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Abstract

Multi-person tracking is a very difficult problem in Com-
puter Vision as a tracking algorithm is facing several issues,
such as appearance changes, targets’ occlusions and simi-
lar appearances between people. In an online tracking-by-
detection algorithm, robust and discriminative specific ap-
pearance models help handling these difficulties. As done
in single object tracking, we use sparse representations to
extract local features of the targets and study how these rep-
resentations can be specifically employed for multi-person
tracking. Experiments on several datasets show that consid-
ering spatial information is crucial in order to improve the
tracking performances with local descriptions compared to
holistic features. Using large collaborative representations
also improve the tracking results by naturally discarding ir-
relevant local patches.

1. Introduction

Multi-person tracking is a challenging topic, and partic-
ularly in video surveillance applications, affected by several
issues that make this problem difficult. An efficient tracker
has to deal with appearance variations, partial and severe
targets’ occlusions, and entrance-exit of people in the field
of view of the camera.

This problem is either addressed offline [9, 13], us-
ing past and future frames, or online where only the past
frames are considered to estimate the tracks of people
[2, 10, 11, 16]. Recent online and offline trackers often rely
on the tracking-by-detection scheme, using a classifier to
detect pedestrian’s locations in each frame.

Offline algorithms estimate the trajectories over a tempo-
ral window and can better handle the initialization and ter-
mination of the tracks compared to online methods. How-
ever, these methods can hardly include specific appearance

and motion models of the targets, making difficult to differ-
entiate people with similar appearances, and do not fulfill
real-time applications.

In online approaches, detections are linked together
frame to frame to reconstruct trajectories across time.
Most of the time, specific appearance and motion mod-
els are learned online in order to find the best trajectories-
detections assignment in a given frame. Therefore, employ-
ing robust and discriminative specific appearance models
can significantly improve the tracking results of such meth-
ods [1, 11, 15].

Robust appearance models have been proposed for sin-
gle object tracking in order to better cope with appearance
changes and occlusions of the target. Sparse representations
are largely employed in this field and used to describe the
target with holistic or local features [5, 7, 8, 17]. A descrip-
tion based on local patches is argued to be more robust to
occlusions, see Liu et al. in [7]. Jia et al. in [5] propose
to include some spatial information within the sparse repre-
sentations. This method appears to better localize the target
location and naturally filter out irrelevant patches which can
represent, for example, some occluded parts of the target.

We propose an online multi-person tracking-by-
detection algorithm based on sparse representations of
the targets described by local patches. We also use some
spatial considerations, at the person or patch level, com-
bined with collaborative representations among people or
patches. Using collaborative representations with some
spatial constraints, either at the person level or patch level,
improves the tracking results and naturally determines
relevant elements in the representations making them more
discriminative. The best results on several public datasets
are achieved when the most collaborative representations
are employed with spatial considerations. In this setting,
local descriptions yield better results than those obtained
from holistic features of people.



This work is organized as follows. In Section 2, we
present some related works and the tracking algorithm used
in Section 3. We show the performances of the different
choices of representations in Section 4 and the last section
concludes this work.

2. Related work

While online multi-person approaches based on the
tracking-by-detection paradigm were gaining popularity,
some works began to consider more complex specific ap-
pearance models. Some employed local descriptions of the
targets, like in [11] where part-based models inspired by
DPM are used, or [15] where the motions of local patches
on a regular grid are estimated in order to determine the
most stable parts of the targets. In some methods, specific
discriminative models are learned online to differentiate the
related target from the surrounding ones [1, 11]. Existing
approaches use these appearance models to estimate at each
frame the affinity values for any track-detection pair. An
Hungarian algorithm (or a greedy one) is then employed to
find the best assignment between tracks and detections at a
global level.

The description of the target appearance and the related
model are a key element of single object tracking where a
generic appearance of the target is unknown (as described
in [12]). Sparse representations have been very popular in
this field, and the related trackers employ a dictionary, com-
posed by some views of the target, and assume that the tar-
get can be well approximated by a weighted linear combina-
tion of a few elements of this dictionary [8]. The dictionary
can also include some elements from the background or the
surroundings of the object in order to make the representa-
tions more discriminative [17]. Even though the majority of
these approaches employ holistic descriptions of the target
[6, 8, 17], some use a more local information by considering
local patches [5, 7]. Particularly, the approach described in
[5] uses local patches on a regular grid and includes some
spatial considerations in order to penalize patches which are
reconstructed with elements that do not share the same lo-
cation on the grid. This naturally leads to select relevant
patches that are reconstructed by elements from the same
location and tends to discard patches from occluded parts.

Recently, a multi-person tracker was proposed in [10]
using appearance models based on sparse representations.
However, these appearance models are specific to each tar-
get and each of them is similar to a model used in a sin-
gle object tracking approach. We consider that, in the con-
text of a tracking-by-detection algorithm, appearance mod-
els should take in consideration the people jointly in order
to be able to discriminate them efficiently. In fact, com-
puting the affinity values between a given detection and all
the possible tracks can be seen as a classification problem.
Sparse representation can handle it, as it was proposed for

face recognition, using a dictionary which combines some
training examples of each class. The element to be classified
is then represented in a collaborative way among all classes,
and its class is estimated as the one that minimizes a resid-
ual reconstruction error [14]. In this paper, we propose to
compute the affinity values for all the track-detection pairs
using this kind of classifier with a local description of the
targets, building on the work done in [4] which considers
only holistic descriptions.

3. Proposed approach

We present in this section how sparse representations
can be employed in a multi-person tracking system, using
collaborative representations over local descriptions of the
people and taking into account some spatial information be-
tween these descriptions.

3.1. System overview

Our system relies on the tracking-by-detection paradigm
which means that a set of detections D is given at each
frame by a pedestrian detector. These detections are asso-
ciated with existing tracks, estimating an affinity value A;;
between the i*" track and the j* detection in D with spe-
cific appearance and motion models. This association pro-
cess consists in finding the best assignment between tracks
and detections which is formulated as a maximum matching
problem in a bipartite graph. This problem can be solved
exactly with the Hungarian algorithm or with a greedy one
for an approximated solution.

The trajectory handling is inspired from [16]. Tracks
with a high association rate are declared confident, those
with a low association rate are declared lost for a few frames
before being definitively terminated.

The affinity values are estimated using sparse represen-
tations, but different choices are possible considering either
the representations at the person level, as detailed in section
3.3, or at the patch level as detailed in section 3.4.

3.2. Dictionaries and sparse representations

The set of existing tracks at time ¢ is denoted by 7 =
{T1,....,Tn}, and D = {ds, ..., d; } stands for the detections
newly found. Each detection d; is described by a set of p
local features {yéi s ysi} related to patches selected on a
regular grid or keypoints. For each track 7}, we combine
the most recent features of the related target into a specific
dictionary Dr,. For any set of tracks S = {T;,,..,T;,},
Ds = DTi1 uU..u DTi, is called the joint dictionary of the
tracks 15, , ..., T,.

Given a feature vector y (related to some detection) and
a dictionary D, a sparse code af can be defined by

1
oy =argmin gly = Dal[3 + Allal, (1)
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Figure 1. Sparse representations and related dictionaries.

== trajectory not involved in Dz, 4,)

where )\ determines a trade-off between the reconstruction
error ||y — Da|3 and the sparsity constraint ||c|;.

r(D,y, a) stands for the reconstruction error of y with
respect to the dictionary D and the code «, r(D,y,a) =
Yly — Dall3.

For any integer set I, the notation d;(«) stands for the
vector derived from « by setting to zero all the dimensions
that are notin I. 7(D, y, d;(«)) is called the residual recon-
struction error for the set .

3.3. Considerations at the person level

At each frame, we discard some associations between a
track 7; and a detection d; based on some spatial consid-
erations. Specifically, we denote by L the set of all track-
detection pairs (77, d;) that can be linked together by con-
sidering two criteria, one based on the distance between d;
and the estimated location of 7; in the current frame, and
the second one based on their shapes. £ is defined as

hi — h;
| il _

%

L= {(Ti,dj), diStTiﬁdj < Rl and Sl}
where d’L'StT,hdj is the Euclidean distance between 7; and
dj, and h; (resp. h;) is the height related to d; (resp. T5).
The values R; and .S; are estimated for each track and are
increasing when one is lost in order to allow a wider search
area.

The affinity value A;; between the track T; and detection
d; is defined by

_ k D(x;.a5)
Aij = _’;T(D(Ti,djpydjﬁln (ay’ij )
if (T;,d;) € £, and A;; = —oo otherwise. Each local fea-
ture ysj from the detection d; is represented with elements

of a dictionary D7, 4, through its representation af,;_Ti 3

. . D(r;a ’
Oy, sets to zero the coefficients in .
the track 7} and the affinity value A;; is therefore derived
from the residual errors of the local features y[’jj for the track
T;.

We have several option for choosing the dictionary
D(Ti7dj), as proposed in [4], in order to take into account
the spatial situation of the targets in the scene:

e A first possibility is to consider, for any track-

detection pair (T}, d;),

7 not related to

D(Ti,dj) = DT-

i

This means that we consider the reconstruction error of
each local feature of d; over the specific dictionary related
to the track 7;. This setting is called TSS (target specific
sparse representations) as the sparse representation involved
for estimating A;; depends only on the specific dictionary
DTi of T’l

e The second possibility is to consider

D45 = Dy,

D(Ti,dj) includes all the specific dictionaries, and the
involved representations in this setting are collaborative
among all the tracks. This setting is therefore called GSC
(global sparse collaborative representation).

e The last option is

D(r,,4;) = Diry(r,ay)ecy

This time the representations involved are still collab-
orative but only among the tracks that are close to the
considered detection. This setting is called LSC (local
sparse collaborative representations).

These different possibilities are illustrated in Figure 1
where the trajectories involved in D(r, 4,) are specified.

3.4. Considerations at the patch level

In the previous section, the affinity values do not take
into account any spatial information of the appearance of
the target. By directly including all the local features into
the dictionary we have lost all pertinent spatial information.
However, we can use some spatial information by consid-
ering a dictionary Dé“T“ d;) and a function 5’sz specific to
each local feature y{jj. The affinity value between any track
T; and detection d; with (T}, d;) € L is now defined by

; Dry.a;)
Ajj = — Zr(DégTi,djyysjuél,? (ayiE )
k=1 ‘ g

We have three alternatives for designing the dictionaries
Dk . | and functions §%_:
(Tl,d]) IT1;
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e The first one is to consider Dfy, 4, = D(r..0,) and
6’;T‘ =0 Iy, @S done in the last section. We will refer to this
choice as NSL (non-spatial local description).

e A second possibility is directly inspired by [5]. In sin-
gle object tracking, the method proposed in [5] shows that
such an information can be easily used within the sparse
representations and significantly improve the robustness of
the tracking. In this paper, the target is described by lo-
cal patches on a regular grid, and each patch is then recon-
structed with a collaborative sparse representation among
all the patches of the dictionary. However, the coefficients
in the sparse code that are related to patches at a different
location on the grid are set to zero. Therefore a patch has
to be reconstructed mainly by patches from the same loca-
tion in order to achieve a low reconstruction error. A patch
which is occluded tends to be represented by patches at all
possible locations and get a higher reconstruction error.

We adopt such strategy at the patch level, by choosing
D(T 4) = = D(r;,4,) and considering for 5”“ to set to zero
all the coefﬁ01ents that are related to local patches too dis-
tant from the location of y 4, or not related to the track 7;. In
practice we consider a fixed threshold d and set to zero the
coefficients associated to patches whose Euclidian distance
to y{jj is above d. This strategy is called SFL (spatially fil-
tered local description) in the experiments.

e A last possibility is to restrict the representations
to use only patches that share the same location with the
reconstructed one, using in D?Ti, ;) only the elements of
D7, a;) that are related to local patches near the location of
ygj and considering 5I;T, Contrary to the previous
approach, the represeniations are no more collaborative

= b1

between patches that do not share the same location. This
strategy is called SSL (spatially static local description).

These possibilities are illustrated in Figure 2 where the
patches used in D?T‘ ;) and those considered in the recon-
i &y

struction error (not set to zero by & ’fT‘ ) are specified.

4. Experimental evaluations
4.1. Implementation details

The proposed approach is implemented in C++ and is
evaluated on single core at 2.7 GHz. As described in Fig-
ure 2, local patches are selected on a regular grid or interest
points. We consider a grid of 3x4 patches or use an Har-
ris corner detector to select 10 keypoints inside each detec-
tion bounding box (using non-maxima suppression), which
means that p = 10 when using keypoints and p = 12 when
using a regular grid. Each detection bounding box is resized
to 64x128 pixels for finding local patches of size 32x32 pix-
els. We directly use the RGB intensity values of each local
patch, resized to 16x16 pixels in order to reduce the dimen-
sionality of the features.

We solve the assignment of the detections to tracks using
a greedy algorithm, and use Kalman filters to predict the
targets’ locations in the next frame. For each variant we
keep the same set of parameters for all datasets. Specific
dictionaries are composed by the features from the 30 most
recent views of the target, and the parameter \ in Eq. (1)
is fixed to 0.1 (we got similar or slightly worse results with
some other values).

Combining the different possibilities at the person level
(TSS, LSC or GSC) with those at the patch level (NSL,
SSL or SFL) and the two ways of selecting patches (us-
ing a grid or keypoints), 18 approaches are evaluated. We
also compare our approaches using holistic features with the
three settings described in section 3.3 and using the inten-
sity values of the detections resized to 32x32 pixels.

4.2. Experimental setting

As not all state-of-the-art trackers provide results on the
same datasets and because the related sets of detections are
not always available, we use the following datasets to fairly
compare our methods: PETS S2L.1, PETS S2L.2, TownCen-
ter and ParkinglLot. The same detections as [16] were used,
which uses two sets of detections for the PETS and Town-
Center datasets. The performances of other state-of-the-art
online trackers [2, 10, 11, 16] are also indicated for these
datasets and the same detections (when available, we use
the trajectories from the authors’ website or report them
from the papers otherwise). These performances are evalu-
ated with the CLEARMOT metrics [3] (composed of met-
rics like MOTA and MOTP) computed using the implemen-
tation from [16] with a standard overlap threshold of 0.5.



Description|  |[TSS[LSC|GSC]
[ Holistic | |[61.5]62.2[62.7]

NSL||58.861.3|62.6
Keypoints |SSL|(60.0{61.8|63.1
SFL||62.4|62.4|63.4

NSL||58.1{60.9]62.2
Grid SSL||59.7(61.6|62.9
SFL|[62.7/62.3|62.7
Table 1. Average MOTA values. Best value in bold and red, best
values for each description underlined in blue.

Description| | TSS [LSC|GSC]|
[ Holistic | |[129.0]127.5[125.7]

NSL||157.5/118.1/107.2
Keypoints |SSL|(135.2(122.8(104.7
SFL||116.4/107.4/101.8

NSL|[172.7{137.1|114.8
Grid SSL||147.2{127.0{108.2
SFL|(119.8]110.8/107.5
Table 2. Average number of ID-Switches. Best value in bold and
red, best values for each description underlined in blue.

4.3. Results analysis

The average MOTA scores for the different variants are
shown in Table 1, and the average number of ID-Switches
in Table 2. First of all, we can see that, despite their higher
complexity, the methods with non-spatial local descrip-
tions (NSL) do not produce better results than the holis-
tic ones. However, imposing some spatial constraints (SSL
and SFL) improves the tracking performances. Using local
features with spatially filtered descriptions (SFL) improves
the scores both in terms of MOTA and ID-Switches (still
compared to holistic features). Using patches sampled on
a regular grid produces lower results compared to patches
around keypoints, and one can argue that using keypoints
gives more stable and discriminant patches.

The most collaborative representations at the person
level (GSC) yield better results (compared to TSS and
LSC). At the patch level, the approach with spatial con-
straint and collaborative representations among patches
(SFL) also yields superior results. The variant achieving
the best results is the one which combines the most collabo-
rative representations with spatial constraints (GSC-SFL).

As argued in [5], using collaborative representations
among patches with spatial constraints naturally discards ir-
relevant patches since the related representations are more
easily spread among all patches and not only among patches
sharing the same location in the detection. When using col-
laborative representations among all tracks (GSC), we can
assume that new people or false detections are associated to
representations that are also more easily spread among all

[ Data_|DetMethod] MOTA[IDS|MOTP[ FP | MS |

9] [16] [/ 69.9% |35 ||71.2% | 805 | 557
GSC-H||70.2% | 25 ||65.6% | 716 | 641
GSC-K||70.7% | 19 ||65.6% | 732 | 606
[16] |/ 70.0% |21 ||71.7% | 543 | 827
GSC-H||71.1%| 20 || 73.1% | 461 | 857
GSC-K||72.5% | 18 || 73.1% | 419 | 838

9] [16] |[43.1% (347|(69.5% | 1318 | 4189
GSC-H||40.7% |230|| 66.0% | 1553 | 4292
GSC-K||43.8% [177]/66.1% | 1316 | 4263
[16] |[39.3% |287|(69.0% | 1416 | 4536
GSC-H||43.7% |191|| 71.1% | 1056 | 4526
GSC-K||43.6% [164||71.2% | 872 |4743

[16] |[60.7% [212|[71.2% | 7295 [20549
GSC-H||61.3%|193|| 71.6% | 3984 [23472
Town GSC-K|[61.2% |157|| 71.6% | 4053 [23487
Center [16] |[63.4% |446|[74.5% | 9359 |16302
211 121 |161.3%|318/80.5% |12309|14982
GSC-H|| 66.0% |204||74.8% | 6784 |17286
GSC-K||66.6% | 162 74.8% | 6636 |17065

. [10]* ||84.5% | 4 ||73.2%| - -
Parkingl /11y (113% ||793% | - |[740%| - | -

Lot GSC-H||85.6% | 17 ||71.3% | 266 | 774
GSC-K||854% | 16 ||71.2% | 287 | 771
Table 3. CLEARMOT metrics on various sequences (best values
in bold and red for MOTA and ID-Switches (IDS), second best
underlined in blue). The symbol * means the associated scores
have been directly reported from the related papers. Det. specifies
the set of detections used to feed the different trackers.

S2L1

[16]

S2L.2

[16]

[16]

the tracks. Therefore the residual errors for the tracks which
are close to irrelevant detections should be higher than those
using local representations, avoiding some mismatches.

The CLEARMOT metrics for the most collaborative rep-
resentations (GSC strategy), using either holistic features
(GSC-H) or local patches with keypoints and spatially fil-
tered descriptions (GSC-K) are shown in Table 3 and com-
pared with other state-of-the-art online trackers. Our ap-
proaches yield better results in term of MOTA and ID-
Switches on all the datasets except for Parkinglot where
our methods still produce more ID-Switches. Using a lo-
cal description (GSC-K) instead of a holistic one (GSC-H)
gives better or very similar MOTA scores, and reduces sig-
nificantly the number of ID-Switches. Some tracking re-
sults for the GSC-K approach are shown in Figure 3.

The main issue of the local descriptions is that the size
of the involved dictionaries is larger (ten times larger with
our parameters) than with holistic features. For this reason,
the computational time becomes prohibitive. Optimizations
based on active sets, as proposed in [4], allow the GSC-H
approach to be real-time but are still insufficient in the case
of the GSC-K approach.
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Figure 3. Illustrations of some of our tracking results for the GSC-K approach.

5. Conclusion

In this work, we have investigated how sparse and col-
laborative representations of the targets could be used in
a multi-person tracking application. We have shown that
local descriptions improve the tracking results when some
spatial constraint is combined with collaborative represen-
tations among local patches. An evaluation of our approach
on several datasets shows the consistency of these observa-
tions and confirms that our approach is competitive when
compared to other online tracking systems.

In future work, we could study how approximating
sparse representations on large dictionaries in order to make
the GSC-K approach real-time.
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