

Kx := {ω ∈ Ω : (x, ω) ∈ K }, x ∈ X.(3.2)

3.1. Basic idea and link with [27]. Suppose for the moment that Ma is the
singleton {µ}. To approximate the set X∗ε in (1.3) from inside, the basic idea in
[27] is to consider the infinite-dimensional LP:

(3.3) ρ = sup
φ∈M+(K)

{φ(K) : φ ≤ λ⊗ µ }.

A dual of (3.3) is the infinite-dimensional LP:

(3.4) ρ∗ = inf
w∈R[x,ω]

{
∫

X×Ω

w(x, ω) d(λ⊗ µ) : w ≥ 1 on K; w ≥ 0 on X× Ω}.

It is proved in [27] that (3.3) has a unique optimal solution dφ∗ = 1K(x, ω)d(µ⊗λ)
and ρ = ρ∗ =

∫
X
µ(Kx)λ(dx). In addition, for every feasible solution w ∈ R[x, ω],

let h ∈ R[x] be the polynomial x 7→
∫
Ω
w(x, ω) dµ(ω). Since w ≥ 0 on X × Ω

and w ≥ 1 on K then h(x) ≥ µ(Kx) for all x ∈ X and therefore {x : h(x) <
ε} ⊂ {x : µ(Kx) < ε} = X∗ε . Further, [27] defines a hierarchy of semidefinite
relaxations of (3.3) such that optimal solutions of their associated semidefinite
duals provide polynomials hd ∈ R[x]2d of increasing degree d with the property
that λ(X∗ε \ {x : hd(x) < ε}) → 0 a d →∞. This was possible because one knows
exactly and in closed form all moments of the product measure λ⊗ µ on X×Ω, a
crucial ingredient of the semidefinite relaxations (14) in [27].

When Ma is not the singleton {µ}, a similar approach as the one above is quite
more involved because:
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• One does not know the exact distribution of the noise ω; it can be any
mixture of (µa)a∈A.
• For each x ∈ X such that Kx 6= ∅ one needs to identify the worst-case

distribution µx ∈Ma, i.e., µa(x) where a(x) = arg maxa∈A µa(Kx).

Brief informal sketch of the strategy. To identify the worst-case distribution
µx, we introduce an unknown distribution ψ on X×A with marginal λ on X. It can

be disintegrated into ψ̂(da|x)λ(dx) and the goal is to compute ψ∗ = ψ̂∗(da|x)λ(dx),

with ψ̂∗(da|x) = δa(x). But recall that to provide numerical approximations, some-
how we need to access the moments of the involved measures, i.e., we need access
to γβ(a) =

∫
Ω
ωβ dµa(ω) for all β ∈ Np, and all a ∈ A. Fortunately, by Assumption

2.4(ii), γβ(a) = pβ(a) for some known polynomial pβ ∈ R[a]. Then given ψ:∫
xα pβ(a)dψ(x,a)︸ ︷︷ ︸
moments of ψ

=

∫
X

xα
(∫

A

pβ(a) ψ̂(da|x)

)
λ(dx)

=

∫
X

xα
(∫

A

(∫
Ω

ωβ dµa(ω)

)
ψ̂(da|x)

)
λ(dx)

=

∫
X

xα
(∫

Ω

ωβµ(dω)

)
λ(dx)

where µ(B) =
∫
A
µa(B)ψ̂(da|x) for all B ∈ B(Ω), i.e., µ ∈Ma. That is, by playing

with ψ (more precisely its conditional ψ̂(da|x)) one may explore for each x ∈ X,
all possible mixtures of distributions µa, a ∈ A. Importantly, moments of such
distributions are expressed in terms of moments of ψ. This is exactly what we need
for computing approximations in the spirit of [27]. The linear mapping T in (2.5)
is the tool to link measures φ on X× Ω with measures ψ on X×A.

As one may see, what precedes is a non trivial extension of the approach in [27];
in addition, the above informal derivation requires some measurability conditions,
which by Lemma 3.1 below are guaranteed to hold.

Lemma 3.1. For each x ∈ X there exist measurable mappings x 7→ a(x) ∈ A and
x 7→ κ(x) ∈ R such that:

(3.5) κ(x) = max{µ(Kx) : µ ∈Ma} = max{µa(Kx) : a ∈ A} = µa(x)(Kx).

The proof is postponed to §7.1. Observe that for all x ∈ X, κ(x) = µa(x)(Kx) =
0 whenever Kx = ∅. Next, recall that for every x ∈ X:

κ(x) = max
µ
{µ(Kx) : µ ∈Ma} = max

µ
{Probµ(f(x, ω) ≤ 0) : µ ∈Ma}.

and so with Kc
x := Ω \Kx,

µa(x)(K
c
x) = min

µ
{µ(Kc

x) : µ ∈Ma} = min
µ
{Probµ(f(x, ω) > 0) : µ ∈Ma}.

Consequently, the set X∗ε in (1.3) also reads:

X∗ε = {x ∈ X : µa(x)(K
c
x) > 1− ε } = {x ∈ X : κ(x) < ε }.

We next consider a certain infinite dimension LP with an important property:
Namely, any feasible solution of its dual (also an infinite dimensional LP) provides
the coefficients of some polynomial w ∈ R[x] such that {x : w(x) < ε} ⊂ X∗ε; see
Theorem 3.3 below. It is the analogue in the present context of the LP (12) in [27].
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3.2. An ideal infinite-dimensional LP. Let λ be the Lebesgue measure on X,
normalized to a probability measure, and consider the infinite-dimensional linear
program (LP):

(3.6)
ρ = sup

φ,ψ
{φ(K) : φ ≤ T∗ψ; ψx = λ,

φ ∈M+(K), ψ ∈P(X×A) },
where T∗ is defined in Lemma 2.8.

Theorem 3.2. The infinite dimensional LP (3.6) has optimal value ρ =
∫
X
κ(x) dx.

Moreover, the feasible pair (φ∗, ψ∗) with

dφ∗(x, ω) := 1K(x, ω)µa(x)(dω) dλ(x), dψ∗(x,a) = δa(x)(da)λ(dx),

is an optimal solution of (3.6), with x 7→ (a(x), κ(x)) as in Lemma 3.1.

Proof. Let (φ, ψ) be an arbitrary feasible solution. Then

φ(K) = 〈1, φ〉 ≤ 〈1K,T
∗ψ〉 = 〈T1K, ψ〉 =

∫
X×A

µa(Kx) dψ(x,a)

=

∫
X

(∫
A

µa(Kx) ψ̂(da|x)

)
λ(dx)

≤
∫

X

µa(x)(Kx)λ(dx) [by Lemma 3.1]

=

∫
X

κ(x)λ(dx).

Next let dφ∗(x, ω) = 1K(x, ω)µa(x)(dω)λ(dx) and dψ∗(x,a) = δa(x)(da)λ(dx) with
x 7→ a(x) as in Lemma 3.1. Then φ∗ ∈M+(K) and φ∗ ≤ T∗ψ∗. Moreover:

φ∗(K) =

∫
X

(∫
Kx

dµa(x)(ω)

)
λ(dx) =

∫
X

κ(x)λ(dx)

as µa(x)(Kx) = 0 whenever Kx = ∅. �

Hence, Theorem 3.2 states that in an optimal solution (φ∗, ψ∗) of the LP (3.6),

at every x ∈ X, the conditional probability φ̂∗(·|x) := µa(x) ∈ Ma identifies
the worst case noise distribution µa(x) in Ma, that is, the one which maximizes
Probµ(f(x, ω) ≤ 0) over Ma, hence which minimizes Probµ(f(x, ω) > 0) over Ma.

A dual of (3.6). Recall that by Lemma 2.9, the mapping T extends to polyno-
mials, and so consider the infinite dimensional LP:

(3.7)

ρ∗ = inf
h,w

{
∫

X

w dλ : h(x, ω) ≥ 1 on K,

w(x)−Th(x,a) ≥ 0 on X×A,
h ≥ 0 on X×Ω,
w ∈ R[x]; h ∈ R[x, ω]}.

Theorem 3.3. The infinite dimensional LP (3.7) is a dual of (3.6) that is, ρ∗ ≥ ρ.
In addition, for every feasible solution (w, h) of (3.7):

(3.8) w(x) ≥ κ(x), ∀x ∈ X,

with x 7→ κ(x) as in Lemma 3.1, and so for every ε > 0:

(3.9) Xw := {x : w(x) < ε} ⊂ {x : µa(x)(K
c
x) > 1− ε} = X∗ε.
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Moreover, suppose that there is no duality gap, i.e., ρ∗ = ρ, and let (wn, hn) be a
minimizing sequence of (3.7). Then with ‖ · ‖1 the norm of L1(X, λ):

(3.10) lim
n→∞

‖wn − κ‖1 = 0, and lim
n→∞

λ(X∗ε \Xwn) = 0.

The proof is postponed to §7.2. Theorem 3.3 is still abstract and the challenge
is to define a practical method to compute ρ and to construct effectively, inner
approximations of X∗ε which converge to X∗ε, as the approximations Xwn in (3.10).

4. A hierarchy of semidefinite relaxations

In this section we provide a numerical scheme to approximate from above the
optimal value ρ of the infinite-dimensional LP (3.6) and its dual (3.7). In addition,
from an optimal solution of the approximation of the dual (3.7), one is able to
construct effectively inner approximations of X∗ε which converge to X∗ε, as the
approximations Xwn in (3.10).

As a preliminary, we first show that the measure Tψ∗ in the constraint φ ≤ T∗ψ,
and identified as ψ′x,ω in Lemma 2.8, can be “handled” through its moments.

Lemma 4.1. Let ν ∈ P(X×Ω) and ψ ∈ P(X×A) with ψx = λ, and let

(4.1)

∫
X×Ω

xαωβ dν(x, ω) =

∫
X×A

xα pβ(a) dψ(x,a), ∀α ∈ Nn, β ∈ Np.

Then ν = T∗ψ.

The proof is postponed to §7.3.

4.1. A hierarchy of semidefinite relaxations of (3.6). The compact basic
semi-algebraic sets X and A and the basic semi-algebraic set Ω are defined by:

X := {x : gj(x) ≥ 0, j = 1, . . . ,m}(4.2)

A := {a ∈ Rt : q`(a) ≥ 0, ` = 1, . . . , L}(4.3)

Ω := {ω ∈ Rp : s`(ω) ≥ 0, ` = 1, . . . , s̄},(4.4)

for some polynomials (gj) ⊂ R[x], (q`) ⊂ R[a] and (s`) ⊂ R[ω]. In particular if
s̄ = 0 then Ω = Rp.

Let dj := ddeg(gj)/2e, d′` := ddeg(q`)/2e, j = 1, . . . ,m, ` = 1, . . . , L. Also
let d1

` = ddeg(s`)/2e, ` = 1, . . . , s̄. For notational convenience we also define
gm+1(x, ω) = −f(x, ω) with dm+1 := ddeg(f)/2e. As X and A are compact,
X ⊂ {x : ‖x‖2 ≤ M} and A ⊂ {a : ‖a‖2 ≤ M} for some M sufficiently large.
Therefore with no loss of generality we may and will assume that

(4.5) g1(x) = M − ‖x‖2, q1(a) = M − ‖a‖2,

for some M sufficiently large. Similarly if Ω in (4.4) is compact then we may and
will also assume that s1(ω) = M − ‖ω‖2. This will be very useful as it ensures
compactness of the feasible sets of the semidefinite relaxations defined below.

Next, recall that by Assumption 2.4(ii), for every β ∈ Np,
∫

Ω

ωβdµa(ω) = pβ(a),

for all a ∈ A, for some polynomial pβ ∈ R[a].
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Consider the following hierarchy of semidefinite programs indexed by d ≥ dmin ∈
N, where 2dmin is the largest degree appearing in the polynomials that describe
K,Ω, and A:

(4.6)

ρd = sup
y,u,v

y00

s.t. Ly+u(xαωβ)− Lv(xαpβ(a)) = 0, |α+ deg(pβ)| ≤ 2d,
Lv(xα) = λα, α ∈ Nn2d,
Md(y),Md(u),Md(v) � 0,
Md−dm+1(gm+1 y) � 0,
Md−dj (gj y), Md−dj (gj u), Md(gj v) � 0, j = 1, . . . ,m,
Md−d1` (s` y), Md−d1` (s` u) � 0, ` = 1, . . . s̄,

Md−d′`(q` v) � 0, ` = 1, . . . , L,

where y = (yαβ), u = (uαβ), (α, β) ∈ Nn × Np and v = (vαη), (α, η) ∈ Nn × Nt.

Proposition 4.2. The semidefinite program (4.6) is a relaxation of (3.6), i.e.,
ρd ≥ ρ for all d ≥ dmin. In addition ρd+1 ≤ ρd for all d ≥ dmin.

Proof. That ρd+1 ≤ ρd is straightforward as more constraints are added as d in-
creases. Next, let φ, ψ be an arbitrary feasible solution of (3.6) and let y = (yαβ),
u = (uαβ), (α, β) ∈ Nn × Np and v = (vαη), (α, η) ∈ Nn × Nt be the moments
sequences of the measure φ,T∗ψ − φ and ψ, respectively. In the following we first
show that y,u, and v are feasible for (4.6). Necessarily Md(y) � 0 because for

every vector p ∈ Rs(d) (with s(d) :=
(
n+d
n

)
),

〈p,Md(y) p〉 =

∫
K

p(x, ω)2dφ(x, ω) ≥ 0,

where p ∈ R[x]d has p as vector of coefficients. With similar arguments, one can
show that Md(u) � 0 and Md(v) � 0. Next, as φ is supported on K, for every
p ∈ Rs(d−dj):

〈p,Md−dj (gj y) p〉 =

∫
K

p(x, ω)2 gj(x) dφ(x, ω) ≥ 0,

because gj(x) ≥ 0 whenever (x, ω) ∈ K. Hence Md(gj y) � 0 (and similarly

Md−dj (gj u),Md−dj (gj v) � 0). Similarly for every p ∈ Rs(d−d1`):

〈p,Md−d1` (s` y) p〉 =

∫
K

p(x, ω)2 s`(ω)(x) dφ(x, ω) ≥ 0,

because s`(ω) ≥ 0 whenever (x, ω) ∈ K. Hence Md−d1` (s` y) � 0 (and similarly

Md−d1` (s` u) � 0). Finally, as ψ is supported on X×A then for every p ∈ Rs(d−d′`):

〈p,Md−d′`(q` v) p〉 =

∫
X×A

p(x, ω)2 q`(a) dψ(x,a) ≥ 0,

because q`(a) ≥ 0 whenever (x,a) ∈ X×A. Hence Md−d′`(q` v) � 0.
Next, as ψx = λ, then for every α ∈ Nn2d:

Lv(xαω0) = vα0 =

∫
X×A

xα dψ(x,a) =

∫
X

xα dλ(x) = λα.
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Finally, as T∗ψ ≥ φ (equivalently T∗ψ = φ + ν with ν being the slack measure
T∗ψ − φ)), then for every (α, β) ∈ Nn × Np with |α|+ deg(pβ) ≤ 2d:

Lv(xα pβ(a)) =

∫
X×A

xαpβ(a) dψ(x, a) =

∫
X×A

T(xαωβ) dψ(x,a)

=

∫
X×Ω

xαωβ d(T∗ψ)(x, ω) =

∫
X×Ω

xαωβ d(φ+ ν)

= Ly+u(xαωβ),

and therefore (y,u,v) is a feasible solution of (4.6). Finally, we show that ρd ≥ ρ.
To that end, note that y00 =

∫
K
dφ = φ(K), i.e., ρd ≥ φ(K), and in particular

ρd ≥ φ∗(K) = ρ for the optimal solution φ∗ of (3.6). �

By Proposition 4.2 (4.6) defines a hierarchy of semidefinite programs whose as-
sociated sequence of optimal values (ρd)d≥dmin

is nonnegative and monotone non
increasing.

Size of (4.6). The semidefinite program involves moment matrices of size τ1 :=(
n+p+d

d

)
and τ2 =

(
n+t+d
d

)
. So even though (4.6) can be solved in time polynomial

in its input size, the computational burden is rapidly prohibitive, and in view of
the present status of semidefinite solvers, this approach is limited to relaxations for
which max[τ1, τ2] ≤ 103, i.e., for modest size problems. However, recall that even
the first relaxations provide inner approximations of X∗ε.

4.2. The dual of the semidefinite relaxations (4.6). The dual of (4.6) is an
SDP which has the following high-level interpretation in terms of SOS positivity
certificates of size parametrized by d:

(4.7)

ρ∗d = inf
h,w,σij

∫
X

w(x) dλ(x) :

s.t h(x, ω)− 1 =

m+1∑
j=0

σ1
j gj +

s̄∑
`=1

σ1
` s`, ∀(x, ω);

h(x, ω) =

m∑
j=0

σ2
j gj +

s̄∑
`=1

σ2
` s`, ∀(x, ω);

w(x)−
∑
α,β

hαβ xα pβ(a) =

m∑
j=0

σ3
j gj +

L∑
`=1

σ3
` q`, ∀(x,a);

deg(h), deg(w) ≤ 2d; σ1
j ∈ Σ[x, ω]d−dj , j = 0, . . . ,m+ 1,

σ2
j ∈ Σ[x, ω]d−dj , σ

3
j ∈ Σ[x,a]d−dj ; j = 0, . . . ,m,

σ1
` , σ

2
` ∈ Σ[ω]d−d1` ;σ

3
` ∈ Σ[x,a]d−d′` , ` = 1, . . . , L,

where h(x, ω) =
∑
|α+β|≤2d hαβ xα ωβ , and w(x) =

∑
|α|≤2d wα xα.

In compact form, (4.7) is the high level interpretation of the dual SDP of (4.6)
in terms of SOS positivity certificates of size parametrized by d. Indeed:
• The dual variable hαβ associated with the equality constraint Ly+u(xαωβ) =

Lv(xα pβ(a)) is the coefficient of xαωβ for the polynomial h ∈ R[x, ω]2d in (4.7).
• Similarly, the dual variable wα associated with the equality constraint Lv(xα) =

λα is the coefficient of xα for the polynomial w ∈ R[x]2d in (4.7).
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• σ1
j ∈ Σ[x, ω]d−dj (resp. σ2

j ∈ Σ[x, ω]d−dj ) is the SOS polynomial associated

with the matrix dual variable X1
j � 0 (resp. X2

j � 0) associated with the semidefi-
nite constraint Md−dj (gj y) � 0 (resp. Md−dj (gj u) � 0) of (4.6).

• σ1
` ∈ Σ[x, ω]d−d1` (resp. σ2

` ∈ Σ[x, ω]d−d1` ) is the SOS polynomial associated

with the matrix dual variable Z1
j � 0 (resp. Z2

j � 0) associated with the semidefinite
constraint Md−d1` (s` y) � 0 (resp. Md−d1` (s` u) � 0) of (4.6).

• σ3
j ∈ Σ[x,a]d−dj` (resp. σ3

` ∈ Σ[x,a]d−d′`) is the SOS polynomial associated

with the matrix dual variable W1
j � 0 (resp. W2

j � 0) associated with the semi-
definite constraint Md−dj (gj v) � 0 (resp. Md−d′`(s` v) � 0) of (4.6).

The SDP (4.7) is a reinforcement of the infinite-dimensional dual (3.7) in which
the positivity constraints have been replaced with SOS positivity certificates à la
Putinar (see [30]). For instance, the positivity constraint “h ≥ 1 on K” in (3.7)
becomes in (4.7) the stronger:

h(x, ω)− 1 =

m+1∑
j=0

σ1
j gj +

s̄∑
`=1

σ1
` s`, ∀(x, ω),

for some SOS polynomials (σ1
j ) and (σ1

` ).

Theorem 4.3. Let Assumption 2.4 (and Assumption 2.5 as well if Ω is unbounded)
hold and assume that K,A,X×Ω and X×Ω\K all have nonempty interior. Then:

(i) Slater’s condition holds for (4.6) and so strong duality holds. That is, for
every d ≥ dmin, ρ∗d = ρd and (4.7) has an optimal solution (hd, wd).

(ii) Next, define Xd
ε := {x ∈ X : wd(x) < ε }. Then Xd

ε ⊂ X∗ε for every
d ≥ dmin. In addition, if limd→∞ ρd = ρ then with x 7→ κ(x) as in Lemma 3.1:

(4.8) lim
d→∞

‖wd(x)− κ(x)‖L1(X,λ) = 0 and lim
d→∞

λ(X∗ε \Xd
ε) = 0.

A proof is postponed to §7.4. Note that so far, optimal solutions of (4.7) provide
us with a hierarchy of inner approximations Xd

ε ⊂ X∗ε, d ≥ dmin. In addition, if
the approximation scheme (4.6) is such that limd→∞ ρd = ρ, then Theorem 4.3
states that the inner approximations (Xd

ε) have the additional strong asymptotic
property (4.8) which in turn implies the highly desirable convergence result (4.8).

So to obtain (4.8) we need to ensure that limd→∞ ρd = ρ as d→∞.

Theorem 4.4. Let Assumption 2.4 hold, and if Ω is unbounded let Assumption 2.5
hold as well. Consider the hierarchy of semidefinite programs (4.6) with associated
monotone sequence of optimal values (ρd)d≥dmin

. Then for each d ≥ dmin there is
an optimal solution (yd,ud,vd) and

ρd = yd00 ↓ φ∗(K) = ρ, as d→∞,
where φ∗ is part of an optimal solution (φ∗, ψ∗) of (3.6).

A proof is postponed to §7.5.

4.3. Accelerating convergence via Stokes. In previous works of a similar flavor
but for volume computation in [21] and [27, 33], it was observed that the conver-
gence ρd → ρ was rather slow. In our framework, by inspection of the dual (3.7),
a potential slow convergence may arise as one tries to approximate from above a
discontinuous function (the indicator function 1K of a compact set K) by polyno-
mials, and therefore one is faced with an annoying Gibb’s phenomenon. The trick
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proposed in [21] resulted in a significant acceleration of the convergence but at the
price of losing its monotonicity (a highly desirable feature). This motivated the
other strategy proposed in [27, 33], based on Stokes’ theorem, which also resulted
in a significantly faster convergence, but this time without losing its monotonicity.

In this section we provide a means to accelerate the convergence ρd → ρ in
Theorem 4.4, also based on Stokes’ theorem applied to the optimal solution φ∗ of
(3.6). However, its implementation is much more complicated than in [27, 33] as it
requires introducing an additional measure in the LP (3.6).

It works when the probability measures (µa)a∈A, satisfy some additional prop-
erty: For all a ∈ A, either,
• dµa(ω) = s(ω,a) for some polynomial s ∈ R[ω,a], or
• dµa(ω) = q0(a) s1(ω,a) exp(s2(ω,a))dω, where q0 is a rational function and

ω 7→ si(ω,a) belongs to R[ω], i = 1, 2. In addition, for every fixed a, and i =
1, . . . , p, ∂s2(ω,a)/∂ωi is a rational function of ω.

We detail the procedure for the case where Ω = R, a = (a, σ) ∈ A := [a, a] ×
[σ, σ] ⊂ R2, and

dµa(ω) =
1√
2πσ

exp(− (ω − a)2

2σ2
) dω, a = (a, σ) ∈ A,

i.e., Ma is the family of all possible mixtures of Gaussian probability measures on
R with mean a ∈ [a, a] and standard deviation σ ∈ [σ, σ]. Recall that Kx = {ω ∈
R : f(x, ω) ≤ 0 }. For every a ∈ A, an extended version of Stokes’ theorem in [33,
Lemma 3.1, p. 151], yields:

∫
Kx

∂ (ωβ f(x, ω) exp(−(ω−a)2

2σ2 ))

∂ω
dω = 0, β = 0, 1, . . .

for every x ∈ X. That is:

(4.9)

∫
Kx

qβ(x, ω,a) dµa(ω) = 0, ∀x ∈ X, ∀β = 0, 1, . . . ,

where qβ ∈ R[x, ω,a] reads:

qβ(x, ω,a) :=
σ2∂ (ωβ f(x, ω))

∂ω
− ωβf(x, ω)(ω − a).

This in turn implies that for every a ∈ A,

(4.10)

∫
X

xα
(

aγ
∫

Kx

qβ(x, ω,a) dµa(ω)

)
dλ(x) = 0,

for all α ∈ Nn, γ ∈ N2, and β = 0, 1, . . .. In particular, with a(x) as in Lemma 3.1:∫
X

xα a(x)γ
(∫

Kx

qβ(x, ω,a(x)) dµa(x)(ω)

)
dλ(x) = 0,

or equivalently:

(4.11)

∫
K

xα a(x)γ qβ(x, ω,a(x)) dφ∗(x, ω) = 0,

for all α ∈ Nn, γ ∈ N2, β = 0, 1, . . ..
Therefore in the infinite-dimensional LP (3.6) we may add the linear “general-

ized” moment constraints (4.11) because they are satisfied at an optimal solution



REPRESENTATION OF DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINTS 19

φ∗. However, the function (x, ω) 7→ a(x)γqβ(x, ω,a(x)) is not a polynomial and
these constraints cannot be implemented directly.

To overcome this problem, we introduce an additional measure ν on K×A and
impose that its marginal νx,ω on K is φ and its marginal νx,a on X×A is dominated
by ψ. That is νx,ω = φ and νx,a ≤ ψ. On this newly introduced measure we now
can impose the (Stokes) moment constraints:

(4.12)

∫
X×A×Ω

xα aγ qβ(x, ω,a) dν(x, ω,a) = 0, ∀(α, β, γ) ∈ Nn × Np × N2.

Recall that at an optimal solution (φ∗, ψ∗) of (3.6), ψ̂∗(da|x) = δa(x) for all x ∈
X and so every feasible solution of the form (φ∗, ψ∗, ν) (hence with νx,ω = φ∗

and νx,a ≤ ψ∗) satisfies ν̂x,a(da|x) = δa(x) for all x ∈ supp(νx), i.e., for all x ∈
supp(φ∗x).5 Disintegrating ν as ν̂(da|x, ω) dνx,ω(x, ω) yields

0 =

∫
K

xα
(∫

A

aγ qβ(x, ω,a) ν̂(da|x, ω)

)
dνx,ω(x, ω),

=

∫
K

xα a(x)γ qβ(x, ω,a(x)) dνx,ω(x, ω),

=

∫
K

xα a(x)γ qβ(x, ω,a(x)) dφ∗(x, ω), ∀α ∈ Nn, γ ∈ N2, β ∈ N,

which is (4.11). So in the semidefinite relaxation (4.6), we introduce the additional
vector z1 = (z1

α,β,γ) and z2 = (z2
α,γ), α ∈ Nn, β ∈ Np, γ ∈ Nt, (ideally the

respective moments of the measure ν and ψ∗ − νx,a where ν is described above),
and the constraints

Lz1(xα ωβ) = Ly(xα ωβ), ∀ |α|+ |β| ≤ 2d,

Lz1(xα aγ) + Lz2(xα aγ) = Lv(xα aγ), ∀ |α|+ |γ| ≤ 2d,

Lz1(xα aγ qβ(x, ω a)) = 0 ∀ |α|+ |γ|+ deg(qβ) ≤ 2d.

Of course, for the same index d ∈ N, the resulting semidefinite relaxation is more
computationally demanding as it now includes moments of the measure ν on X×
A×Ω (whereas in (4.6) we only have moments of measures on X×Ω and X×A).
However, being more constrained its optimal value can be significantly smaller and
the resulting convergence ρd → ρ as d increases, can be expected to be much faster.

Actually, in this framework of mixtures of Gaussian measures, one may also
replace (3.6) with:

(4.13)

ρ = sup
φ,ψ≥0

{φ(K×A) : φx,ω ≤ T∗ψ; φx,a ≤ ψ; ψx = λ,∫
K×A

xα aγ qβ(x, ω,a) dφ(x,a, ω) = 0,

∀α ∈ Nn, γ ∈ N2, β ∈ Np;
φ ∈M+(K×A), ψ ∈P(X×A) },

5This is because by compactness of X and A, for all α, γ,
∫

xαaγ dνx,a(x,a) =∫
xα a(x)γη(x,a(x))λ(dx) for some nonnegative measurable function η ≤ 1, and so νx(dx) =

η(x,a(x))λ(dx). This in turn implies that for every γ and almost all x ∈ X,
∫

aγ ν̂x,a(da|x) =

a(x)γ =
∫

aγδa(x)(da). Hence ν̂x,a(da|x) = δa(x)(da) for all x ∈ supp(νx).
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where now φ is a measure on K×A (instead of K before). The dual of (4.13) reads:

(4.14)

ρ∗ = inf
w,h,θ,s

{
∫

X

w(x) dλ(x) :

h(x, ω) + θ(x,a)

+
∑
α,β,γ

sαγβ xαaγ qβ(x,a, ω) ≥ 1, on K×A

w(x)− Th(x,a)− θ(x,a) ≥ 0, on X×A
h ≥ 0 on X×Ω; θ ≥ 0 on X×A,
w ∈ R[x], h ∈ R[x, ω], θ ∈ R[x,a], s ∈ R[x,a, ω] }.

In particular, let (w, h, θ, s) be an arbitrary feasible solution of (4.14). Then for
every x ∈ X, and with a(x) as in Lemma 3.1,

w(x) ≥ Th(x,a(x)) + θ(x,a(x)) =

∫
Ω

h(x, ω)dµa(x)(dω) + θ(x,a(x))

=

∫
Ω

(h(x, ω) + θ(x,a(x))) dµa(x)(dω)

≥
∫

Kx

(h(x, ω) + θ(x,a(x))) dµa(x)(dω)

=

∫
Kx

[h(x, ω) + θ(x,a(x)) +
∑
α,β,γ

sαβγ xαa(x)γ qβ(x,a(x), ω)︸ ︷︷ ︸
≥ 1 on Kx

−
∑
α,β,γ

sαβγ xαa(x)γ qβ(x,a(x), ω) ] dµa(x)(dω)

≥
∫

Kx

dµa(x) −
∑
α,β,γ

sαβγ xαa(x)γ
∫

Kx

qβ(x,a(x), ω) dµa(x)(dω)︸ ︷︷ ︸
= 0 by (4.9)

≥ κ(x).

One may show that in (4.13) and (4.14),

ρ = ρ∗ =

∫
X

κ(x) dλ(x),

and (4.8) in Theorem 4.3 also holds for an arbitrary minimizing sequence of (4.14).
The hierarchy of associated SDP-relaxations (i.e. the analogues for (4.13) of (4.6)

for (3.6)) and its dual hierarchy are obtained in an obvious manner by truncation of
the infinite sequences. At step d of the latter hierarchy we also obtain a polynomial
wd with same properties as in Theorem 4.3

4.4. Numerical experiments. In the illustrative numerical experiments described
below we have restricted to mixtures of univariate Gaussian variables µa (hence
with Ω = R and a = (mean,deviation) ∈ A ⊂ R2). To implement the semidefinite
relaxations (4.13) we have used the GloptiPoly software [20] dedicated to solving
the Generalized Moment Problem. The resulting SDPs are solved using version 8.1
of Mosek [37].

We discuss three examples chosen to a) illustrate the effect (and efficiency) of
Stokes constraints, b) compare the approximations with the real feasible set X∗ε in
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(1.3) (approximated with intensive simulations), and c) show the behavior of the
approximations for different violation probabilities.

Approximations with and without Stokes. In order to illustrate the difference
in quality of the approximation of X∗ε when using or not using Stokes constraints,
consider the example where X = [−1, 1], f(x, ω) = ω−x, A = [−0.1, 0.1]× [0.8, 1],
i.e., we consider univariate Gaussian measures with mean approximately 0 and
deviation slightly less than 1. For every fixed x, due to the simple expression of f
we can express Probµa({ω ∈ Ω : g(x, ω) < 0}) as an analytic expression in a. It is
hence relatively easy to obtain a good estimation of ρ(x) := mina∈A Probµa({ω ∈
Ω : g(x, ω) < 0}) = 1−κ(x) by sampling over a and taking the minimum. In Figure
1 is displayed x 7→ ρ(x) in black and two different approximations wd computed
for relaxation orders d = 8 in blue and d = 12 in red. The dashed lines are the
polynomials corresponding to problem formulations including Stokes constraints.

-1 -0.5 0 0.5 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
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Figure 1. Approximation of ρ(x) (black) by polynomials 1 −
w8(x) (blue) and 1 − w12(x) (red), dashed/solid lines correspond
to with/without Stokes constraints

As a first remark observe that, in accordance with the theoretic results, all
approximations are underestimators of ρ(x). However, the approximations (1−wd)
computed with Stokes constraints are much closer to ρ than the ones computed
without. The former approximations are particularly close to ρ for significant values
of violation probability, i.e., for small probabilities on the vertical axis. For higher
probabilities they degrade (but are still quite good). This can be due to the non-
differentiability of ρ at x = 0.1. In order to display X∗ε and its Xd

ε := {x ∈ X :
wd(x) ≤ ε}, e.g., for a violation probability of 30% (ε = 0.3) one looks at the
sets {x ∈ X : ρ(x) ≥ 0.7} and {x ∈ X : 1 − wd(x) ≥ 0.7} with wd an optimal
solution of the dual for the analogue of the step-d relaxation of (4.13). This yields
approximately that the interval [0.62, 1] is the true feasible set. With Stokes, the
approximations w8 and w12 yield the respective intervals [0.85, 1] and [0.75, 1] while
the approximations without Stokes provide an empty interval.

Inner approximations from various relaxations. As seen in the previous ex-
ample, Stokes constraints are essential for the performance of our approach. In this
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section we therefore only report results using these additional constraints. In the
second illustrative example, X = [−1, 1]2, f(x, ω) = 2ω x2

2 − 2ω x2
1 − 1 and mean

and deviation as in the example before in an environment of 0 and 0.9 respectively.
In Figure 2 we plot the feasible set X∗ε and its approximations (Xd

ε) for a violation
level of 10% (ε = 0.1).

The feasible set is approximated as follows. We discretize X into 200 and A into
100 steps in each direction respectively. For each point x and each combination of
parameters a we draw 1000 realizations of ω from the normal distribution described
by a. The point x is considered to be feasible whenever for each a, f(x, ω) is posi-
tive for at least 900 out of the 1000 realizations of ω. This simulation takes about
8600 seconds (without the authors claiming to be experts for Monte Carlo simu-
lations) whereas the approximations for d = 8, 10, 12 take 5, 43, and 482 seconds
respectively.

Figure 2. Monte Carlo simulation (light grey) of X∗ε and inner
approximations Xd

ε for d = 8, 10, 12, in decreasing intensity

Inspection of Figure 2 reveals that the feasible set X∗ε is non-convex. Already
the lowest approximation X8

ε (black) is able to capture this behavior. The next
approximation X10

ε (dark grey) is already a bit larger and X12
ε (medium grey)

captures a significant part of X∗ε (≈ 74%). Its computation time is 18 times faster
than the the one required for the Monte Carlo simulation of X∗ε. In addition, and
in contrast to the approximation via Monte Carlo, Xd

ε is guaranteed to be inside
the true feasible set.

Inner approximations with different violation levels. In the third example,
X = [−1, 1]3, Ω = R, f(x, ω) = −2ω x2

1 + 2ω x2
2− 2ω x2

3− 1. We compute the inner
approximations Xd

ε for d = 8, 10, 12. To compute the Monte Carlo approximation
of X∗ε in a reasonable time, we fix the mean of the distribution to 0 and the standard
deviation σ is taken in the interval A = [0.4, 0.6]. For Monte Carlo we discretize
X and A in 100 steps in each direction and draw again 1000 realizations of ω for
each point and each σ. This simulation takes about 2277 seconds. In the first
example we have already seen that the polynomial approximations wd are quite
good for large violation probabilities. In Table 1 we compare the “volume” of our
approximations against the Monte Carlo simulation, i.e., the ratio of the number
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(r, time)\ε 50% 25% 12.5% 6.25% 3.125%

8 ( 30s) 96.94% 83.07% 69.70% 22.72% 0%

10 (107s) 99.91% 86.70% 73.21% 73.79% 2.48%

12 (633s) 100.0% 90.13% 79.94% 61.31% 27.98%

Table 1. Polynomial approximations vs Monte Carlo simulation.

of points admissible for our approximations over the number of points admissible
in Monte Carlo. As the polynomial approximations are inner approximations, we
expect the ratii to be less than one (assuming that Monte Carlo is accurate).

Again the polynomial approximations (wd(x1, x2, x3)) are computed significantly
faster than the Monte Carlo approximation ρ(x1, x2, x3). As in the first example, for
large ε the approximations are pretty exact. However, for all relaxation orders d the
quality of approximation decreases with ε, and eventually X8

0.03125 = ∅. However
we should not forget that good approximations with small ε are difficult to achieve
in any case. Therefore it is quite interesting that we can retrieve almost 30% of
X∗0.03125 with X12

0.03125 and using moments up to order 12 only.

5. Extensions

With some ad-hoc adjustments, the framework presented in this paper can be
extended to consider problems with:
• only first- and second-order moments knowledge (no information about the

distributions contributing to the mixture), and
• distributionally robust joint chance-constraints.

5.1. Modeling with only first and second order moments. As mentioned in
Remark 1.8, another possible and related ambiguity set is to consider the family Ma

of measures on Ω whose only first and second-order moments a = (m,Σ) belong
to some prescribed set A. The approach described in this paper also works with
the following modifications.

Suppose that ω follows some unknown distribution on Ω ⊂ Rp whose first and
second order moments a = (m,Σ) ∈ A, e.g. A = [m,m] × Θ where Θ := {Σ :
δI � Σ � δI}, for some δ > 0. Then A is basic semi-algebraic set in Rp(p+3)/2

defined by 4p polynomial inequalities. For instance, with

m = (m1,m2); Σ =

[
σ11 σ12

σ12 σ22

]
,

A = { mi ≤ mi ≤ mi, i = 1, 2; 2δ ≤ σ11 + σ22 ≤ 2δ;

(δ − σ11)(δ − σ22)− σ2
12 ≥ 0; (σ11 − δ)(σ22 − δ)− σ2

12 ≥ 0}.
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The infinite-dimensional LP (3.6) now becomes:

ρ = sup
φ,ν,µ,ψ

{ φ(K) : φ+ ν = µ; µx = ψx = λ;∫
xα ωi dφ+

∫
xα ωi dν =

∫
xαmi dψ, α ∈ Nn, i = 1, . . . , p∫

xα ωiωj dφ+

∫
xα ωiωj dν =

∫
xασij dψ, α ∈ Nn, 1 ≤ i < j ≤ p

φ ∈M+(K), ψ, µ ∈M+(X×Ω), ψ ∈M+(X×A) }.

Then semidefinite relaxations analogues of (4.6) are defined in the obvious way and
their associated monotone sequence of optimal values (ρd)d∈N converges to ρ as d
increases. As for (4.7), from an optimal solution of their dual one provides inner
approximation of (Xd

ε)d∈N of X∗ε and analogues of Theorem 4.3 and 4.4 also hold.

5.2. Joint chance-constraints. The case of joint chance-constraints, i.e., when
several probabilistic constraints

(5.1) Probµ(fj(x, ω) > 0, j = 1, . . . sf ) > 1− ε,

are considered jointly, is in general significantly more complicated than its relax-
ation which considers them individually, i.e.,

Probµ(fj(x, ω) > 0) > 1− ε, j = 1, . . . , sf .

For instance, tractable formulations valid for individual chance-constraints may not
be valid any more for joint chance-constraints.

We next show that joint chance-constraints (5.1) can be modelled in our frame-
work, relatively easily. Instead of the set K in (3.1) we now consider the sets:

Kj := { (x, ω) ∈ X×Ω : fj(x, ω) ≤ 0 }, j = 1, . . . , sf .(5.2)

Kj
x := {ω ∈ Ω : (x, ω) ∈ Kj }, j = 1, . . . , sf ; ∀x ∈ X(5.3)

K := { (x, ω) ∈ X×Ω : (x, ω) ∈
sf⋃
j=1

Kj },(5.4)

Kx := {ω ∈ Ω : (x, ω) ∈
sf⋃
j=1

Kj
x }, ∀x ∈ X(5.5)

All results of §3, i.e., Theorem 3.2 and Theorem 3.3, remain valid with now K
and Kx, x ∈ X, as in (5.4) and (5.5) respectively. Indeed Lemma 3.1 remains valid
with Kx as (5.5). (In particular we still have µa(∂Kx) = 0 for all a ∈ A, as now
the boundary ∂Kx is contained in a finite union of zero sets of polynomials.)

What is not obvious is how to define the analogues of the semidefinite relax-
ations (3.6) because K is not a basic semi-algebraic set any more. It is a finite
union

⋃sf
j=1 Kj of basic semi-algebraic sets with overlaps.

The analogue of the infinite-dimensional LP (3.6) reads:

(5.6)
ρ̂ = sup

φj ,ψ≥0
{
sf∑
j=1

∫
Kj

dφj :

sf∑
j=1

φj ≤ T∗ψ; ψx = λ,

φj ∈M+(Kj), ψ ∈P(X×A) },
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where T∗ is defined in Lemma 2.8. It is important to emphasize that even though
the sets Kj overlap, we do not require that the measures φj are mutually singular.

The dual of (5.6) reads:

(5.7)

ρ̂∗ = inf
h,w

{
∫

X

w dλ : h(x, ω) ≥ 1 on Kj , j = 1, . . . , sf

w(x)−Th(x,a) ≥ 0 on X×A; h ≥ 0 on X×Ω,

w ∈ R[x]; h ∈ R[x, ω] }.

Theorem 5.1. Let Kj, j = 1, . . . , sf , and K be as in (5.2) and (5.4) respectively.
Then:

(i) The optimal value ρ of (3.6) and the optimal value ρ̂ of (5.6) are identical.
(ii) Define the functions:

(5.8) (x, ω) 7→ θj(x, ω) :=
1

|{ ` ∈ {1, . . . , sf} : (x, ω) ∈ K`} |
, j = 1, . . . , sf ,

and let (φ∗, ψ∗) be an optimal solution of (5.6). Then (φ∗1, . . . , φ
∗
sf
, ψ∗) with

(5.9) dφ∗j (x, ω) := 1Kj
(x, ω) θj(x, ω) dφ∗(x, ω), j = 1, . . . , sf ,

is an optimal solution of (5.6) and φ∗ =
∑
j φ
∗
j .

Proof. Let (φ1, . . . , φsf , ψ) be an arbitrary feasible solution of (5.6) and let φ :=∑sf
j=1 φj . Then φ ∈ M (K)+ and φ ≤ T∗ψ. Therefore (φ, ψ) is feasible for (3.6).

Morover, as supp(φj) ⊂ Kj ⊂ K for all j = 1, . . . , sf ,

sf∑
j=1

∫
Kj

dφj =

sf∑
j=1

∫
K

dφj =

∫
K

d(

sf∑
j=1

φj) =

∫
K

dφ = φ(K),

which shows that ρ̂ ≤ ρ. To prove the reverse inequality consider the functions (θj)
in (5.8), and let (φ∗, ψ∗) ∈M+(K)×M+(X×A) be an optimal solution of (3.6).
Observe that

sf∑
j=1

θj(x, ω) = 1, ∀(x, ω) ∈ K.

Let (φ∗j ), j := 1, . . . , sf , be as in (5.9). Then φ∗j ∈ M+(Kj), j = 1, . . . , sf , and
sf∑
j=1

φ∗j (Kj) = φ∗(K). Hence ρ ≤ ρ̂. Therefore (φ∗1, . . . , φ
∗
sf
, ψ∗) is an optimal

solution of (5.6) and φ∗ =
∑
j φ
∗
j . �

As a consequence of Theorem 5.1, Theorem 3.3 also holds with now Kx as in
(5.5). In the original proof just use φ =

∑
j φj and the definitions of K and Kx in

(5.4)-(5.5).

5.3. Semidefinite relaxations. We briefly describe the semidefinite relaxations
of the LP (5.6), which are the analogues of (4.6) for the LP (3.6). For every j =
1, . . . , sf let g∗j := −fj and let d∗j := ddeg(g∗j )/2e. Let 2dmin to be the largest degree
appearing in the polynomials that describe K,Ω,A, and consider the semidefinite
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programs indexed by d ≥ dmin.

(5.10)

ρd = sup
yj ,u,v

sf∑
j=1

yj00

s.t. Ly1+···+ysf+u(xαωβ)− Lv(xαpβ(a)) = 0, |α+ deg(pβ)| ≤ 2d,
Lv(xα) = λα, α ∈ Nn2d,
Md(y

j),Md(u),Md(v) � 0,
Md−d∗j (g∗j yj) � 0, j = 1, . . . , sf ,

Md−d`(g` yj), Md−d`(g` u), Md(g` v) � 0,
` = 1, . . . ,m; j = 1, . . . , sf ,
Md−d1` (s` yj), Md−d1` (s` u) � 0,

` = 1, . . . s̄; j = 1, . . . , sf ,
Md−d′`(q` v) � 0, ` = 1, . . . , L,

where yj = (yjαβ), u = (vαβ), (α, β) ∈ Nn × Np, j = 1, . . . , sf , and v = (vαη),

(α, η) ∈ Nn × Nt.

The dual of (5.10) is a reinforcement of (5.7) and its interpretation in terms of
SOS positivity certificates of size parametrized by d (the analogue of (4.7)) reads:

(5.11)

ρ∗d = inf
h,w,σij

∫
X

w(x) dλ(x) :

s.t h(x, ω)− 1 =

m∑
`=0

σ1
j` g` + σ1

j,m+1g
∗
j +

s̄∑
`′=1

σ1
j`′ s`′ , ∀(x, ω);

for all j = 1, . . . , sf ;

h(x, ω) =

m∑
`=0

σ2
` g` +

s̄∑
`′=1

σ2
`′ s`′ , ∀(x, ω);

w(x)−
∑
α,β

hαβ xα pβ(a) =

m∑
`=0

σ3
` g` +

L∑
`′=1

σ3
`′ q`′ , ∀(x,a);

deg(h), deg(w) ≤ 2d; σ1
` ∈ Σ[x, ω]d−d` , j = 0, . . . ,m

σ1
j`, σ

2
` ∈ Σ[x, ω]d−d` ; σ

1
j,m+1 ∈ Σ[x, ω]d−d∗j , ` = 0, . . . ,m; j = 1, . . . , sf

σ3
` ∈ Σ[x,a]d−d` ; ` = 0, . . . ,m; σ3

`′ ∈ Σ[x,a]d−d′` ; `
′ = 1, . . . , L

σ1
j`′ , σ

2
`′ ∈ Σ[x, ω]d−d′` , j = 1, . . . , sf ; `′ = 1, . . . , L

where h(x, ω) =
∑
|α+β|≤2d hαβ xα ωβ , and w(x) =

∑
|α|≤2d wα xα.

For every d ≥ dmin, ρd ≥ ρ̂ (= ρ) and Theorem 4.4 is valid for the hierarchy of
semidefinite relaxations (5.10). Next, under the same assumptions of non-empty
interior for X,A,Ω,K,Kj and (X×Ω) \K, Theorem 4.3 is also valid for the dual
hierarchy (5.11).

6. Conclusion

Computing or even approximating the feasible set associated with a distributionally-
robust chance-constraint is a challenging problem. We have described a systematic
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numerical scheme which provides a monotone sequence (a hierarchy) of inner ap-
proximations, all in the form {x ∈ X : wd(x) < ε} for some polynomial of increas-
ing degree d, with strong asymptotic guarantees as d increases. To the best of our
knowledge it is the first result of this type at this level of generality. Of course this
comes with a price as the polynomial which defines each approximation is obtained
by solving a semidefinite program whose size increases with its degree. Therefore
and so far, this approach is limited to problems of small dimension (except perhaps
if some sparsity can be exploited). So in its present form this contribution should
be considered as complementary (rather than a competitor) to other algorithmic
approaches where scalability is of primary importance. However it may also pro-
vide useful insights and a benchmark (for small dimension problems) for the latter
approaches.

7. Appendix

Lemma 7.1. Under Assumption 2.5, every µ ∈Ma is moment determinate.

Proof. As µ ∈Ma, there exists ϕ ∈P(A) such that

µ(B) =

∫
Ω

µa(B) dϕ(a), B ∈ B(Ω).

By Assumption 2.5, there exists c, γ such that for every i = 1, . . . , p,∫
Ω

exp(c |ωi|) dµa(ω) < γ, ∀a ∈ A,

and therefore

sup
i=1,...,p

∫
Ω

exp(c |ωi|) dµ(ω) < γ.

As (c ωi)
2j/(2j)! < exp(|ωi|), one obtains

∫
Ω
ω2j
i dµ(ω) < c−2jγ (2j)! for all j =

1, , 2, . . . and all i = 1, . . . , p. But this implies

∞∑
i=1

(∫
Ω

ω2j
i dµ(ω)

)−1/2j

= +∞, i = 1, . . . , p,

that is, µ satisfies Carleman’s condition (2.2), and so is moment determinate. �

7.1. Proof of Lemma 3.1.

Proof. With x ∈ X fixed, let θ := supa∈A µa(Kx). For every µ ∈ Ma, there
exists ϕ ∈ P(A) such that µ(Kx) =

∫
A
µa(Kx) dϕ(a) and so µ(Kx) ≤ θ for all

µ ∈ Ma. Conversely supµ∈Ma
µ(Kx) ≥ θ because µa ∈ Ma for all a ∈ A. Next

let v : X ×A → [0, 1] be given by v(x,a) := µa(Kx). By construction 0 ≤ v ≤ 1
on X×A and if v(x, ·) is upper-semicontinous on A for every x ∈ X, then by [29,
Proposition 4.4, p. 2018] there exists a measurable selector x 7→ a(x) ∈ A, x ∈ X,
such that v(x,a(x)) = max {v(x,a) : a ∈ A}, that is, the desired result (3.5) holds.

So it remains to prove that v(x, ·) is upper-semicontinuous on A for every x ∈ X.
In fact we even prove that v(x, ·) is continuous on A for every x ∈ X. So let
(an)n∈N ⊂ A with an → a ∈ A as n → ∞. Let q be an arbitrary bounded
continuous function on Ω. Then by Assumption 2.4(iv),

lim
n→∞

∫
Ω

q dµan(ω) = lim
n→∞

Q(an) = Q(a) =

∫
Ω

q dµa(ω),
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which proves that µan ⇒ µa as n→∞ (where ⇒ denotes the weak convergence of
probability measures ; see Billingsley [4]). In addition, in view of the definition of
Kx in (3.2), its boundary ∂Kx is contained in the zero set of some polynomials and
therefore, by Assumption 2.4(iii), µan(∂Kx) = µx(∂Kx) = 0 for all n (i.e. ∂Kx is
a µan -continuity set). Hence by the Portmanteau theorem [4, Theorem 2.1, p. 11]
it follows that

lim
n→∞

µan(Kx) = lim
n→∞

v(x,an) = µa(Kx) = v(x,a),

i.e., v(x, ·) is continuous on A for every x ∈ X. In addition κ(x) = v(x,a(x)) is
also measurable. �

7.2. Proof of Theorem 3.3.

Proof. Weak duality holds because for every feasible solution (w, h) of (3.7) and
(φ, ψ) of (3.6), one has:∫

X

w dλ =

∫
X×A

w(x) dψ(x,a) ≥
∫

X×A

Th(x,a)) dψ(x,a)

=

∫
X×Ω

h(x, ω) T∗ψ(d(x, ω))

≥
∫

K

h(x, ω) dφ(x, ω)

≥
∫

K

dφ = φ(K).

Moreover let ψ∗ be an optimal solution of (3.6) as in Theorem 3.2, so that ψ∗ =
δa(x)λ(dx). Then for every x ∈ X:

w(x) ≥
∫

A

Th(x,a)ψ∗(da|x) =

∫
Ω

h(x, ω) dµa(x)(ω)

≥
∫

Kx

h(x, ω) dµa(x)(ω)

≥
∫

Kx

dµa(x)(ω) = κ(x),

i.e., w(x) ≥ κ(x) for all x ∈ X. In particular

{x ∈ X : w(x) < ε} ⊂ {x ∈ X : κ(x) < ε} = X∗ε.

Next, if there is no duality gap, i.e., if ρ = ρ∗, then for a minimizing sequence
(wn, hn) of (3.7),

lim
n→∞

∫
X

(wn(x)− κ(x)) dλ(x) = ρ∗ − ρ = 0,

that is, wn converges to κ(x) in L1(X, λ). Finally, by Ash [3, Theorem 2.5.1],
convergence in L1(X, λ) implies convergence in λ-measure, and so, for every fixed
0 < ` ∈ N,

(7.1) lim
n→∞

λ {x ∈ X : |wn(x)− κ(x)| > 1/`} = 0.
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Next, observe that

X∗ε = {x ∈ X : κ(x) < ε} =

∞⋃
`=1

{x ∈ X : κ(x) < ε− 1/`}︸ ︷︷ ︸
:=R`

and so λ(X∗ε) = lim`→∞ λ(R`). Next

λ(R`) = λ(R` ∩ {x : wn(x) < ε}) + λ(R` ∩ {x : wn(x) ≥ ε}).

By convergence in measure (7.1), limn→∞ λ(R` ∩ {x : wn(x) ≥ ε}) = 0. Hence

λ(R`) = lim
n→∞

λ(R` ∩ {x : wn(x) < ε}) ≤ lim
n→∞

λ({x : wn(x) < ε}) ≤ λ(X∗ε),

and as λ(R`)→ λ(X∗ε), limn→∞ λ({x : wn(x) < ε}) = λ(X∗ε). �

7.3. Proof of Lemma 4.1.

Proof. If Ω is compact then it follows from the definition of T and T∗. For the
general case where Ω is not necessarily compact, disintegrate ν and ψ as

dν(x,Ω) = ν̂(dω|x) νx(dx), dψ(x,a) = ψ̂(da|x)ψx(dx).

By (4.1) with β = 0,
∫
X

xανx(dx) =
∫
X

xαψx(dx) for all α ∈ Nn, and as X is
compact it follows that ψx = νx. Next, fix β ∈ Np. Then for every α ∈ Nn∫

X

xα
(∫

Ω

ωβ ν̂(dω|x)

)
νx(dx) =

∫
X

xα
(∫

A

pβ(a)ψ̂(da|x)

)
νx(dx),

and again as X is compact this implies∫
Ω

ωβ ν̂(dω|x) =

∫
A

pβ(a)ψ̂(da|x), ∀x ∈ X \Bβ ,

where Bβ ∈ B(X) is such that νx(Bβ) = 0. As β ∈ Np was arbitrary,∫
Ω

ωβ ν̂(dω|x) =

∫
A

pβ(a)ψ̂(da|x), ∀β ∈ Np, ∀x ∈ X \B∗,

where νx(B∗) = νx(
⋃
β Bβ) = 0. Next, define the measure ϕx on Ω by

ϕx(B) =

∫
A

µa(B) ψ̂(da |x), ∀x ∈ X \B∗,

which is well defined by Assumption 2.4(i). Moreover by construction, ϕx ∈ Ma

for all x ∈ X \B∗, and∫
Ω

ωβ ν̂(dω|x) =

∫
A

pβ(a) ψ̂(da|x), ∀β

=

∫
A

(∫
Ω

ωβµa(dω)

)
ψ̂(da|x), ∀β

=

∫
Ω

ωβ ϕx(dω), ∀β.
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By Lemma 7.1, ϕx is moment determinate and therefore ν̂(dω|x) = ϕx for all
x ∈ X \B∗. Next, let g ∈ B(X×Ω) be fixed arbitrary. Then:

〈g, ν〉 = 〈g, ν̂(dω|x) νx(dx)〉 = 〈g, ϕx(dω)νx(dx)〉
= 〈g, ϕx(dω)ψx(dx)〉
= 〈Tg, ψ̂(da|x)ψx(dx)〉
= 〈Tg, ψ〉 = 〈g,T∗ψ〉,

and as it holds for all g ∈ B(X×Ω), ν = T∗ψ. �

7.4. Proof of Theorem 4.3.

Proof. (i) We first prove that Slater’s condition holds for (4.6). Observe that for
all feasible solutions, y00 + u00 = Lv(1) = 1 and therefore 0 ≤ ρd ≤ 1. Let λA be
the Lebesgue measure on A, normalized to a probability measure. Let y be the the
moments of the measure dφ(x, ω) = 1S(x) dλ(x)⊗ µ̂(dω), where

µ̂(B) =

∫
A

µa(B) dλA(a), B ∈ B(Ω).

Similarly, let ν := λ ⊗ µ̂ (and so φ ≤ ν) and let ψ = λA ⊗ λ. Let y (resp. u)
be the vector of moments of φ (resp. ν − φ) up to order 2d, and let v be the
vector of moments of ψ up to order 2d. Then Md(y),Md(u),Md(v) � 0. Similarly
Md−dj (y) � 0, j = 0, . . . ,m, Md−dj (gj u) � 0, j = 1, . . . ,m, and Md−d′`(q` v) � 0,

` = 1, . . . , L, because X×Ω,K,X×Ω\K,A all have nonempty interior. Moreover,
as ∫

xαωβ dν(x, ω) =

∫
X

xα dλ(x)

∫
A

(

∫
Ω

ωβ dµa(ω)) dλA(a))

=

∫
X

xα dλ(x)

∫
A

pβ(a) dλA(a) =

∫
X×A

xα pβ(a) dψ(x,a),

we deduce Ly+u(xαωβ) = Lv(xα pβ(a)), and therefore (y,u,v) is an admissible
solution of (4.6) which is strictly feasible, i.e., Slater’s condition holds for (4.6) and
therefore strong duality ρd = ρ∗d holds. In particular, as ρd < ∞, (4.7) has an
optimal solution (hd, wd, σ

i
j).

(ii) Next feasibility in (4.7) implies

hd(x, ω) ≥ 1, ∀(x, ω) ∈ K,

hd(x, ω) ≥ 0, ∀(x, ω) ∈ X×Ω,

wd(x)−
∑
α,β

hd,α,β xα pβ(a) ≥ 0, ∀(x,a) ∈ X×A.

Let (φ∗, ψ∗) be optimal solution of (3.6), as in Theorem 3.2, and let dν∗(x, ω) :
µa(x)(dω)λ(dx). Let x ∈ X be fixed. Integrating the first w.r.t. ν∗x(dω|x) (=
µa(x)(dω)), the third one w.r.t. ψ∗(da|x) (= δa(x)), and using the second inequality
yields:

wd(x) +
∑
α,β

hd,α,β xα (

∫
Ω

ωβ dµa(x)(ω)−
∫

A

pβ(a) dψ∗(da|x)︸ ︷︷ ︸
=
∫
Ω
ωβ dµa(x)(ω)

)

≥


∫

Kx

ν∗x(dω|x) = κ(x), if Kx 6= ∅,

0 (= κ(x)) otherwise.
.
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In other words

(7.2) wd(x) ≥ κ(x), ∀x ∈ X.

Therefore

{x ∈ X : wd(x) < ε} ⊆ {x ∈ X : κ(x) < ε} = X∗ε.

Next if limd→∞ ρd = ρ then

lim
d→∞

∫
X

wd dλ = lim
d→∞

ρ∗d = lim
d→∞

ρd =

∫
X

κ(x)λ(dx),

which yields ∫
X

(wd(x)− κ(x)) dλ(x) → 0 as d→∞,

which combined with (7.2), yields wd → κ in L1(X, λ). �

7.5. Proof of Theorem 4.4.

Proof. We prove Theorem 4.4 for the case where Ω is unbounded as the arguments
also work for the bounded case (but without Assumption 2.4 and 2.5).

Let (yk,uk,vk) be a maximizing sequence of (4.6). For every i = 1, . . . , p and
j ∈ N, let β(i, j) ∈ Np be such that β(i, j)k = 2jδk=i. Observe that for every
feasible solution (y,u,v) of (4.6), and from a consequence of Assumption 2.5 (see
the proof of Lemma 7.1):

Ly(ω2j
i ) + Lu(ω2j

i ) = Lv(pβ(i,j)(a))

=

∫
A

pβ(i,j)(a) dλA(a) ≤ c−2j γ (2j)!(7.3)

for all j = 1, . . . , d and all i = 1, . . . , p. Therefore Ly(ω2j
i ) ≤ c−2j γ (2j)! and

Lu(ω2j
i ) ≤ c−2j γ (2j)! for all j = 1, . . . , d and all i = 1, . . . , n. As A is compact

and q1(a) = M − ‖a‖2, it follows that Ly(a2j
i ) ≤M j , j = 1, . . . d, i = 1, . . . , L. By

the same argument using now g1(x) = M − ‖x‖2, Ly(x2j
i ) ≤ M j , Lu(x2j

i ) ≤ M j ,

and Lv(x2j
i ) ≤M j , j = 1, . . . d, i = 1, . . . , L.

Next, as y00 ≤ 1, u00 ≤ 1 and v00 = 1, and Md(y),Md(u),Md(v) � 0, by
invoking [32, ], we obtain

|yαβ | ≤ max[1,max
i

[Ly(x2d
i ), Ly(ω2d

i )]] = τ1,

|uαβ | ≤ max[1,max
i

[Ly(x2d
i ), Lu(ω2d

i )]] = τ2; |vαβ | ≤ max[1,Md] = τ3,

for all (α, β). This implies that the feasible set of (4.6) is compact and so (4.6) has
an optimal solution (yd,ud,vd) for every d ≥ dmin.

For every d let τd := max[τ1, τ2, τ3]. Next, by completing with zeros, consider
the finite vectors yd, ud and vd has infinite sequences. As |yαβ | ≤ τd, |uαβ | ≤ τd
and |vαη| ≤ τd, whenever |α+ β| ≤ 2d and |α+ η| ≤ 2d, by a standard argument 6

6Let (un)n∈N be a sequence of infinite sequences such that supn |uni | < τi for all i = 1, . . .,

and let ûni := uni /τi, for all i, n. Then (ûn) ⊂ B1 where B1 is the unit ball of `∞. By weak-star

sequential compactness of B1, there is a subsequence (nk) and û ∈ B1 such that ûnk → û for the
σ(`∞, `1) weak-star topology of `∞. In particular, û

nk
i → ûi, as k → ∞, for all i = 1, . . ., which

implies u
nk
i → τiûi, as k →∞, for all i = 1, . . ..
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there exists a subsequence (dk)k∈N and infinite sequences y∗ = (y∗αβ), u∗ = (u∗αβ),

and v∗ = (vαη), α ∈ Nn, β ∈ Np, and η ∈ NL, such that

(7.4) lim
k→∞

ydkαβ = y∗αβ , lim
k→∞

udkαβ = u∗αβ , α ∈ Nn, β ∈ Np,

(7.5) lim
k→∞

vdkαη = v∗αη, α ∈ Nn, η ∈ NL.

Next, fix r ∈ N arbitrary. By (7.4) and (7.5), Mr(y
∗) � 0, Mr(u

∗) � 0 and
Mr(v

∗) � 0. In addition:

Ly∗(ω
2j
i )−1/2j ≥ c γ−1/2j (2j!)−1/2j , ∀i, j,

and similarly

Lu∗(ω
2j
i )−1/2j ≥ c γ−1/2j (2j!)−1/2j , ∀i, j.

Also

Ly∗(x
2j
i )−1/2j , Lu∗(x

2j
i )−1/2j , Lv∗(x

2j
i )−1/2j ≥ M−1/2 ∀i, j.

Therefore as
∑∞
j=1(2j!)−1/2j = +∞, one obtains

(7.6)

∞∑
j=1

Ly∗(ω
2j
i )−1/2j = +∞, and

∞∑
j=1

Ly∗(x
2j
i )−1/2j = +∞, ∀i, j,

and similarly for u∗,v∗. In summary, the three sequences y∗,u∗ and v∗ satisfy the
multivariate Carleman’s condition (2.1). As Md(y

∗), Md(u
∗), Md(v

∗) � 0, they
have a representing measure φ∗, ϕ∗ and ψ∗ respectively on Rn × Rp, Rn × Rp and
Rn × Rt.

Next, as (4.5) holds, the quadratic module of R[x,a] generated by the polynomi-
als (gj , q`) is Archimedean. Therefore, as Md(gj v∗) � 0 and Md(q` v∗) � 0 for all
d and all j = 1, . . . ,m, ` = 1, . . . , L, by Putinar’s Theorem [40], the measure ψ∗ is
supported on X×A. Also, as (4.5) holds, the quadratic module of R[x] generated
by the polynomials (gj) is Archimedean. Hence the marginal φ∗x of φ is supported
on X. If Ω is compact (and as then s1(ω) = M − ‖ω‖2) a similar argument shows
that φ∗ is supported on K.

If Ω is not compact, then by (7.3) and (7.4) we have Ly∗(ω
2j
i ) ≤ c−2j γ (2j!)

for all i, j. As Md(s` y∗) � 0 for all `, and Md(−f y∗) � 0 for all d, then by [28,
Theorem 2.2, p. 2494]7, f(x, ω) ≤ 0 and s`(ω) ≥ 0, ` = 1, . . . , s̄, on the support of
φ∗. That is, support(φ∗) ⊂ K.

Hence (φ∗, ψ∗) is a feasible solution of (3.6). But as φ∗(K) = limd→∞ ρd ≥ ρ,
we conclude that (φ∗, ψ∗) is an optimal solution with value ρ. �

7.6. Verifying Assumption 2.5 and Assumption 2.5.

7.6.1. A is a finite set. In this case Ω = Rp and A = {1, . . . , κ}. Then Assumption
2.4 holds and Assumption 2.5 holds whenever it holds for each individual µi, i =
1, . . . , κ. The set Ma can be identified with the simplex ∆ = {λ ∈ Rκ :

∑
i λ =

1, λ ≥ 0}. In Theorem 3.2, the conditional probability φ̂∗(da|x), x ∈ S, of the
optimal solution φ∗, identifies the worst-case distribution µa(x) ∈ A for every x ∈ S.

7In the proof of Theorem 2.2 in [28], c = 1, but the proof can be extended easily to arbitrary
c > 0
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7.6.2. Mixture of Multivariate Gaussian distributions. In the general case Ω = Rp,
a = (θ,Σ) with θ ≤ θ ≤ θ, where θ, θ ∈ Rp, and Σ = ΣT = (σij) ∈ Rp×p, with
δ I � Σ � δ̄ I and δ > 0. That is,

dµa(ω) =
1√

(2π)p det(Σ)
exp(−1

2
(ω − θ)Σ−1(ω − θ)) dω,

The measurability condition in Assumption 2.4(i) follows from Fubini-Tonelli’s
theorem. Assumption 2.4(ii) is also satisfied. For instance, the fourth-order central
moments read (see e.g. https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Higher_moments):∫

(ωi − θi)4 dµa(ω) = 3σ2
ii;

∫
(ωi − θi)3(ωj − θj) dµa(ω) = 3σii σij∫

(ωi − θi)2(ωj − θj)2 dµa(ω) = σii σjj + 2σ2
ij ,∫

(ωi − θi)2(ωj − θj)(ωk − θk) dµa(ω) = σii σjk + 2σij σik,∫
(ωi − θi)(ωj − θj)(ωk − θk)(ω` − θ`) dµa(ω) = σij σk` + σik σj` + σi` σjk,

and higher-order central moments are homogeneous polynomials in the entries of
Σ. This immediately implies that non-central moments are polynomials in (σij)
and θ. Assumption 2.4(iii) is also straightforward as µa has a density w.r.t. dω,
everywhere positive. Concerning Assumption 2.4(iv), let h be bounded continuous
on X×Ω. With the change of variable u = Σ−1/2(ω − θ) one has

H(x,a) :=

∫
Ω

h(x, ω) dµa(ω) =
1√

(2π)p

∫
Ω

h(x,Σ1/2 u + θ) exp(−1

2
‖u‖2) du,

and since h is bounded and continuous, it follows that H is continuous in (x,a) ∈
X×A. Finally, Assumption 2.5 also holds.

7.6.3. Mixture of exponential distributions. In this case Ω = Rp+, a = (a1, . . . , ap)
with a ∈ A := [a,a], a > 0, and

dµa(ω) =

(
p∏
i=1

1

ai

)
exp(−

p∑
i=1

ωi
ai

) dω = ⊗pi=1 dµai(ωi)

with dµai(ωi) = 1
ai

exp(−ωi/ai) dωi, i = 1, . . . , p.

Again, the measurability condition in Assumption 2.4(i) follows from Fubini-
Tonelli’s theorem. Then for Assumption 2.4(ii),∫

Ω

ωβ dµa(ω) =

p∏
i=1

(
1

ai

∫
R+

ωβii exp(ωi/ai) dωi

)
= aβ

p∏
i=1

βi! ∈ R[a],

and Assumption 2.4(iii) also holds. Like for the Gaussian, and after the change of
variable ui = ωi/ai, i = 1, . . . , p, one shows easily that Assumption 2.4(iv) holds.
Finally for Assumption 2.5,∫

Ω

exp(c |ω|) dµa(ω) =

(
p∏
i=1

1

ai

)
exp(−

p∑
i=1

ωi(
1

ai
− c)) dω < ∞,

whenever c < 1/ai for all i = 1, . . . , p.
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7.6.4. Mixture of elliptical’s. Assumption 2.4(ii) holds for Example 1.3. For in-
stance with θ : R+ → R+ such that

∫
R t

kθ(t2)dt <∞ for all k, and s =
∫
R θ(t

2)dt,
let

dµa(ω) =
1

s σ
θ((ω − a)2/σ2) dω, a = (a, σ) ∈ A.

Then ∫
ωjdµa(ω) =

1

s

∫
R
(σt+ a)jθ(t2) dt = pj(a, σ), j = 0, 1, . . . ,

7.6.5. Mixture of Poisson’s. Assumption 2.4(ii) holds for Example 1.4. For instance

p1(a) =

∫
Ω

ω dµa(ω) = a; p2(a) =

∫
Ω

ω2 dµa(ω) = a2 + a.

7.6.6. Mixture of Binomial’s. Assumption 2.4(ii) holds for Example 1.5. For in-
stance

p1(a) =

∫
Ω

ω dµa(ω) = N a; p2(a) =

∫
Ω

ω2 dµa(ω) = N a (1− a).
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