
HAL Id: hal-01763156
https://laas.hal.science/hal-01763156

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvement of multiple pedestrians tracking thanks to
semantic information

Jorge Francisco Madrigal Diaz, Jean-Bernard Hayet, Frédéric Lerasle

To cite this version:
Jorge Francisco Madrigal Diaz, Jean-Bernard Hayet, Frédéric Lerasle. Improvement of multiple pedes-
trians tracking thanks to semantic information. International Conference on Pattern Recognition, Aug
2014, Stockholm, Sweden. �hal-01763156�

https://laas.hal.science/hal-01763156
https://hal.archives-ouvertes.fr


Improvement of multiple pedestrians tracking thanks
to semantic information

Francisco Madrigal
Centro de Investigación en
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Abstract—This work presents an interacting multiple pedes-
trian tracking method for monocular systems that incorporates a
prior knowledge about the movement and interactions of the
targets. We consider 4 cases of pedestrian behaviors: going
straight; finding the way; walking around and stand still. Those
are combined within an Interacting Multiple Model Particle
Filter strategy. We model targets interactions with social forces,
included as potential functions in the weighting process of the
Particle Filter (PF). We use different social force models in each
motion model to handle high level behaviors (collision avoidance,
flocking. . . ). We evaluate our algorithm on challenging datasets
and demonstrate that such semantic information improve the
tracker performance.

I. INTRODUCTION

Multi-object tracking (MOT) has been the attention of
many research efforts in recent years, and is applicable in
many areas, like robotics, video surveillance, among others.
Among all the MOT techniques, many infer targets trajectories
from two clearly separated elements. The first one is the target
appearance, and the second one is a prior knowledge about the
targets motion. Our work focuses on the latter.

Pedestrian motion may look chaotic. However, many stud-
ies [7], [13], [10] have shown that pedestrian behavior is
governed by causes such as social forces or environment
constraints. For example, in Fig. 1, the couple at the center
is standing in place, while other people are moving around,
with different velocities. This complex joint dynamics is not
considered in most of the approaches, who rely on more classic
individual linear models (i.e., constant velocity). To model
these complex dynamics, we simplify the study to four cases
of motions (one model per motion), obtained by the analysis
of the pedestrians in a mall [13]. Also, we include target
interactions by using potential functions, related to the well
known social forces. The interaction depends of the orientation
of the target, i.e., pedestrians in the same group should have
similar orientations, whereas two people talking to each other
should have close to opposite orientations. The motion models
are integrated in one single framework with the Interacting
Multiple Model (IMM) scheme under a Particle Filter (PF)
methodology [4].

In the work presented here, the motion models are devel-
oped with semantic information from [13], allowing to handle
a more natural human walking in low-crowd scenes. Thus, we
propose a tracking framework, with a filter dedicated to each
target, that includes a prior knowledge of the expected social

Fig. 1. Pedestrians with multiple motion dynamics. The interaction of the
person in the middle of the image with others depends on the region that they
occupy. From proxemic theory, these regions can be divided in four: Intimate
(Red), Personal (Yellow), Social (Blue) and Public (Green) space.

behavior in each motion model. The modeling considers the
body pose of each target (estimated as in[5]) as a feature to
control the interaction.

The structure of the paper is as follows: Section II discusses
related work. The formulation of IMM-PF is presented in
Section III. The Section IV describes our contribution in the
modeling of the pedestrian behavior (motion and interaction).
Results are presented in Section V. Finally, conclusions are
drawn in Section VI.

II. RELATED WORK

Common naive dynamic model are widely used in most of
the MOT frameworks, i.e., constant velocity [5], [3], random
walk [10], target detector [3], among others. [10] propose a
technique to model a simple interaction between trackers to
keep them apart. However, this method can not be extended
very well to multiple behaviors due to the interaction models
can contradict each others. In [3] is presented a framework
to track individuals and groups of pedestrians at the same
time, but it not consider semantic information over the group
formation. Capturing the complex behavior of targets like
pedestrians can be really challenging. A mixture of multiple
motion models through IMM methodology is an elegant so-
lution. IMM weights each model according to its importance
in the posterior distribution [4], [8], fusing models of different
types under one single context. In [8], a simulation of target
tracking is done with a bank of Kalman Filters (KF), each one



associated with a distinct linear motion model, within the IMM
methodology (IMM-KF). This proposal is fast and suitable for
a large number of targets. In [15], a similar bank of filters was
employed in a hybrid foreground subtraction and pedestrian
tracking algorithm. It uses the tracking result as a feedback to
improve foreground subtraction. [9] proposes a IMM-KF for
pedestrian tracking similar to ours, with two classic motion
models: constant position and constant velocity, to track a few
targets.

However, the limitations of the KF make impossible to use
them in non-linear models and the IMM-KF scheme can not
recover when one filter of the bank fails. [4] proposes an IMM
implemented with Particle Filter (IMM-PF). They associate
to each model a fixed number of particles (i.e., 1000) and
weight the models according to their importance in the PF.
This proposal suffers from a waste of computational resources
at processing a bunch of particles with low importance models.
In [11], each particle motion model has the possibility of
evolve over time, passing from a moving to a stopped state.
Those changes are modeled with a transition matrix (TM)
of fixed values. However, those values can not represent the
real model changes. In the other hand, target interaction are
common in MOT, and the orientation is strongly correlated to
the behavior type, i.e., pedestrians from the same group share
similar orientations. [10] presents a strategy to model interac-
tions as potential functions easily included in the Bayes filter
formulation. They follow a PF strategy, where the interaction
functions act as weight factors in the particle weighting.

Contributions. To overcome the limitation of the common
naive dynamic models (widely used in MOT [14], [9], [10]),
we propose a motion model incorporating semantic informa-
tion to improve pedestrian tracking. We model this high level
pedestrian behavior in two contexts: motion and interaction.
We emulate the complex pedestrian motion with multiple
models, developed from observation analysis [13]. We expand
the work of Khan [10] to multiple pedestrian tracking and
include more realistic interaction coming from the simulation
community, known as social forces. We demonstrate, in several
challenging video sequences, that the semantic information
improves tracking performances.

III. PARTICLE FILTER-INTERACTING MULTIPLE MODELS

We formulate the tracking problem in a Bayesian frame-
work, where we infer the state X in the current time t (Xt)
given the set of observations Z1:t = {Z1 . . . Zt}. Under the
Markov assumption, the posterior is estimated recursively by:

{
p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,

p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1).
(1)

The Eq. 1 is know as the Bayes filter which includes
two steps: prediction (first row) and correction (second row).
Following the IMM strategy [4], we formulate the motion
model p(Xt|Xt−1) as a mixture of M distribution as:

p(Xt|Xt−1) =

M∑
m=1

πmt p
m(Xt|Xt−1), (2)

where the terms πmt weigh each model contribution in the
mixture. Thus, the posterior of Eq. 1 is reformulated as:

{
p(Xt|Z1:t−1) =

∫ ∑M
m=1 π

m
t p

m(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1,
p(Xt|Z1:t) ∝ p(Zt|Xt)p(Xt|Z1:t−1).

(3)

Since the contribution term does not depend on the previous
state Xt−1, we move this term out of the mixture distribution.
Hence, the filter of Eq. 3 is rewritten as:

p(Xt|Z1:t) ∝
∑M
m=1 π

m
t p(Zt|Xt)p

m(Xt|Z1:t−1), (4)

with pm(Xt|Z1:t−1) =
∫
pm(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1. The

terms πmt are updated in function of their respective likeli-
hoods [4]: πmt = πmt−1

∫
p(Zt|Xt)p

m(Xt|Z1:t−1)dXt.

A. Tracker implementation

The target state is defined through a bounding box (BB)
including its position in the image plane (x, y), its global
orientation θ (linked to the shoulders) and its linear and
angular velocities (vl, vθ). Hence, we define the state X as
(x, y, θ, vl, vθ)

T . The real BB dimensions (h,w) around the
pedestrians are fixed according to the average size of an adult
person, given the camera projection matrix, at the specified
image location. The PF approximates the posterior in Eq. 4 by
a set of N weighted samples or particles. The multi-modality is
implemented by assigning one motion model to each particle,
indicated by a label l ∈ {1 . . .M}. Thereby, a particle n at
time t is represented by (X

(n)
t , ω

(n)
t , l(n)).

In the IMM-PF methodology, the model m = {1 . . .M}
contributes to the posterior estimation according to its impor-
tance, which is defined by a weight πmt . Each model m has
Nm particles, with a total of N =

∑M
m=1Nm particles. The

posterior is represented by considering both particles weights
(ω(n)
t ) and models weights (πmt ):

p(Xt|Z1:t) =
∑M
m=1 π

m
t

∑
n∈ψm ω

(n)
t δ

X
(n)
t

(Xt),

s.t.
∑M
m=1 π

m
t = 1 and

∑
n∈ψm ω

(n)
t = 1,

(5)

where ψm = {n ∈ {1 . . . N} : l(n) = m} represents the
indices of the particles that belong to model m.

B. Sampling and dynamic model

Under the PF scheme, we use an importance proposal dis-
tribution q(·), that approximates p(Xt|Xt−1,Z1:t), from which
we can draw samples. In the multiple motion model case,
we have M proposals, such as: Xm

t ∼ qm(Xt|Xt−1,Z1:t).
Here, we sample a new state of each particle from the motion
model corresponding to its label l(n). This model is a Gaus-
sian distribution N(Xt; trl(n)(X

(n)
t−1),Σl(n)), where trl(n)(·) is

the deterministic form of the motion model. The index l(n)

indicates the model the particle n follows.



C. Observation model and correction step

We implemented a probabilistic observation model
p(Zt|Xt) based on the proposals presented in [14] and [5].

[14] relies on HSV-space color and motion histograms.
We define a reference histogram href anytime we create a
new tracker. The likelihood is evaluated between href and the
current histogram h(n) (corresponding to X

(n)
t ) through the

Bhattacharya distance. We include spatial information with the
color observation by using two vertical histograms per target,
one for the top part of the person and another for the bottom
part.

Following [5], we include observations related to the target
orientation, discretized into eight directions. The body pose an-
gle is evaluated with a set of multi-level Histogram of Oriented
Gradients (HoG) features f (n)extracted from the image inside
each X

(n)
t , and decomposed into a linear combination of O

training samples F = {f1, . . . , fO}:

f (n) ≈ a1f1 + · · ·+ aOfO = Fa,

where a = {a1, . . . , aO} is the weighs vector subject to
non-negative constraints (ao ≥ 0). The goal is to find the
optimal weights (a∗) such as:

a∗ = arg min‖f (n) − Fa‖22 + λ‖a‖1

where λ controls the regularizor importance. The likelihood is
calculated as the normalized sum of the weights of a∗ with
the same (discretized) orientation θ(n)t of the particle n.

Then, particles weights are updated by:

ω
(n)
t =

ω̃
(n)
t∑

i∈ψm ω̃
(i)
t

, ω̃
(n)
t =

ω
(n)
t−1p(Zt|X

(n)
t )p

l(n) (X
(n)
t |X

(n)
t−1)

q(X
(n)
t |X

(n)
t−1,Z1:t)

,

(6)

where p(Zt|X(n)
t ) is the likelihood of the observation Zt

evaluated at the state of particle n. Assuming that the proposal
and prior distribution are the same, we have:

ω̃
(n)
t = ω

(n)
t−1 · p(Zt|X

(n)
t ), (7)

πmt =
πmt−1ω̃

m
t∑M

i=1 π
i
t−1ω̃

i
t
, ω̃mt =

∑
j∈ψm ω̃

(j)
t . (8)

Thus, Eqs. 6 and 8 ensure that the constraints on Eq. 5 are
always satisfied.

D. Resampling

We implement the resampling process proposed in [12]
which performs the sampling in one of two ways:

1.- The sampling is done over all particles, following a com-
mon Cumulative Distribution Function built with the weights
of particles ω(n)

t and models πmt . The best particles from the
best models are sampled more often, leaving more particles
with models fitting better to the target motion.

2.- The resampling is done on a per model basis. Each model
has always a minimum of γ = 0.1 ∗ N particles to preserve
diversity. If the model has less particles than a threshold
(Nm < γ), we draw new samples from a Gaussian distribution:
N(X̄t−1,St−1), where X̄t−1 and St−1 are the weighted mean
and covariance of all particles of the previous distribution.
We take less samples from the model with more particles to
leave the number of particles N unchanged. This resampling
manages the model transition implicitly, so no prior transition
information is required.

IV. PEDESTRIAN SEMANTIC BEHAVIOR

We propose a motion model for pedestrian tracking that
incorporate semantic information of the dynamic of the targets
with a set of expected behavioral rules in each case.

A. Pedestrian dynamics

According to [13] there are four pedestrian motion behav-
iors in a shopping mall:

• Going straight. The pedestrians walk directly to their
goal, as fast as possible, with small variations in the
trajectory.

• Finding one’s way. The pedestrians have an approx-
imate idea of their destination (i.e., an address over a
route). They walk at a regular speed, with variations
in their trajectories.

• Walking around. The pedestrians don’t have a spe-
cific goal. They walk at slow speed and tend to change
their trajectories more often.

• Stand still. The pedestrians remain at the same po-
sition, changing their body orientation.They could be
interacting with other persons.

We build 4 motion models to emulate those behaviors. The
first three cases (k = 1, 2, 3) are modeled by:

trk(X) =


x+ vl ∗ cos(vθ)
y + vl ∗ sin(vθ)

α(vl) ∗ θ + (1− α(vl)) ∗ vθ
µk
vθ

+


N(0, σx)
N(0, σy)
N(0, σθ)
N(0, σvl,k )

N(0, σvθ,k )

 ,
where σx, σy and σθ are constant values. The new position is
updated as a constant velocity model. Normally, a pedestrian
who walks fast has a rather constant orientation and small
angular velocity. Following this idea, we calculate the new
orientation as a combination of the previous angular velocity
and orientation, controlled by α(v) = exp(−v

2

σα
). Hence,

the higher vl, the more similar the orientation and angular
velocities. The µk and σk values depend on the model to be
used, allowing to control the behavior of the aforementioned
categories 1, 2 and 3:

µ1 = 2.5ms ,
µ2 = 1.25ms ,
µ3 = 0.65ms ,

σvl,1 = 0.22m
2

s2
,

σvl,2 = 0.58m
2

s2
,

σvl,3 = 0.63m
2

s2
,

σvθ,1 = 0.01 rad
s ,

σvθ,2 = 0.05 rad
s ,

σvθ,3 = 0.10 rad
s .

The stand still case is modeled by:

tr4(Xt) =

[
I3×3 03×2

02×3 02×2

]
Xt + ν4. (9)



where ν4 is a Gaussian noise. Pedestrians are also influenced
by a set of external rules known as social forces (SF) [7].
Those SF depend on the dynamic of the people. The next
section describes them in detail.

B. Social behaviors for trackers interaction

The social forces (SF) model makes possible the interaction
between trackers. We associate a set of SF to each motion
model according to the expected behavior in each case. The
state Xt is projected into the world plane to control the
effect of each force in real coordinates. We use two SF:
(1) A repulsion force, keeping the trackers apart of each
other, preventing identity switching and collisions. (2) An
attraction force, which keeps the targets close to each other,
and modeling social groups.

Interactions are modeled with pairwise potential func-
tions [10]. We define one such potential for each of the M
models, SFm(Xi,Xj) which can be easily included in the
motion model of Eq. 2:

p(Xt,i|Xt−1,i) =

M∑
m=1

π
m
t p

m
(Xt,i|Xt−1,i)

∏
j∈ϕi

SFm(Xt,i,Xt,j),

where ϕi = {j ∈ {1 . . . N} : i 6= j}. As happened in Eq. 3, the
interaction term SFm(·) does not depend on the previous state
Xt−1, so, this term is move out of the mixture distribution with
πmt . Thus, the posterior of Eq. 4 for a target i is reformulated
as:

p(Xt,i|Z1:t) ∝
∑M
m=1 π

m
t p(Zt|Xt,i)·∏

j∈ϕi SFm(Xt,i,Xt,j)p
m(Xt,i|Z1:t−1).

Since the interaction term is out of the mixture distribution,
we can treat it as an additional factor in the importance weight.
Thus, we weight the samples of Eq. 7 according to:

ω̃
(n)
t,i = ω

(n)
t−1,i · p(Zt|X

(n)
t,i )

∏
j∈ϕi

SF
l
(n)
i

(X̂
(n)
t,i , X̂t,j),

where X̂t =
[
x̂, ŷ, θ̂, v̂l, v̂θ

]T
t

is the state projected on ground
plane through the homography, r̂ = [x̂, ŷ]T is the position,
θ̂ is the orientation and (v̂l, v̂θ) is the linear and angular
velocity of the target in world coordinates. The term SF

l
(n)
i

(·, ·)
is the corresponding social force model the particle n is
associated to. We measure the distance between two trackers
(i, j) through the L2 norm as d̂i,j = ‖r̂i,t−r̂j,t‖. All the distance
considerations in the rest of the paper come from the study of
nonverbal communication known as proxemics (see Fig. 1).
We define the social forces for each motion models as:

Going straight. The pedestrians who walk fast are aware of
the present obstacles and decide with enough anticipation their
direction to ensure a comfortable free-collision path. We use a
repulsion function over any tracker under a distance of d̂ij <
3.5m (considering a variance of σf1 = 2m). The social force
for case 1 (sec. IV-A) is:

SF1(X̂
(n)
t,i , X̂t,ϕi

) =
∏
j∈ϕi

GS(X̂
(n)
t,i , X̂t,j) (10)

GS (Xi, Xj) =

{
1− exp

(
−
d2i,j

σ2
f1

)
if d̂i,j < 3.5m

1 otherwise

Finding one’s way. The pedestrian walks at middle/high
speed, moving alone, inside a group or merges/splits from
one. At this speed, groups are not too close, preserving a
social distance SD = 2.5m. We consider that two targets with
d̂i,j < 3.5, ‖v̂l,i − v̂l,j‖ < εv , and orientation ‖θ̂i − θ̂j‖ < εθ
are walking in a group. We model this as:

FW attr(Xi, Xj) = exp

(
−

(d̂i,j − SD)2

σ2
f2

)
. (11)

where σ2
f2

= 20cm is the variance over the distance. Other-
wise, the target is moving alone, evading obstacles:

FW rep(Xi, Xj) = 1− exp

(
−
d2i,j

σ2
f3

)
, (12)

with σf3 = 1m. Thus, the social force for case 2 is:

SF2(X̂
(n)
t,i , X̂t,ϕi

) =
∏
j∈ϕi

FW (X̂
(n)
t,i , X̂t,j) (13)

FW (Xi, Xj) =


FW attr(Xi, Xj) if d̂i,j < 3.5m

‖v̂l,i − v̂l,j‖ < εv
‖θ̂i − θ̂j‖ < εθ

FW rep(Xi, Xj) if d̂i,j < 3.5m
1 otherwise

Walking around. Pedestrians walk with a comfortable speed,
in groups. Targets belong to the same group if d̂i,j < 3, ‖v̂l,i−
v̂l,j‖ < εv and ‖θ̂i − θ̂j‖ < εθ. Usually, they keep a personal
distance of SP = 1.5m. This flock behavior is modeled as:

WAattr(Xi, Xj) = exp

(
−

(d̂i,j − SP )2

σ2
f2

)
. (14)

Otherwise it is walking alone, avoiding the obstacles:

WArep(Xi, Xj) = 1− exp

(
−
d2i,j

σ2
f4

)
, (15)

with σf4 = 1m. The SF influence over a particle is:

SF3(X̂
(n)
t,i , X̂t,ϕi

) =
∏
j∈ϕi

WA(X̂
(n)
t,i , X̂t,j) (16)

WA(Xi, Xj) =


WAattr(Xi, Xj) if d̂i,j < 3m

‖v̂l,i − v̂l,j‖ < εv
‖θ̂i − θ̂j‖ < εθ

WArep(Xi, Xj) if d̂i,j < 3m
1 otherwise

Constant position. The persons stand still, maybe interacting
with other people, i.e., talking, with an interpersonal distance



Fig. 2. Tracking of the central couple only. The top and bottom rows depict
the results of our proposal without and with social forces, respectively. We
use the view 5 of PETS09 S2-L1 scenario.

of ID = 1m. We model this behavior with an attraction
function between two close trackers (d̂i,j < 1.5m) with
opposite orientation (θ̂i,j = ‖θ̂i − θ̂j‖ < 60◦):

CPattr(X̂i, X̂j) = exp

(
−

(d̂i,j − ID)2

σ2
f2

)
. (17)

A static pedestrian can move apart, letting others to pass.
This behavior is model with a repulsion effect:

CPrep(Xi, Xj) = 1− exp

(
−
d2i,j

σ2
f1

)
, (18)

with σf2 = 1m. Note that a particle can be in both situations
at the same time. Only one social force is applied at the a
time. The SF for this motion model is:

SF4(X̂
(n)
t,i , X̂t,ϕi

) =
∏
j∈ϕi

CP(X̂
(n)
t,i , X̂t,j) (19)

CP(X̂i, X̂j) =


CPattr (X̂i, X̂j) if d̂i,j < 1.5m

θ̂i,j < 60◦

CPrep(X̂i, X̂j) if d̂i,j < 1.5m
1 otherwise

V. EXPERIMENTS

We test our proposal on 3 realistic video sequences evalu-
ating our results qualitatively and quantitatively. We compare
our algorithm performance against other proposals from the
current state of the art.

We evaluate our proposal with several videos from two
datasets: PETS09 [2] and PETS06 [1]. Both are challeng-
ing benchmark data to test and evaluate the performance of
pedestrian tracking algorithms. The PETS09 dataset consists
of a set of 8 camera video sequences of an outdoor scene.
We apply our proposal in the sparse crowd scenario S2-L1
of 795 frames. The PETS06 dataset has a set of 4 camera
video sequences of an indoor scene. We use the S6 scenario
(of 2800 frames). Those scenes present challenging situation
of pedestrian tracking.

We manually generated a ground-truth dataset, for each
pedestrian in the scene over all frames of the views 1 and

Sequence Method SFDA ATA N-MODP MOTP MODA
CV 0.67 0.36 0.75 0.73 0.80

PETS09 IMM-PF 0.63 0.50 0.77 0.63 0.60
View 1 IMM-PF SF 0.69 0.60 0.78 0.68 0.78

CV 0.51 0.40 0.57 0.56 0.60
PETS09 IMM-PF 0.62 0.51 0.85 0.67 0.54
View 2 IMM-PF SF 0.65 0.59 0.85 0.67 0.61

CV 0.33 0.48 0.58 0.50 0.33
PETS06 IMM-PF 0.33 0.53 0.66 0.54 0.29
View 4 IMM-PF SF 0.35 0.58 0.68 0.58 0.32

TABLE I. RESULTS FOR THE S2.L1 SEQUENCE, VIEW 1. MEDIAN
OVER 30 EXPERIMENTS WITH VARIANCE INFERIOR TO 0.001 IN ALL

CASES.

2 of the PETS09 S2-L1 scenario and view 4 of PETS06 S6
scenario. We measure the performance of our algorithm with
five standard metrics of tracking evaluation [6]: (1) Sequence
Frame Detection Accuracy (SFDA) penalizes missed detec-
tions and false positive; (2) Average Tracking Accuracy (ATA)
penalizes shorter or longer trajectories, missed trajectories and
false positive; (3) Multiple Object Tracking Precision (MOTP)
and (4) Multiple Object Detection Precision (MODP) measure
the tracks spatio-temporal precision and spatial precision re-
spectively; (5) Multiple Object Detection Accuracy measures
the detection accuracy, missed detections and false positives.
Those metrics set scores between 0 (worst) and 1 (perfect).

The creation and destruction of the trackers is auto-
matic [12]. From a binary image, coming from a foreground
detector algorithm, we initialize new trackers from those blobs
(region with motion) that have the expected dimensions of a
adult human (with the help of the camera projection matrix).
The tracker is destroyed when its linearized likelihood is under
a threshold for a given time, i.e., 10 frames.

The Figs. 2 and 3 show some qualitative results. The
bounding boxes (BB) depict the filter output. In Fig. 2, we
track only the couple at the center of the image. The top
and bottom rows show the tracking results with our IMM-
PF proposal without and with social forces, respectively. Both
targets have similar appearance, hence the trackers on the top
end following the same target, meanwhile in the bottom row
the trackers keep their respective targets. The same situation
is observed in Fig. 3: the talking couple is correctly tracked.
The last column depicts a pedestrian that passed in front of
them. In the social force case, their identity is preserved.

The Table I presents quantitative results over the sequence
S2-L1 view 1 and 2 of PETS09 and view 4 of PETS06 S6
scenario. We tested 3 models: a classic constant velocity model
(CV), our proposal alone (IMM-PF) and including the social
forces (IMM-PF SF). The rest of the implementation (obser-
vation model, initialization, termination, etcetera) remains the
same. The SFDA, MODP and MOTP metrics measure the
detection precision. In this case, the results show no significant
changes for sequences PETS09 View 1 and PETS06 View
4, indicating that our tracking system is robust enough to
detect the targets most of the time, under different techniques.
In the other hand, we can observe an improvement for the
PETS09 View 2 sequence, because the video has multiple
occlusions between pedestrians. The MODA metric shows that
we can handle correctly the initialization and termination of the
trackers. The ATA metric measures tracking performance. We
observe that ATA is significantly improved with our proposal,



Fig. 3. Example of tracking. The upper row implements IMM-PF with the four proposed motion models. The bottom row depicts the result of our proposal
with the four models with social forces. We use the view 3 of PETS06 S6 scenario.
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Fig. 4. Evaluation in view 1 of PETS09 S2-L1 sequence. PF CV follows our implementation with a constant velocity model. The last two results show the
performance of IMM PF (no social forces) and IMM PF SF (social forces). The others results come from [6], [12].

meaning that our algorithm can follow a target with the same
tracker for more time.

The Fig. 4 compares our performance (last two diagrams)
against other approaches. Once again, our proposal ATA stands
out. So, our proposal can track the same target longer than
other techniques. The two closest ones are the methods labelled
as Yang and Horseh, but it is important to notice that these two
proposals perform multi-camera tracking, while our system is
monocular.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a multiple motion model that include
semantic information of pedestrian behavior for monocular
multiple target visual tracking. The IMM-PF allows to handle
models with different social content, such as grouping or
reactive motion for collision avoidance. The social forces are
a simple and at the same time efficient way to include target
interaction. The combination of multiple interaction allows our
proposal to model high-level behaviors in low-density scenes.
The experiments depict how our approach manages efficiently
challenging situations that could generate identity switching or
target loss.
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