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Abstract. In Human-Robot Interaction (HRI), the intention of a per-
son to interact with another agent (robot or human) can be inferred from
his/her head and upper body orientation. Furthermore, additional infor-
mation on the person’s overall intention and motion direction can be de-
termined with the knowledge of both orientations. This work presents an
exhaustive evaluation of various combinations of RGB and depth image
features with different classifiers. These evaluations intend to highlight
the best feature representation for the body part orientation to classify,
i.e, the person’s head or upper body. Our experiments demonstrate that
high classification performances can be achieved by combining only three
families of RGB and depth features and using a multiclass SVM classifier.

Keywords: Head Pose Estimation, Upper Body Pose Estimation, Mul-
ticlass Classification, Feature Combination

1 Introduction

A person’s head and body orientations convey important cues about the inten-
tion of the person. Whether the person is trying to interact with an intelligent
machine or another person, orienting ones head and body towards the agent is
a natural way to establish engagement. As a result, automated perception of
people’s head and body orientation has attracted a lot of attention in computer
vision, human-machine interaction (HMI), and robotics disciplines. Possible ap-
plications are many: relevant examples include, user’s intention characterization
in human-robot interaction (HRI) [15], social interaction trends analysis [2], au-
tomated sport video analysis [9], human attention understanding for business
and perceptual interface, etc. It can also be used to improve people tracking [2],
body pose estimation [9], and action recognition [14] functionalities.

Nevertheless, correct estimation of people’s head and body orientation is very
challenging due to low image resolution, poor lighting conditions, frequent partial
occlusions, and articulated body poses. In the past, the majority of approaches
relied on RGB cameras [16,2,9]. But, their performance has been hampered
because of their sensitivity to lighting condition, resolution, and lack of 3D in-
formation. With the advent of commercially available consumer RGB-D cameras
like the Kinect and Asus Xtion, improved performance has been recorded, pri-
marily as a result of the added depth information and its insensitivity to lighting
conditions [5, 7, 13].



RGB-D based head pose estimation has been popularly addressed as a re-
gression problem with approaches that provide continuous head pose angular
estimates [5,19]. But, these approaches require high resolution data and hence
work only in very close range (< 2m). For applications entailing further oper-
ating ranges, a classification approach with coarse discrete orientation classes is
privileged [10] (referred here as orientation classification than pose estimation).
This alleviates the need to obtain precise ground truth for head pose, which is
difficult, and is reasonably sufficient for user intention understanding applica-
tions. On the other hand, to determine body orientation, the trend is to extract
discriminant features from a coarsely segmented full person (usually obtained
by employing a pedestrian or people detector) and apply a trained classifier [7,
13]. These approaches, however, deteriorate in presence of partial occlusions, for
instance, partial occlusions of the legs, which is a common occurrence in close
human-machine interaction. Estimating body orientation based on upper body
data (pertaining to shoulder orientation) helps alleviate this shortcoming. Sim-
ilar to head orientation, by using both RGB and depth data and considering
discrete orientation classes rather than continuous estimation, overall perfor-
mance over a wide operating range can be improved [7].

In this work, we investigate head and upper body orientation classification
(discrete classes) based on RGB and depth image features, and linear and non-
linear classifiers. Our aim is to classify the orientation of a person’s head (yaw
angle) and body (horizontal shoulder anterior orientation) independently into
eight discrete classes.The upper body consideration enables body orientation
classification in all ranges (especially in close range where full body based ap-
proach severely deteriorates). In both cases, the depth information robustifies
performance in close and medium range operation, and the added RGB com-
pensates the deficit in depth data in far range. Our work relies on popular RGB
and depth features: local binary patterns (LBP) [18], histogram of oriented gra-
dients (HOG) [3], depth local binary patterns (LBPp), and histogram of depth
difference (HDD) [24]. Additionally, multiscale variants of HOG and HDD fea-
tures are also considered. For orientation classification, three different multiclass
classifiers are considered: Random forest (RF), linear support vector machine
(SVM), and sparse based classifier (SBC). This kind of systematic RGB-D fea-
ture combinations evaluation for head and upper body orientation classification
is lacking in the literature. All evaluations are based on a recently released RGB-
D public dataset [13]. The work is presented organized as follows: The rest of
this section discusses related work and contributions. Section 2 addresses the
adopted head and upper body representation with emphasis on the feature sets
considered. It is then followed by a description of the different classifiers used in
Section 3. Experiments and comparative results are presented in Section 4 and
finally, the paper finishes with concluding remarks in Section 5.

1.1 Related work

The majority of works in head orientation estimation are presented as head
pose regression, predicting the continuous 2D or 3D head orientation, e.g., [5,
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16]. Though very useful and informative, these approaches obtain acceptable
performance in close range. For medium and far range applications, a classifi-
cation approach with discrete orientation classes is preferred [9, 10]. Depending
on the intended application, as is the case in this work, the coarse orientation
estimate provided could be sufficient. Another point on head orientation esti-
mation is the data used. RGB data has been extensively used (see survey [16]),
but the recent advent of consumer RGB-D sensors have shifted the focus from
RGB based approaches to mainly depth based approaches [5,19]. Furthermore,
though demonstrated in close range, improved performance can be obtained by
using both RGB and depth image data [8].

On the other hand, in human body orientation classification, the objective
is to determine a person’s body orientation angle (yaw angle). This is a rel-
atively simplified problem than 3D human pose estimation, and yet conveys
invaluable information about the heading direction of a person and his/her in-
tention. Human body orientation classification can be achieved based on either
full body [2, 22, 7] or upper body [9, 6] image data analysis. Most works are based
on RGB images in video-surveillance contexts, e.g., [2,22], though recent trends
in RGB-D sensors made it possible for more improved full body orientation clas-
sification [7,13]. Full body approaches do not work well in presence of partial
occlusions, either due to close human-camera distance or intra-person occlusions
when multiple persons are in view. This shortcoming is better alleviated with
upper body approaches, e.g., [6,9]. These works are based on RGB images. As
shown in this work, further improvement can be obtained by adding depth in-
formation. Our work investigates RGB-D data for both head and upper body
orientation classification which, though evident, is lacking in the literature.

A popular paradigm for orientation classification is to first extract relevant
features from a bounding box encapsulating a body part (head or upper body),
usually provided by a detector, then to utilize a trained multiclass classifier
to determine orientation class. Although some approaches have tried a coupled
detection-orientation classification paradigm that detects and determines orien-
tation in one go, e.g., [22], the former is preferred as it dissociates the tackled
problem. Furthermore, detector performance has improved significantly [4] so
more focus can be dedicated to orientation classification. In the literature, rel-
evant features considered include HOG [9,22,2], LBP [18], and HDD [7]. The
trend seems to pick a specific family of feature set and use it without any sys-
tematic feature combination evaluation. For classification, popular choices are
multiclass SVM (one-vs-all configuration) [7], sparse representation based clas-
sifier [2,6], and random forest [22,9]. This non-comparative feature-classifier
trends, added with the lack of benchmarking in RGB-D approaches using public
dataset makes feature-classifier choices difficult. Even though Liu et al. [13] in-
troduced a public RGB-D dataset, called MCG-RGBD dataset, it has not been
extensively used by the community yet. In light of these challenges, our work
presents evaluation of several RGB and depth feature combinations for head
and upper body orientation classification. All experiments are carried on MCG-
RGBD to facilitate future benchmarking.
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1.2 Contributions

The main contribution of this work is a comprehensive evaluation of several RGB
and depth features, and their combinations, on a public dataset for head and
upper body pose estimation. It also reports classification results based on three
multi-class classifiers, capturing the essence of existing approaches and making
future benchmarking easy.

2 Head and upper body representation

We start with the premise that the position of the head and upper body of peo-
ple in an image are known (in the form of a bounding box). Typically, this can
easily be obtained using an upper body detector and a head region segmentation
technique [6, 12]. The next steps for orientation classification are relevant feature
set extraction and classification, bearing in mind an underlying discrete orienta-
tion class representation. This section presents orientation class representation
aspects and the adopted heterogeneous feature sets.
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Fig. 1: Tllustration of the head (top row) and upper body (bottom row) eight
discrete orientation classes.

2.1 Discrete Orientation Classes

The head pose representation is usually defined by its pitch, yaw and roll angles
[16]. Considering our problematic, we focus on the yaw angle which is discretized
into eight orientation classes equally distant at 45° [9,20]. Similar to previous
works on body orientation classification [1, 2], we also quantize the upper body
orientation into the same eight discrete orientations.

These eight orientations (Figure 1) analogically denotes the four cardinal di-
rections with the four intercardinal directions where E, NE, N, NW, W, SW, S,
NE corresponds to these directions considered around the yaw rotation axis. In
order to determine the actual pose of the body part, a multi-instances classifi-
cation problem is considered where the classes are the eight possible directions
of the considered body part. The predicted direction computed as an output of
the classifier will give essential cues that indicate a user’s intention.

2.2 Feature Sets

The choice of the features for our work has been inspired from previous work in
orientation classification and person detection.
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HOG 3] The HOG features is the most widely used feature for person detection
and full body pose classification in the literature [1]. The computation of the
feature is based on a division of the considered window in cells of equal sizes
which will be efficiently associated in order to gather the gradient orientations
computed in a histogram. The variations of values in this histogram are charac-
teristics of local shape of the classified object. The final feature is obtained by
concatenating all block histogram with a dimensionality function of the num-
ber of bins used to divide the gradient orientation range and the number of
subdivisions in the windows.

HDD [21,24] This feature set is extracted by applying similar procedure as in
the original HOG feature on the depth data. It tries to compute a histogram of
depth difference based on the disparity of depth variations, and extending the
orientation space and scaling the depth information in a suitable way to improve
its representation.

Multiscale HOG and HDD [2,22] These feature sets generally compute the
features (HOG or HDD) at three scales which are multiples of each other by
a factor of two before concatenating the generated feature vectors into a final
multilevel feature. M-HOG and M-HDD denote these multiscale variants.

LBP and its depth variant LBP[17,11] LBP is a robust texture descriptor
because of its invariance to gray-scale and rotation. It mainly consists to label a
pixel after testing a threshold on its neighborhood. The simplicity of this image
analysis allows a fast computation in addition to its ability to underline patterns
while being immune to contrast changes. In the vein of [11] which proposes a new
LBP-based feature for gender recognition, we decide to apply the LBP pattern
to depth images in order to enrich our set of features with depth-based texture
information.

3 Multiclass Classification

For classification, both head and upper body orientation classification is treated
as a multiclass classification problem with as many classes as number of consid-
ered discrete orientations. In this work, this results in an eight class multiclass
classification problem. The classifiers are trained and tested based on the set
of features described in Section 2.2. The three classifier types considered are
presented below.

Random Forest (RF) Random forest is an ensemble methods that uses N
randomly trained decision trees (separately trained in parallel) of depth D to
create a strong classifier. It uses the average of each tree output to define the
final classification. There are several variants of random forest learning strategies.
In this work, each decision tree is learned using random samples drawn with
replacement from the training set. In addition, when splitting a decision tree
node during the construction of the tree, the split that is chosen is no longer the
best split among all features. Instead, the split that is picked is the best split
among a random subset of the features.
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SVM One-vs-All Support vector machines (SVMs) are statistical supervised
learning methods used for classification and regression [23]. Linear SVM (used
here) specifically, uses a hyperplane to define the decision boundary that sepa-
rates the two classes. To extend it as a multiclass classifier, the one-vs-all strategy
is adopted which involves fitting one classifier per class. For each classifier, the
class is fitted against all the other classes. In addition to its computational effi-
ciency, it is easily interpretable. Since each class is represented by one and one
classifier only, it is possible to gain knowledge about the class by inspecting its
corresponding classifier. The final classification label is determined as the one
that maximizes the classification score.

Sparse Representation based Classification (SBC) In [2], a sparse rep-
resentation approach for multi-instances classification with proven efficiency in
face recognition was introduced. The objective is to project the feature vector
in a base of the considered classes by approximating the feature vector as a
linear combination of the training features. The reconstruction weights of this
decomposition are subject to a non-negative constraint and obtained using an
L7 regularization. These weights will have non-zero values if they corresponds
to the data associated to the same class. Summing all the values of this sparse
decomposition, it is possible to calculate the probability of each class. Then the
maximal probability gives the output label.

4 Experiments

We carry out an exhaustive evaluation of different feature combinations in order
to emphasize a trade-off between feature representation, classification effective-
ness, and CPU cost.

4.1 Evaluation Metrics

The classification is evaluated based on standard confusion matrices where the
columns corresponded to the predicted classes while each row corresponds to the
ground truth classes. Concentrated detections along the diagonal indicate good
performance. We can extract the classification accuracy per class considering
the exact instances of the class normalized by all the classified instances for this
same class. Then we can average the accuracy for all the classes which is our first
performance criteria, accuracy 1 (accl). We consider a second criteria, accuracy
2 (acc2), where the predictions to one of the two adjacent classes are considered
as correct as in [1].

4.2 Dataset

In order to evaluate our approach and make future benchmarking easy, the
MCG-RGBD public dataset [13] is used. The dataset contains 10 RGB-D video
sequences of 11 people acting indoors in three different scenes (meeting room,
corridor, and entrance) with a 640x480 resolution. It includes a wide variety
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of situations as walking, standing, jumping, running rotating, etc. The sensor
limits the field of the acquisition allowing to observe people between 2.5 and 10
meters. As it focuses on people’s global body orientation in a similar way as [1],
the yaw angle of each person is provided as ground truth. The dataset contains a
total of 4000 images. Head and upper body bounding boxes have been manually
annotated for evaluation.

We divide the dataset into training and testing sampled in a 2/3 and 1/3
proportion, respectively. The training set is doubled by adding reflections of
each annotated data. It is then filtered to discard occluded samples. In our
experiments, we observed that using equal number of samples in each class for
training improved overall performance. Hence, the final training set consisted of
an equal sample of 116 instances in each class, resulting in a total of 928 samples
for training. The final test set consists of 2256 annotated samples.

4.3 Implementation Details

Before generating the different features, we extracted head and upper body win-
dows from the dataset which are normalized to a fixed size of 64 x64 pixels. When
computing HOG, an 8x8 pixels cell size, a 2x2 cells block size, and a 9 bins gra-
dient orientation quantization (same parameters as in [3]). As in [2], HOG fea-
tures and the derived HDD features are computed using non-overlapping blocks,
meaning a block stride of 8 pixels or more generally equal to the cell length. The
multiple scale variants of HOG and HDD features (M-HOG and M-HDD) use
respectively one and two additional cells with sizes of 16x16 and 32x32 pixels
for head and upper body feature computation. The difference between RGB and
depth based features is with the spacing of the bins which extends from 180° in
the first case and 360° in the second case. The additional texture information
from the LBP is computed on both RGB and depth channels (LBPp) using an
efficient implementation inspired by the works in [17] and integrated in a channel
way as in [6]. The six base features presented in Section 2.2 (LBP, LBPp, HOG,
M-HOG, HDD, M-HDD) are all combined in every possible way leading to 63
features sets which are all evaluated. The dimensions of our six base features
vary from 336 to 1512 while the dimensions of their combinations vary from 672
to 4668.

Regarding the multiclass classifiers, the random forest (RF) parameters, num-
ber of trees and the maximum depth of tree, are obtained by cross validation
varying the values from 5 to 60 and from 5 to 30, respectively. The SVM classifier
is used with default parameters and a unitary penalty parameter C. The sparse-
based classifier (SBC) does not require any mandatory parameters but requires
the same necessary parameters than any classification approaches: matrices of
training and testing data associated to a ground truth associating a class to
each of the considered sample. During our experiments, the sparse-based ap-
proach proposed in [2] reveals to be compelling to tune. A tolerance depending
to the features dimension has to be set up in the L solver used and computa-
tion of its value for the wide variety of feature combination has revealed to be
constraining. Relaxing non-negative constraint and using a Lo norm for the reg-
ularization, the approach remains time consuming although slightly faster and
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presenting better performances. The Lo regularization is easily computed using
the pseudo-inverse of the feature matrix. The sparse based classifier used for our
evaluation differs of the original approach but presents more pertinent results
for our evaluation.

Accuracy 1 obtained with the best features combinations Accuracy 1 obtained with the best features combinations
for head pose for upper body pose

(a) (b)

Fig. 2: Classification performance result, accl, for: (a) head orientation classifi-
cation, and (b) upper body classification by classifier. See text for description.

4.4 Results

In this section, we will present the main results of our analysis but an exten-
sive comparison of the feature combination is developed in the supplementary
material'. The results observed allow to compare some approaches of the liter-
ature with the new combination of features and classifiers observed. The main
works dealing with orientation classification in the literature are using the HOG
features associated with SVM [7] or random forest [9] or the multiscale vari-
ant of HOG associated with random forest [22] and sparse-based classifier [2].
Fig. 2a and Fig. 2b depict the accl results obtained for head orientation and
upper body orientation classification, respectively. For brevity', of all combi-
nations evaluated, we present the best single feature (base ftr), and two (2fts
comb.), three (2fts comb.), four (2fts comb.), and five (2fts comb.) features com-
binations. Additionally, we also present the result obtained with all combined
features (all ftrs comb.). The results are reported for each multiclass classi-
fier. The best features for head orientation classification are (considering single,
two, three, four, and five combinations): LBPp, LBPp+M-HOG, LBP p+M-
HOG+M-HDD, LBP+LBPp+HOG+M-HOG, and LBPp+HOG+M-HOG +
HDD+M-HDD. For that of upper body, they are: M-HDD, HOG+HDD, LBP p+M-
HOG+HDD, LBP+LBPp+HOG+HDD, and LBP ,+HOG+M-HOG+HDD+M-
HDD. As observed, in the two histograms in Fig. 2, the first two classifiers (SVM
and RF) are in the same order of performance whereas the sparse-based approach
achieve lower performances. This observation is easily explained by the use of the
entirety of data available without selection or optimization of its parameters in
this approach used whereas the two first are trained to keep the most pertinent
features or parameters during the classification process.

! For extensive evaluation results, please refer to the supplemental material at
http://homepages.laas.fr/aamekonn/acivs16 /supplement.pdf
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Classification computation time obtained with the best features combinations Classification computation time obtained with the best features combinations
for head pose classification for upper body pose ificati
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Fig. 3: Single instance classification times (time reported in seconds) for: (a) head
orientation classification, and (b) upper body classification by classifier. See text
for description.

For computation time aspect, Fig. 3 presents the CPU cost of the best feature
combinations determined during evaluation on the test set. Regardless of the
number of features combined, which might directly affect the CPU cost, the
random forest runs in times of the range of the tenth of a second whereas the
SVM classifier runs in tens of seconds. This difference is due to the features
selection realized during the random forest training whereas the SVM compute
an optimal separation hyperplane using all the features available. This gap in
scale would be a decision factor when integrating these functionalities, head and
upper body orientation classification, in a wider application framework.

Table 1: Comparison of our best results and common approaches in the literature.

Approach Classifier Head Upper body
Feature accl acc?2 ‘ Feature accl acc?2
Hayashi et al. [9] RF HOG 0.32 0.66 HOG 0.21 0.52
Tao et al. [22] RF M-HOG 0.32 0.64 M-HOG 0.21 0.51
Fumito et al. [7] SVM HOG 0.38 0.74 HOG 0.30 0.69
Chen et al. [2] SBC M-HOG 0.29 0.68 M-HOG 0.24 0.63
Ours best base ftr SVM LBPp 0.42 0.92 M-HDD 0.66 0.88

Ours best 3ftrs comb. SVM  LBPp+M-HOG+M-HDD 0.47 0.92 | LBPp+M-HOG+HDD 0.76 0.98

Regarding the classification accuracy and more precisely accl, common ap-
proach in the literature are superseded seeing that the best scores obtained using
one feature easily exceed them (Table 1). We can notice that in both problem,
the best score classifying the orientation with unique features are obtained by
depth based feature. The LBPp feature in the head case and the M-HDD for
the upper body. The use of RGB-based features from the literature approaches
appears insufficiently informative on our dataset. Globally, the scores obtained
combining from two up to six heterogeneous features mixing depth and RGB
information and using the SVM classifier features are of the same range (Fig. 2).
The maximum accl scores are obtained combining three features. A score of 47%
accl is obtained mixing LBPp, M-HOG and M-HDD for head orientation clas-
sification, whereas a 76% accl is achieved mixing LBP p, M-HOG and HDD for
upper body orientation classification. Upper body based classification demon-
strates a significantly better accuracy, nearly 30%, than head orientation. This
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gap is due to the extension of the analyzed area which reduce the ambiguity
between classes. Considering the second performance criteria, acc2, scores of 92
and 98% are observed. This means that, on average, there is a 47% confidence
to correctly classify a head orientation and there is a 45% possibility that it is
misclassified for a neighboring orientation. An average error score of 8% for head
orientation and 2% for upper body (considering neighboring classes as correct)
on our orientation classifications is an outstanding performance with regards to
the literature.

Head pose classffication with the Upper body pose classification with the
Best 3ftrs Comb. associated to SVM classifier Best 3ftrs Comb. associated to SVM classifier

(a) (b)

Fig.4: Confusion matrix for (a) head and (b) upper body orientation classifi-
cation obtained using the best approaches — best three features combined with
SVM classifier.

To further illustrate the classification performance in each discrete class,
Figs. 4a and 4b show the confusion matrices for the best head and upper body
orientation classification results respectively. The best results pertain to the
three feature combinations highlighted in Table 1. From the confusion matrices,
we can observe a matrix presenting some full lines for the head case whereas
the upper body one present a sparser structure. On the first case, we have con-
centrated scores for the lateral classes (W and E) and spread estimations with
imprecision on the orientation classification for the frontal and dorsal class (N
and S). However, there is a global concentration of the estimations around the
diagonal explaining the high score of 92% acc2. On the second case, we have
a sparse matrix presenting a light cross shape. This low score symmetrically to
the high score are due to the front/rear ambiguity. Nevertheless, high scores are
reached all along the diagonal leading to the high scores for the two performance
criteria. These differences confirm the complexity rising according to the size of
the body part considered but an overlap would easily be established if these
analysis were realized jointly.

5 Conclusion

In this work, we presented an extensive evaluation of several RGB and depth
feature set combinations for head and upper body orientation classification. We
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showed the interest of adding the depth information. Using the heterogeneity
of this information, we obtain a 47% and a 92% accuracies (accl and acc2 re-
spectively) for head orientation classification. For upper body orientation clas-
sification, accuracy scores of 76% and 98% are obtained. Our results also attest
that by using a combined feature set composed of a single variant of each LBP,
HOG, and HDD features, it is possible to obtain the best classification perfor-
mance. The preferred variants are LBPp and M-HOG, with M-HDD for head
orientation and with HDD for upper body orientation classification. The best
results are indeed obtained by using both RGB and depth based feature sets.
In addition, our experimental results indicate that better results are obtained
with the SVM classifier. But, this should be considered in light of the intended
application, as the improvement obtained using SVM over RF based approach
might not justify the incurred CPU cost (which is at least higher by an order of
magnitude).

Future prospects include integration of the best trained model in human-
robot interaction context and using the classification output as percepts for
user’s intention estimation. We also believe further improvements on head and
upper body orientation estimation can be obtained using probabilistic filtering
approaches, possibly with underlying head-should physiological models.
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