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Abstract

The emergence of the IoT and the Semantic Web of Things is leading to

intensive cloud processing executing reasoning rules over large volumes of

enriched data. However, the role of the cloud in existing approaches as a

central point for both data processing and provisioning reduces scalability

and introduces latency. This paper sketches a new approach for rule-based

reasoning, enabling distributed rule evaluation on edge nodes and reducing

the latency for IoT applications while avoiding the total dependence on a

central node. This approach is evaluated in a simulated smart building.

KEYWORDS:

Cloud computing, Edge computing, Rule-based reasoning, Semantic Web of Things

1 INTRODUCTION

The Semantic Web of Things (SWoT) emerged from the interaction between the Internet of Things (IoT) and the

Semantic Web (SW). It is driven by the need for interoperability at the core of the IoT, to which the expressiveness

of the SW’s formalisms is seen as a solution1. Integrating SW technologies into the IoT allows the transformation of

raw data into rich, meaningful information that can be distributed with knowledge to applications, thus breaking the

vertical silos of domain-specific development. In this configuration, applications both hold the business logic and are

consumers of the information produced within the network. However, the SWoT is also challenged by the constrained

and dynamic nature of the IoT. This does not comply to the traditional principles and application domains of the

SW. Typical IoT deployments follow a hierarchical architecture captured in the Lower, Middle and Upper Node

(LMU-N) architectural pattern2, a multi-tiered IoT architectural pattern where devices connect to cloud servers via

intermediate gateways. The entry point to the network for applications is usually a powerful node, e.g. a cloud server

offering web services. Data collected by constrained nodes on the edge should therefore be moved upstream toward

server nodes so that it can be processed, and sent to relevant applications connected to the cloud.

An application’s business logic can be implemented by production rules, where high-level symptoms are inferred

from lower-level data, e.g. inferring the high-level event ”Such a room is an uncomfortable place” from luminosity and

temperature observations. These rules are generally applied in the cloud3 4, forwarding only the result to applications

in order to reduce bandwidth consumption and its processing load. However, this architecture creates a bottleneck,

since the data must be concentrated in a single node, the cloud server, for processing. This leads to multiple issues.

Firstly, it is not a scalable design, and it is unfit for large deployments5, such as in smart cities scenarii. Secondly,

the cost of semantic reasoning increases rapidly with the size of the knowledge base6, thus processing all rules on

a growing data instance introduces a delay, which can be unacceptable for time-sensitive applications (i.e. e-health,

security, emergencies). Thirdly, having a remote central node for reasoning also threatens resiliency since it constitutes

a single point of failure.
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The paper’s purpose is to introduce an approach to data processing suitable for the SWoT, while improving scala-

bility and responsiveness. The proposed algorithm is named Emergent Distributed Reasoning (EDR), and implements

a rule-based reasoning approach distributed on the edge by allowing the deployment and execution of rules among

nodes. To make this possible, rules and their context must be understandable without ambiguity by the nodes. The

present work is focused on production rules, where post-conditions are generated if pre-conditions are valid. Pre-

conditions are logical conjunction of atomic tests on values. Aggregations are out of the scope of this work. The

remainder of this paper is structured as such: after presenting related works in section 2, the EDR algorithm is

described in section 3. Experimental results are then provided in section 4. These results were obtained in a use-case

focused on a smart building scenario with the simulation of a smart building network and applications related to

home automation. In section 5, after conclusion, future work is sketched.

2 RELATED WORK

The rules in EDR must be exchangeable, i.e. they can be serialized and interpreted by different nodes. To describe

their context, they are enriched with metadata. These characteristics are compliant with the Linked Open Rules

principles, an approach based on Linked Rules7 and extended into Sensor-based Linked Open Rules3. Linked Open

Rules follow basic principles of Linked Open Data: (1) rules are designated by Unified Resource Identifiers (URIs), (2)

these URIs can be dereferenced, (3) they are expressed in standards promoted by the World Wide Web Consortium

(W3C), and (4) they can be linked to each other. Regarding the latency introduced by the reasoning, the study

performed by Maarala et al.6 measures how the reduction of the Knowledge Base (KB) size impacts the reasoning

time, and shows how the distribution of the processing reduces the bottleneck of centralized reasoning. The impact of

the data format, measured in Su et al.8, is out of the scope of this contribution, as well as the cost of data enrichment.

As done in the work of Desai et al.9, in the proposed approach, data is semantically annotated by the first edge node

receiving it, and the time required for this annotation is not considered in the evaluation. Moreover, EDR differs

from previous proposals in its focus on the dynamic reconfiguration of rule deployment at runtime involving all the

managed system’s nodes. Maarala et al.6 considers a static network and collection of data for reasoning is done on

predefined nodes, requiring an a priori knowledge of the topology. In the present approach, the IoT network of sensors

producing observations is considered dynamic: sensors and gateways can appear on the network, or disconnect from

it, at runtime. The set of rules applied by each node evolves depending on the network topology in order to minimize

the processing overhead on each node.

3 THE EDR ALGORITHM

The motivation for the EDR algorithm is (1) to increase responsiveness by reducing the delay between the

observation of an event and the notification of relevant applications, (2) to allow scalable deployment by basing

decisions on knowledge local to each node (3) to adapt reasoning to the dynamic nature of the network. Since

reasoning time increases with the size of the KB it is performed on, the EDR algorithm aims at applying rules on the

smallest possible KB to ensure optimal system responsiveness. A hypothesis for EDR is the hierarchical topology of

the device network: data is collected by nodes at the bottom of the hierarchy, while applications connect to the top

node. This assumption entails that observations about the physical world are produced by sensors and exchanged

upstream in the network architecture, as they are concentrated by middle or cloud nodes using them in inference

processes. For a given node, the nodes it is connected to and that are above it in the hierarchy are its upper nodes,

and the ones below it are its lower nodes. The purpose of the EDR algorithm is to determine which node is the

most suited to apply each production rule, leading to smaller KB and to decisions being taken closer to data sources,

therefore reducing the latency introduced by communications. To ensure the scalability of EDR, the knowledge of a

node on the network topology is limited to its direct neighborhood, i.e. the nodes it is directly connected to. A node

knows the type of data its lower nodes produce. Data is produced by a node if it collects observations from a sensor,

or if it obtains it by the application of a rule. Nodes also store in their KB knowledge about rules: the rule itself, and

its metadata. The metadata used for EDR are the originator of the rule, i.e. the application that submitted it to the

network, as well as the types of the elements in the rule’s pre and post conditions (e.g the rule consumes temperature
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FIGURE 1 New production notification reception
FIGURE 2 New rule reception

observations, and infers comfort, without the actual relation between these concepts expressed in the body of the

rule). When a node applies a rule on received observations, it directly notifies the originator of the obtained result.

Let the metadata for the data types of a rule be r ∶ �1, ..., �n → �1, ..., �m, where preconditions are the observation

types denoted �i,∀i ∈ [1, n], and �j ,∀j ∈ [1, m] the postconditions corresponding to the types of the generated

data. In order for r to allow inference, it must be applied by a node which is the common ancestor to producers of

�i∀i ∈ [1, n]. Because of the tree-like architecture of the network, the first common ancestor is the node that will be

the common ancestor of the fewest data sources, and therefore the least bottleneck to the reasoning process of the

the common ancestors. The purpose of EDR is to transfer each rule to the lowest node possible in the architecture,

each node propagating the rule based on local knowledge of its neighborhood. Moreover, due to the dynamic nature

of IoT networks, the decisions taken by the EDR algorithm can evolve over time if a better solution emerges as the

knowledge of a node on the topology evolves.

All the reasoning nodes of the network (sensors are not considered reasoning nodes) have the same behaviour,

composed of four main events: when it starts, when it is notified of the evolution of the topology of the surrounding

network, when it receives a new rule, and when it receives a new observation. These functions are executed by the

node itself, which interacts only with its own KB in order to ensure the decision is taken locally. The behaviour of

the node for each event is described in the paragraphs below.

A. On startup and disconnection

When it starts, a node notifies its upper node(s) about the type of observation it produces, based on the knowledge

about the sensors it is directly connected to. The discovery and introspection methods are out of the scope of this

paper. Similarly, if a sensor or a node disconnects, it notifies its upper node about the interruption of its productions.

B. Process new notification

To maintain a coherent representation of the network, nodes send and propagate semantically enriched notifications

when they connect, disconnect or move in the graph, and when their capabilities evolve: production of a new type

of observation thanks to a rule application or to the connection of a sensor as a lower node (represented on fig. 1

), as well as interruption of a production (disconnection of a sensor among its lower nodes). The notifications sent

between nodes (”Announces...”on fig. 1) contain a semantic description of the types of data they produce. Each time a

notification is received, the knowledge of the target node on its surroundings (e.g. the observation types produced by

its lower nodes) is updated. To ensure a coherence between the KB of the different nodes, new production capability

notifications are propagated upstream by nodes upon reception. As EDR relies on a local representation of the

network for each node, when generating the notification to propagate, the node acts as a proxy10, and claims to be

the producer of the new observation type.

The update of the target node is propagated to its upper nodes if its productions have been modified. When a

node is notified of an evolution of the network topology, it reevaluates whether or not it is an aggregator for the rules

it holds as described in the next paragraph. On the one hand, the node can decide to send the rule to a child node

if this child is now able to apply the rule, which is the case in fig. 1. On the other hand, the node can send the rule

back to its direct upper node if it is no longer able to apply it.
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C. Process new rule

The propagation of a rule from a node to another is illustrated with the diagram on fig. 2. When receiving a rule,

a node evaluates if it is applicable by himself. If the node is a producer of all the rule preconditions, or if it is an

aggregator for these preconditions, it marks the rule as applicable. A node is an aggregator if it has a set of child

nodes that produce together all the preconditions for a rule, but none of them produces them entirely on its own. If

the rule is applicable, the node notifies its upper nodes that it now produces the post conditions of the rule. In the

example on fig. 2, the central node is an aggregator for the rule: it does not transfer it to its lower nodes. A node

also forwards a newly received rule to any of its child nodes producing all of the rule’s preconditions, because these

child nodes are in this case common ancestors closer to the producers of the rule body elements.

D. Process new observation

When a node receives a new observation from another node, it checks if new deductions can be obtained by applying

the rules this node holds. If the rule matches and postconditions are deduced, the deductions are propagated to upper

nodes. In any case (deduction or not), the observation is also sent to the upper node as it may hold a rule consuming

it. Moreover, the deductions of the rule are also sent to its originator (the application that declared the rule). The

endpoint of the originator is described as a metadata of the rule, so any node applying the rule can directly notify

the application. Therefore, applications are notified continuously by the nodes as they apply the rules, instead of

being notified by a restricted set of central nodes.

4 EXPERIMENTAL RESULTS

A first implementation of the EDR algorithm is available freely1. The first simulations feature three applications

consuming data generated randomly by an IoT network emulated by communicating processes organised in a hier-

archical topology summed up in Figure 3. The cardinalities stated on the edges of the figure show how the reference

topology can be extended by adding multiple ”Floor”, or ”Gallery” or ”Room” nodes. The depth of a node is the

number of hops between this node and the root, so for instance a ”Gallery” (cf fig. 3 topology) node is at a depth of

2, and a ”Room” (cf fig. 3) node at a depth of 3. Each application expresses business rules, i.e. ”If the temperature

and the luminosity of a room are below a certain threshold, this room is considered uncomfortable for work” or ”If

the difference between the measured temperature and the target temperature is above a certain threshold, reaching

the required temperature is energy-consuming”. Five rules are used for simulation, available with the source code1.

These rules are distributed using the EDR algorithm in order to be executed by the deepest possible node.

FIGURE 3 Overview of the reference topology

With these simulations, the moment when all the observa-

tions required for the deduction are available, and the time the

deduction is actually made by the relevant node, can be com-

pared to compute delays. The node which makes the deduction

sends the result directly to the application that registered the

associated rule. The time required to transfer the said deduction

to the application being considered the same regardless of the

node, this does not impact measures. The behaviour of the pro-

posed algorithm has been studied according to two parameters

of the networks: topologies where rules can be applied at differ-

ent depths (see tab. 1), and topologies with an increasing number

of nodes (see tab. 2). These network topologies are variations of

the reference topology represented on fig. 3, listed in table 2. The

evaluations were run on a 16-core server with 32GB of RAM,

and captured on 12-minute data samples, with an observation

produced by each sensor every 5 seconds. The results show a reduction in the delay between a scenario where EDR

is applied and a centralized cloud reasoning baseline (for the same topology).

1https://framagit.org/nseydoux/edr The code is actively developed, and might implement more features than described in the present
paper.

https://framagit.org/nseydoux/edr
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TABLE 1 Distribution measurement topologies

rule 1 rule 2 rule 3 rule 5 rule 6 Max depth Node count

Topo. d1 0 0 0 0 0 3 49

Topo. d2 2 3 3 2 1 3 49

Topo. d3 3 3 3 2 1 3 46

Topo. d4 3 3 3 3 2 3 50

Topo. d5 3 3 3 3 3 3 56

TABLE 2 Scalability measurement topologies

Node count nf ng nr
Topo. s1 13 1 1 1

Topo. s2 34 1 2 3

Topo. s3 43 2 2 1

Topo. s4 67 2 3 3

FIGURE 5 Distribution simulation results FIGURE 6 Scalability simulation results

The scalability study is summed up in figure 6. It represents the evolution of the delay according to 4 topologies of

increasing number of nodes detailed in tab 2.The impact on the delay of the number of nodes is much more important

in the centralized case than in the distributed case, which supports the claim that EDR is an approach more scalable

than the baseline.

To measure the impact of the distribution of rules, simulations were conducted on several topologies,

listed in tab. 1. All these distributions are of a comparable size, but the location of the sensors (repre-

sented with grey circles in fig. 3) is modified in order for the rules to be applicable at different depths.

FIGURE 4 Instantiation of d3

Topology d1 is centralized. For this reason, all rules are executed by the root

node at a depth of 0. For other topologies, tab. 1 describes the depth at which

rules can be applied. Fig. 4 shows the instantiation of the d3 topology. Fig.

5 shows that in topologies where rules can be executed by deeper nodes, i.e.

in a more distributed manner, a more responsive behaviour of applications is

measured, validating the core hypothesis of EDR.

Two factors impact the reduction of delays observed in the experiments:

the reduction of the number of message exchanges between the node making

the observation and the node making the deduction, and the reduction of the

reasoning time induced by the reduction of the KB size . The average time for

a message exchange in the experimental setup was 17ms, therefore executing

rules at a deeper level saves this trip time whenever a conclusion can be made

locally. Moreover, reducing the size of the knowledge base by performing local

computing enhances reasoning performances, with reasoning times reduced

from 3 to 10 times when switching from centralized to distributed reasoning.

5 CONCLUSION AND FUTURE WORKS

The contribution sketched in this paper is EDR, a distributed rule-based reasoning algorithm aiming at offloading

computation from the cloud to the edge, enabling SWoT deployment for IoT applications. The first results of the

application of the EDR algorithms are encouraging, and support the claim that this algorithm increases responsiveness
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of IoT applications, while its distributed nature ensures its scalability. Even if these first results are very promising,

it should be noted that they were obtained on simulations that fail to capture some aspects of the problem. For

instance, this first version of the algorithm is oblivious of the disparity of processing powers between nodes. Edge

nodes, even if they reason on smaller knowledge bases, do not have the same processing power as cloud nodes, which

is not in the scope of this paper but will be considered in future work.

Further evaluations will also be performed on real datasets considering on a larger variety of topologies to assess

the veracity of the hypothesis on hierarchical deployments. Rules requiring aggregation will also be considered. The

EDR algorithm, by distributing reasoning on the edge and connecting gateways to applications directly, reduces the

dependency of applications on the central node they register to initially which should increase the resiliency of the

network. The behaviour of the algorithm deployed in a faulty network will also be part of future work.
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