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Abstract: This work addresses the issue of image classification and localization of human actions based on visual data
acquired from RGB sensors. Our approach is inspired by the success of deep learning in image classifica-
tion. In this paper, we describe our method and how the concept of Global Average Pooling (GAP) applies
in the context of semi-supervised class localization. We benchmark it with respect to Class Activation Map-
ping initiated in (Zhou et al., 2016), propose a regularization over the GAP maps to enhance the results, and
study whether a combination of these two ideas can result in a better classification accuracy. The models
are trained and tested on the Stanford 40 Action dataset (Yao et al., 2011) describing people performing 40
different actions such as drinking, cooking or watching TV. Compared to the aforementioned baseline, our
model improves the classification accuracy by 5.3 percent points, achieves a localization accuracy of 50.3%,
and drastically diminishes the computation needed to retrieve the class saliency from the base convolutional
model.

1 INTRODUCTION

Nowadays, as intelligent systems are getting more
and more deeply involved in our everyday life, ma-
chine vision becomes incredibly important. Intelli-
gent systems could greatly benefit from an ability to
perceive the human environment and its major actors,
allowing them to better understand what is happen-
ing around them. A lot of work has been done in
automatic image labeling, namely ”image classifica-
tion”, and in automatic estimation of the position of
a class in an image, namely ”class localization” (Le-
Cun et al., 2015) and it can be applied in the context of
human action classification and localization (see Fig-
ure 1). In this paper, we consider that most of the pro-
posed architectures made an extensive use of super-
vision in the training process when localization could
have been inferred from a lower amount of informa-
tion.

Since 2006, deep learning has increasingly grown
in use to become the most successful approach in im-
age classification and localization. A vast majority of
networks used in this field are composed by a stack
of Convolutional Neural Network (CNN) layers, fol-

Figure 1: Examples of drinking action localization and
saliency retrieved with our approach Inception-GAP5-L1
(see Section 3).

lowed by one or several Fully Connected layers (FC),
also referred as Dense layer, resulting in a predic-
tion vector. More recently, the Global Average Pool-
ing (GAP) method has been used at the last layers of



several networks (He et al., 2016; Zhou et al., 2016)
to perform classification and have opened the possi-
bility to perform semi-supervised-localization, which
is defined here as inferring a class localization with-
out training on localization data but only on labels1,
hence, without a need of extensive localization anno-
tation. This kind of approach is interesting as it is
costly to have human annotators drawing bounding
boxes around objects in dense datasets.

Global Average Pooling (GAP), a mathematical
operation performing the average of a matrix (de-
scribed in Section 3), was first presented as a struc-
tural regularizer in NiN (Lin et al., 2013) and later
used in GoogLeNet (Szegedy and Liu, 2015). More
recently, it was used in ResNet (He et al., 2016) and
GoogLeNet-GAP (Zhou et al., 2016) before a fully
connected layer to perform object localization. In this
latter approach, it was preferred to max-pooling to
find all the discriminative parts of a class instead of
the most discriminative one.

In this work, we intend to increment the classi-
fication and localization research based on the GAP
methods by proposing a modified architecture and
some naive regularizations. Section 2 reviews former
work published on this topic. Section 3 introduces
both our architecture and a naive regularization term
used for localization. Section 4, describes our evalu-
ations and the proposed network. Finally, Section 5
concludes our work.

2 RELATED WORK

In the context of visual perception, many ap-
proaches based on CNNs have been used in the last
years to perform real-time object localization. Most
of the successful approaches used fully-supervised
learning to tackle theses problems. This section re-
views the architectures that have been used first for
supervised and then for weakly or semi-supervised lo-
calization in image processing in computer vision.

Fully-supervised learning for localization: In
recent literature, many architectures propose to
perform image classification and localization, at
the same time, using fully-supervised learning.
Models like AlexNet (Krizhevsky et al., 2012),
VGGNet (Simonyan and Zisserman, 2014) and
GoogLeNet (Szegedy and Liu, 2015) use a stack of
convolutional layers followed by fully connected lay-
ers to predict the class instance and its location in im-
ages, using, for instance, a regression on the bounding

1In contrast with weakly-supervised-localization learn-
ing which uses a reduced amount of data to train.

box (Sermanet et al., 2013). Throughout time, these
models competed in ILSVRC2 (Simonyan and Zisser-
man, 2014) localization contest (won by (Krizhevsky
et al., 2012) and (Szegedy and Liu, 2015)). Other
models, like ResNet (He et al., 2016) introduced a
similar approach, but with a GAP layer at the last
convolutional layer of their networks, and set a new
record in the ILSVRC 2014 localization contest. It
is clear that, in such contest, researchers are using
maximum of available resources for training their ap-
proaches, however, we would like our models to be
less reliant on large amount of annotated data. This
is our motivation to move towards semi-supervised
learning.

Weakly and Semi supervised learning for lo-
calization: Some architectures are designed to per-
form weakly-supervised localization, for example,
the model proposed by Oquab et al. (Oquab et al.,
2015) is trained in two steps. First, a traditional CNN
model, finishing with a softmax layer, is trained on
cropped images to learn to recognize a class based on
a fixed receptive field. The weights learned at this
step are frozen and the second training step consists
in convolving this model to a larger image in order
to produce a matrix of softmax predictions. From
this matrix, a new network is learned to predict the
class localization. This network includes a global
max-pooling operation made to retrieve the maximum
probability of a class being present in the image. We
took inspiration from this work as (a1) the first part of
the model is trained on images which do not include
any contextual information (background removed at
the cropping step) and (a2) the resulting model pro-
duces a saliency map for every class present in an im-
age, based on a given receptive field. Even though,
we consider that (b1) the two-step learning can be
reduced to one step, (b2) the global max-pooling is
a bottleneck operation to obtain a one-shot learning
model and (b3) the model should be able to learn with
a lower amount of pre-processed inputs.

These b1, b2, and b3 points have been taken
into account in (Zhou et al., 2016) where the au-
thors propose a one-shot semi-supervised method to
perform image classification and localization without
any annotation of localization. Their method, called
”GoogLeNet-GAP”, is a stack of CNNs ending with
a large amount of convolutional units where each out-
put map is averaged to a single value with Global Av-
erage Pooling (GAP). The resulting values are then
fully connected to a softmax layer. We believe, that,
because of the GAP layer being fully connected to the
prediction layer, the last convolutional layer, which
is used for localization, shares too much information

2Imagenet Large-Scale Visual Recognition Challenge



with all the predictions resulting in an attention field
broader than needed.

In our approach, we aim at developing, first, one-
shot semi-supervised training for class localization as
in (Zhou et al., 2016). Second, we want to reduce
the attention field in our localization mechanism by
removing the Dense layer following the GAP layer,
in order to have an attention model similar to (Oquab
et al., 2015), and we refer to this modification as ”un-
shared GAP layer”. Third, we would like our model
to decrease the computation, comparatively to (Zhou
et al., 2016), for retrieving the localization of the
classes. Our models (eg. ”Inception-GAP5”) will be
compared to both ”GoogleLeNet-GAP”, introduced
in (Zhou et al., 2016), and ”Inception-GAP-Zhou”,
our implementation of the former.

3 OUR MODEL ARCHITECTURE

In our approach, the architecture is designed to per-
form semi-supervised learning for localization from a
classification problem (see Figure 2).

The proposed architecture follows the all-
convolutional trend observed in deep-learning and
push it forward removing every dense layer present
on the network. To do so, we select a deep learning
architecture whose structure and training procedure is
known (InceptionV3) as our base model, up until a
desired layer and add a new convolutional layer with
c ∗m kernels (c being the amount of classes in our
classification task, and m, the amount of kernels used
per class) followed by a GAP layer and m sums re-
sulting in c values, used as prediction values.

To build our model, we applied the recom-
mendations given in (Zhou et al., 2016) for
GoogLeNet (Szegedy and Liu, 2015) to InceptionV3.
Hence, our architecture is composed by the initial
stack of CNNs (shown by the blue parallelepipeds in
Figure 2) described in (Szegedy et al., 2016) up until
the layer called Inception4e. Following the recom-
mendations, this layer is followed by a [3×3] convo-
lutional layer of stride 1 whose resulting matrix con-
tains saliency maps for each class (shown by orange
squares in Figure 2). These maps are averaged with
GAP, clustered (summing them) in c values, one per
class, and fed to a softmax layer for classification.

If this model has m = 5 maps per layer per class,
we refer to it as ”Inception-GAP5” where ”Inception”
indicate that InceptionV3 is the base model. For in-
stance, GAP1 architecture would correspond to the
original approach developed in NiN (Lin et al., 2013)
where they state that each of these maps ”can be eas-
ily interpreted as categories confidence maps”. To

keep track of the introduced names of the models, Ta-
ble 1 gives a short description of them.

Formally, the last layers of the network are de-
fined as follows : lets fk(x,y) be the activation of unit
k with {k ∈ N : k < m · c} in the last convolutional
layer at the spatial location (x,y). Then, the GAP vec-
tor g with g ∈ Rm·c is defined by :

gk =
∑

X
x=0 ∑

Y
y=0 fk(x,y)
X ·Y

(1)

Where X and Y are the sizes of the preceding convo-
lutional layers. Then, we cluster g in a vector g′ ∈Rc.

g′c = ∑
m

gk (2)

This vector is fed to a softmax function to compute
the class predictions pc.

pc = softmaxc(g′) (3)

The activation fk(x,y) we chose is Rectified Linear
Unit (ReLu) (Nair and Hinton, 2010).

Figure 2: The architecture of the proposed model with two
maps per class (m = 2) and four classes (c = 4) as an exam-
ple.

3.1 Class Activation Mapping

In (Zhou et al., 2016), the authors described a proce-
dure to retrieve some regions of interest with a method
they call class activation mapping. This method
is re-adapted to our architecture and described be-
low, yet, to fairly compare each other results, the
aforementioned architecture is slightly modified and
re-implemented in ”Inception-GAP-Zhou”. In this
model, the GoogLeNet (Szegedy and Liu, 2015) they
used is swapped with the InceptionV3 base which is
followed by a convolutional layer composed of 1024
units whose outputs are averaged with GAP, then fully
connected to the predictions and then transformed
into predictions with a softmax layer.



Table 1: Description of the models evaluated and compared in this work.

Model name Description
Inception-GAP5 Our GAP architecture with 5 maps per neurons built on top of InceptionV3

Inception-GAP5-L1 Inception-GAP5 whose GAP layer has a L1 penalty on its outputs for regularization
Inception-GAP5-L2 Inception-GAP5 whose GAP layer has a L2 penalty on its outputs for regularization

Inception-GAP-Zhou Gap method, as proposed in (Zhou et al., 2016), build on top of InceptionV3
Inception-GAP-Zhou-L1 Inception-GAP-Zhou whose GAP layer has a L1 penalty on its outputs for regularization
Inception-GAP-Zhou-L2 Inception-GAP-Zhou whose GAP layer has a L2 penalty on its outputs for regularization
GoogLeNet-GAP-Zhou Architecture proposed in (Zhou et al., 2016)

The procedure they called ”Class Activation Map-
pings” (CAM) aim to indicate ”the discriminative
image regions used by the CNN to identify” action
classes. In our model, we adapt this equation such that
a CAM becomes, for each class c, and each spatial lo-
calization (x,y), the sum of the n activation functions.

CAMc(x,y) =
c.m−1

∑
k=(c−1)m

fk(x,y) (4)

Retrieving CAMc : In comparison to the local-
ization method introduced in (Zhou et al., 2016), the
amount of operations used to retrieve these CAM
maps from the computational graph, is significantly
reduced. Due to the design of InceptionV3, used as
a base model in our approach, the default input im-
age resolution is 299× 299 pixels (Szegedy et al.,
2016). In our architecture, we cut InceptionV3 to the
Inception2-5 layer, resulting in a matrix with a shape
of 17× 17× k kernels. Therefore, the amount of op-
erations needed to retrieve the CAM are :

• For Inception-GAP5, the CAM method relies on
summing 5 convolutional kernel outputs through
the 17 x and 17 y coordinates, resulting in 5×
17×17 = 1445 sums.

• For Inception-GAP-Zhou (Sec.4), the CAM
method is the result of (a) weighting all the k =
1024 convolutional kernel outputs (of size 17×
17) with its corresponding weights on the dense
layer, resulting in (1024× 17× 17) = 295,936
multiplications and (b) summing these 1024 maps
through each of the 17 x and 17 y coordinates, re-
sulting in (1024×17×17) = 295,936 sums.

In this sense, GAP5 is more computationally efficient
than GAP-Zhou.

3.2 Regularization

The softmax operator, or normalized exponential as
mentioned in (Bishop, 2006), forces the exponentials
of the activations (g′c in our case) to be properly sepa-
rated, yet it does not constrain the class activations to

be centered on some particular value. In our model,
we want the fk(x,y) activations to provide us with in-
sights on the probability of a class to be present at
a given position. Therefore, we add a regularization
term on the fk(x,y) values.

As in (Raina et al., 2007), where the authors con-
strain the activations with a L1 regularization, we
propose to force the last convolutional layer of our
model to be sparse. Such property should help in hav-
ing a clear visualization of the CAMs and rendering
whether a class is present or not at a given spatial lo-
cation (x,y). To render this property, we introduce
either a L1 or a L2 regularization term to the outputs
of the last convolutional layer produced by fk(z(x,y)),
with z being the input to last convolutional layer.

The L1 regularization, applied to our last convolu-
tional layer, whose k kernels are weighted by Wk and
followed by their ReLu activation, is as follows :

L1 = α∑
k
·
∣∣∣∣∑

x,y
fk(z(x,y))

∣∣∣∣
= α∑

k
·
∣∣∣∣∑

x,y
max(0,Wk ∗ z(x,y))

∣∣∣∣ (5)

Whereas the L2 activity regularization is :

L2 = α∑
k

√
∑
x,y

fk(z(x,y))2

= α∑
k

√
∑
x,y

max
(

0,(Wk ∗ z(x,y))2

) (6)

With the ReLU activation, in both cases the Wk
weights are penalized only if the kernel k returns a
map which sum is above zero.

The loss function of our model is the same
as (Szegedy et al., 2016), namely, the cross-entropy
l = −∑k Yk log(pk) with Yk the one hot vector class
corresponding to a sample Xk. The regularization
term described above is added to this loss and the al-
pha term weights the importance of the regularization
with respect to the categorical cross entropy. After
evaluation, we tuned empirically α to be equal to 10−7

for both the L1 and the L2 regularization terms.



3.3 Implementation

This work was implemented on Keras3 back-ended
with Tensorflow (Abadi, 2015). To implement our
model, we used InceptionV3, available in Keras and
pre-trained on ImageNet (Krizhevsky et al., 2012). As
in InceptionV3, our models are trained and tested with
images resized to 299×299 RGB pixels.

Nadam was chosen to train our model because of
its fast convergence speed. The parameters used in
our approach are those proposed by default in Keras,
except for the learning rate, which was decayed every
second epoch, as in (Szegedy et al., 2016).

During the first 10 epochs, the weights of incep-
tionV3 are fixed in such way that the GAP layer is
initialized with respect to the pre-trained network. Af-
terwards, all the weights in the model are subjected
to optimization. We empirically fix the maximum
amount of epochs to be 125 (when the loss stopped
decreasing) and report in the following Section the
results obtained for each model we trained, with and
without regularization. The results are achieved by
the combination of weights scoring the lowest loss on
the validation set.

4 ACTION DATASET AND
ASSOCIATED EVALUATIONS

This section presents both quantitative and qual-
itative results obtained with our models applied on
”The Stanford 40 Action” (Yao et al., 2011) dataset.
Inception-GAP5 built on top of InceptionV3 with 5
maps per class was preferred to Inception-GAP10 as
we noticed that increasing the amount m of maps per
class (10 instead of 5) did not improve results in our
classification task. Inception-GAP5 achieved an ac-
curacy of 75.9% when Inception-GAP10 scored 1.3
points lower and Inception-GAP5-L1 achieved an ac-
curacy of 75.5% when Inception-GAP10-L1 scored
0.7 point more. For fair comparison, we also imple-
mented the method proposed in (Zhou et al., 2016)
on-top of InceptionV3 and trained it using the same
optimizer as the one used for our model, referred as
Inception-GAP-Zhou.

First the dataset is presented then comes the com-
parison of two one-shot and semi-supervised train-
ing methods, one based on a fully shared GAP
layer (GoogleNet-GAP-Zhou (Zhou et al., 2016)
and our implementation of Inception-GAP-Zhou) and
the other based on an unshared GAP Layer (our

3CHOLLET, Francois. Keras (2015). http://keras.io.

Inception-GAP5). Section 4.3 is a quantitative eval-
uation of the regularization introduced in Section 3.2
and Section 4.4 assesses the localization abilities of
some of the models used up until then.

Hereafter, 5 metrics are used : accuracy, precision,
recall, Mean average Precision (MaP), and Intersec-
tion over Union (IoU). Precision and recall, are com-
puted such that we only consider a label to be true if
the probability of its prediction is over 50% (as in the
Keras1 implementation). This 50% threshold prob-
ability acts as a measure based on the confidence of
the model. Along with these metrics, we compute the
Mean average Precision which also reflects how con-
fident a model is towards its predictions. The higher
the MaP score is, the more confidence we can have on
the ranked predictions of the model. Finally, we use
Intersection over Union, which is a common localiza-
tion metric in the literature, to evaluate the localiza-
tion abilities of our model. The IoU is defined as the
fraction of the overlap area of ground truth bounding-
box with the predicted bounding-box over the area of
their union. To be considered as correctly localized,
the IoU of a predicted bounding-box should be over
0.5.

4.1 Action 40 Dataset

The Stanford 40 Action (Yao et al., 2011) dataset
has been used to perform training and testing of the
networks. This dataset is composed of 9532 images
(4000 used for training, and 5532 for testing) of peo-
ple performing one of 40 actions such as drinking,
cooking, reading, phoning, or brushing teeth. We
split the test images into two subsets : one with 3532
images used for validation and 2000 (50 images per
class) for the test stage. In the dataset, all images are
provided with a class label and a bounding box around
the person performing the corresponding action.

4.2 Comparing Inception-GAP5 and
Inception-GAP-Zhou

This section describes our comparison of Inception-
GAP5 and Inception-GAP-Zhou, and reports the re-
sults given in (Zhou et al., 2016) with GoogLeNet-
GAP. In Table 2, our model shows better performance
than Inception-GAP-Zhou with respect to the the first
three of metrics aforementioned (accuracy, precision
and recall), meaning that Inception-GAP5 is better
at classifying the dataset and that its classification is
more reliable.



Table 2: Comparison of our architecture (Inception-GAP5)
with respect to both the original GoogLeNet-GAP (Zhou
et al., 2016) and its variant Inception-GAP-Zhou evaluated
on Stanford Action 40 dataset. (Acc. stands for Accuracy).

Model name Acc. Precision Recall
Inception-GAP5 75.9% 80.1% 74.2%

Inception-GAP-Zhou 73.7% 75.7% 72.8%
GoogLeNet-GAP-Zhou 70.6% - -

4.3 Impact of regularization on GAP
Models

This section presents the impact of L1 and L2 regular-
ization terms on both Inception-GAP5 and Inception-
GAP-Zhou.

One of the expected behaviors mentioned in Sec-
tion 3.2 is to observe a sharper class separation by
forcing the activations of the GAP maps, and there-
fore the activations of the softmax, to be close to
zero. Such effect is seen in Table 3, where we ob-
serve the precision of both architectures increasing
when applied the regularization term. Even though
such phenomenon could result in an accuracy drop,
this trend is not observed here. The accuracy and
the precision of the Inception-GAP-Zhou model and
its L1-regularized counterpart (Inception-GAP-Zhou-
L1) both improved gaining 2.1 points in accuracy, 7.1
points in precision and 9.9 points in its Mean aver-
age Precision, whereas Inception-GAP5 only dropped
by 0.4 points in accuracy, and gained 8.7 points in
precision and 14.3 points in its Mean average Preci-
sion with the L1 regularization. Such results clearly
demonstrate the benefit of L1 regularization on clas-
sification.

Table 3: The impact of L1 and L2 regularization terms eval-
uated on Inception-GAP5 and Inception-GAP-Zhou archi-
tectures. (Acc. stands for Accuracy, Prec. for Precision and
MaP. for Mean Average Precision).

Inception-... Acc. Prec. Recall MaP.
GAP5 75.9% 80.1% 74.2% 63.8%

GAP5-L1 75.5% 88.8% 63.5% 78.1%
GAP5-L2 73.5% 88.1% 61.1% 77.0%

GAP-Zhou 73.7% 75.7% 72.8% 66.6%
GAP-Zhou-L1 75.8% 82.8% 70.5% 76.5%
GAP-Zhou-L2 73.5% 77.3% 71.2% 72.4%

The effect of regularization is also visible on the
Class Activation Maps (Figure 3) where we plot the
40 action CAMs corresponding to the processing of
the same image by each of six different models. We
observe the absolute values of the CAMs, ranging
from zero, up to the maximum value observed in all
the CAMs for the model and image (max( fk(x,y))).

In other terms, all CAMs are divided by the same
maximum value of the observed CAMs for an image
and a model.

Similar effects appears in both Inception-GAP5
and Inception-GAP-Zhou when applying the same
regularization. When L1 regularization is applied
(Figure 3b and 3e), all the neuron activations produc-
ing the CAMs becomes close to zero except the neu-
ron recognizing a class, here the class is ”playing-
guitar”. We believe these activations are closer to re-
ality as absent classes do not activate their neurons.
The use of L2 regularization (Figure 3c and 3f) re-
sults in CAMs that are not sparse, that magnifies the
receptive fields of a neuron and do not discriminate
classes as properly as L1 regularization does.

4.4 Evaluation of Action Localization

The localization properties of our model are evaluated
and shown in Table 4 and Figure 4. On the one hand,
the table reports the results of the center of mass of
the CAMs being in the ground-truth bounding-box,
on the other hand, the Figure 4 reports how accurate
we are in defining a bounding box around a class.
To draw a bounding box around the predicted class,
we threshold the CAM of the prediction by a given
percentage of its maximum value and consider the
bounding box to be smallest rectangle surrounding all
these points (as in (Zhou et al., 2016)).

It is important to observe that, in the Stanford 40
Action (Yao et al., 2011) dataset, the discriminative
parts of an action are mostly located next to the hu-
man performing the action (e.g. the fishing action is
mostly determined and localized, with our method, by
the presence of a fishing rod; instead of a person).
Yet, as mentioned in Section 4.1, the ground-truth
bounding-boxes provided are surrounding the person
performing the action, and not the action, hence, our
weakly supervised localization is penalized by its fo-
cus on the object rather than on the human.

The accuracies reported in Table 4, show that
our model without regularization, called Inception-
GAP5, which is based on unshared GAP layer, per-
forms better than Inception-GAP-Zhou, and based
on a shared GAP layer, by 6.3 points on prediction
knowing the class ground-truth and 2.8 points not
knowing it. Interestingly, the L1 regularized versions
of Inception-GAP5 and Inception-GAP-Zhou do not
show the same results. Yet, we believe that in both
cases the regularization term constrained the last con-
volutional layer to be more attentive to discriminative
elements due to the sparse constraints on the weights.
In the case of Inception-GAP5, the networks is forced
to be attentive to the object rather than the human,



(a) Inception-GAP5 (b) Inception-GAP5-L1 (c) Inception-GAP5-L2

(d) Inception-GAP-Zhou (e) Inception-GAP-Zhou-L1 (f) Inception-GAP-Zhou-L2

(g) Example
Figure 3: Visualization of the CAMs obtained with Inception-GAP5 (Figure 3a, 3b and 3c) and Inception-GAP-Zhou (Fig-
ure 3d, 3e and 3f) with and without L1 or L2 regularization terms to an image of people playing guitar (Figure 3g). Each map
corresponds to one of the 40 classes. The mostly activated class is ”people playing guitar”.

while, in the case of Inception-GAP-Zhou, the net-
work is constrained to be more attentive on the human
performing the action.

Table 4: Class localization accuracies. The second column
shows the evaluation results when knowing the ground truth
class and the third column considers the class predicted by
the model.

based on the based on the
Inception-... ground truth prediction only

GAP5 72.8% 50.3%
GAP5-L1 65.1% 46.6%
GAP5-L2 70.3% 49.6%
GAP-Zhou 66.5% 47.5%

GAP-Zhou-L1 68.1% 47.6%
GAP-Zhou-L2 67.4% 45.8%

The same conclusions may be drawn from Fig-
ure 4 where we test the IoU localization metric with
different threshold values. In the best case, Inception-
GAP5 is better than Inception-GAP-Zhou by 2.7
points, the regularized version of Inception-GAP-
Zhou is better than its non-regularized counter-part by
3 points, and that the regularized version of Inception-
GAP5 is worse than its non-regularized counter-part,
by 2.25 points. Here also, we explain these differ-

Figure 4: Percentage of correctly localized images based on
the IoU metric depending on the threshold value selected to
extract our prediction bounding-box.

ences by the models being more attentive to discrim-
inative elements - which may lead to a detection out-
side of the ground truth bounding box.



5 CONCLUSION AND FUTURE
WORK

This work presented semi-supervised image clas-
sification and localization on RGB images using an
unshared GAP layers. Based on evaluations, we im-
prove upon existing approaches in terms of the per-
formance for both image classification and localiza-
tion, in the context of human action localization, we
hypothesize that the increased performance is due to
the unshared GAP layer and to the reduced attention
field in the model, which makes our model similar
to (Oquab et al., 2015). This increased performance
also exists even though the amount of parameters is
reduced and the visualization method needs less com-
putation.

As our next step, we are going to asses this mod-
ification on a larger dataset such as Imagenet, then,
explore the use of shallower models (models with less
convolutional layers) to tackle this problem. We will
explore whether, in the context of shallower models,
increasing the amount m of maps per neuron shows
benefits. We have strong assumptions that a wider
GAP layer will perform better than a narrower one in
the context of shallow neural network.

In the context of human action localization, it will
also be interesting to generate a prediction based on
a coherence of several consecutive frames rather than
on a single frame. Our future work will consider both
an aspect of time and coherence between consecutive
images and an associated audio coherence where we
consider to transpose it from the semi-supervised spa-
tial localization in images to semi-supervised tempo-
ral localization in audio events.
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