
Formal Verification of Complex Robotic Systems on Resource-Constrained Platforms

Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio, Pierre-Emmanuel Hladik,
Félix Ingrand and Anthony Mallet

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
firstname.lastname@laas.fr

ABSTRACT

Software constitutes a major part of the development of robotic
and autonomous systems and is critical to their successful deploy-
ment in our everyday life. Robotic software must thus run and
perform as specified. Since most of these systems are used in a
hard real-time context, the schedulability of their tasks is a crucial
property. In this work, we propose to use formal methods to check
whether the tasks of a robotic application are schedulable with
respect to a given hardware platform. For this, we automatically
translate functional components specified in GenoM into FIACRE,
a formal language for timed systems. The generated models in-
tegrate realistic real-time schedulers based on the FCFS and the
SJF cooperative policies. We use then the model-checker TINA to
assert schedulability properties. We carry out experiments on a real
robotic system, namely a quadcopter flight controller. We demon-
strate that, on its actual hardware, schedulability properties can
be formally expressed and verified. We give examples on how we
can check other important behavioral and timed properties on the
same synthesized models.

1 INTRODUCTION

Robotic software is complex. The reliability of such software is
thus challenging to assess. While roboticists tend to rely on testing
campaigns, simulators and following good coding practices, such
techniques are inherently non-exhaustive. They are therefore insuf-
ficient given the increasing involvement of autonomous systems
in human environments (e.g. robotic surgery, service robots) and
costly missions (e.g. space exploration). Indeed, one should rather
rely on formal proofs to guarantee that, for instance, no faulty be-
havior with catastrophic consequences would ever occur while the
autonomous robot is fulfilling its missions. In a hard real-time appli-
cation, such a failure may be caused, for example, by a periodic task
missing its deadline (not satisfying the schedulability property).

Robots/Autonomous systems software is often organized through
two layers (or levels), decisional and functional [3]. Formal methods
are more commonly used on decisional components [11, 31, 34].
This is mainly due to the fact that decisional specifications are
mostly model based with well-defined semantics.

In this paper, we focus only on the functional level. We propose a
common ground between automatic verification and schedulability
analysis. Our main contribution is enabling verification of both
schedulability and other behavioral and timed properties while
taking into account the actual constraints of the robotic platform,
namely the number of processors/cores and the scheduling policy.
Indeed, enriching the model so it includes these constraints gives a
greater value to the verification results as the model is more realistic
and does not ignore the hardware real specifications. For this, we

*This work was supported in part by the EU CPSE Labs project funded by the H2020
program under grant agreement No 644400.

automatically generate formal models that integrate the scheduling
policies and the resources of the robotic hardware. This is done
by bridging GenoM3 (Sec. 2.1), a tool to specify robotic functional
components, with Fiacre (Sec. 2.2), a formal language for timed
systems, using templates fed with information on the resources of
the robotic hardawre: Fiacre models are automatically synthesized
from GenoM3 specifications given the actual resources and two
cooperative schedulers: (i) First-Come-First-Served (FCFS) and (ii)
Shortest-Job-First (SJF) (Sec. 3). The model checker TINA is used
on the synthesized Fiacre models to formally verify schedulability
properties, and possibly other important real-time properties. A
quadcopter real-world example is used as a case study on which
we illustrate, discuss and compare verification results (Sec. 4).

2 PRELIMINARIES

2.1 GenoM3
GenoM3 [22] is a component-based framework for designing and

specifying the functional level of robotic applications. Functional
components are in charge of functionalities with varying complex-
ity (may range from simple low-level control e.g. velocity control
to more elaborate computations such as simultaneous localization
and mapping “SLAM" and navigation). These components are con-
trolled by a supervisor, aka external client, that sends requests to
the services (see Sect. 2.1.1 below) they want the components to
deliver.

2.1.1 Components. Each component is organized as shown in
Fig. 1. Hereafter, we briefly introduce the different constituents of
a GenoM3 component:

Services : The services encapsulate the algorithms of the com-
ponent. Services are associated with requests (with the same
name). The service algorithm may require a short or a long
computation time. Short services are known as control ser-
vices and are executed by the control task (see below). Long
services, known as activities, are executed by execution tasks
(see below). Activities are modeled as finite-state machines,
each state associated to a codel. A codel is a C or C++ func-
tion that specifies the possible transitions (codels to execute
next) subsequent to its execution. It may also specify its
Worst Case Execution Time (WCET). We abuse notation so
that the term codel may refer to either itself or the state it is
associated to.

Control Task : A component always has a control task that
processes services requests and sends reports (from/to external
clients); it also executes control services and activates and
interrupts activities.

Execution Task(s) : Aperiodic or periodic, they execute activ-
ities.

Ports

Execution Tasks

Activity Services

Internal
Data

Structure

Reports

Control Task Attribute
and

Function
Services

Ports

Ports

In

Out

Clients

Ports

Permanent Activities

Requests

Figure 1: A generic GenoM3 component.

Internal Data Structure (IDS) : A local internal data struc-
ture containing the internal data of the component is shared
by all services.

Ports : Store shared data with other components.
For the sake of readability, the description above is minimal.

Indeed, the behavior of aGenoM3 component is dictated by complex
mechanisms defining e.g. how, when, and how often activities are
executed by their respective tasks. For more details, we refer the
interested reader to [13] and [14].

2.1.2 Templates Approach. The GenoM3 template mechanism
was initially introduced to cope with the middleware independency
problem [22]: templates are used to generate the components, spec-
ified generically, for various middleware.

A GenoM3 template has access to all the input component(s)
information (e.g. tasks and their periods, activities and their codels)
and there is no restriction on what it can synthesize. For instance,
the template code in listing 1 generates the output shown in listing 2
when called with the component mikrokopter (Fig. 2) that has
two execution tasks main and comm. The interpreter evaluates
thus only what is enclosed in markers (<”> or <"">) in Tcl and
reproduces the rest as is. This gives developers the freedom to write
templates that output files in any desired language. Amore practical
example is given in Sect. 3.3.

There are already templates to synthesize: the component itself
for mainly two middleware (PocoLibs1 and ROS-Com [27]); client
libraries to control the component (e.g. JSON, C, OpenPRS), etc.

2.1.3 Pocolibs vs ROS-Com. Between Pocolibs and ROS-Com,
we choose the former for the implementation of our case study
1https://git.openrobots.org/projects/pocolibs

The component <"[$component name]"> has <"[llength [$component

tasks]]"> execution task(s):

<' foreach t [$component tasks] { '>

Task <"[$t name]">

<' } '>

Listing 1: A simple template code for illustration.

The component mikrokopter has 2 execution task(s):

Task main

Task comm

Listing 2: Output of Listing 1 when called with

mikrokopter (Fig. 2).

as it is more suitable for real-time applications. This is due to the
fact that ROS-Com treats ports (Sect. 2.1.1) as topics while pocolibs
implements them as a shared memory. A ROS topic has one or more
publishers and subscribers. A publisher (respect. subscriber) writes
(respect. reads) the topic. With the ROS-Com implementation, a
publisher message is buffered then pushed into each subscriber
queue by an internal ROS thread, additional to those created for
each GenoM3 task in the application. This boils down to writing for
each subscriber, which creates a load proportional to the number
of subscribers. On the other hand, each port in Pocolibs is a data
field properly protected to prevent simultaneous writings and allow
simultaneous readings. A codel that reads/writes a port may thus
do so whenever it is executed by its task in its own thread. The
Pocolibs implementation is thus the better choice to guarantee
real-time requirements as (i) no additional threads are required and
(ii) the number of a port readers/writers has no side effect on jobs
loads.

2.1.4 Concurrency. During the execution of an activity in its
task, a codel may need to access fields in the IDS. GenoM3 uses
a mutual exclusion function that ensures a fine-grain locking of
resources while tasks run concurrently. Only the fields of the IDS
needed by a codel are locked while that codel is running, forcing
those in conflict with it (needing the same fields) to wait (simultane-
ous readings are allowed). A codel presenting a conflict is called non
thread safe. Non-thread-safe codels are subject to both urgency and
non determinism. That is, if several codels are waiting for the same
resources, one of them, non-deterministically, will start executing
as soon as the resources are free. The control task may also need
to access fields of the IDS to process requests or execute control
services, which might make it also in conflict with some codels. In
the Pocolibs implementation, access to ports is also mutually exclu-
sive, which enables conflicts between codels belonging to different
components.

This fine-grain locking guarantees a high level of concurrency
(more details in [13]), but makes reasoning about vital properties,
such as schedulability of periodic tasks and reactivity of control

2

https://git.openrobots.org/projects/pocolibs

tasks (more in Sect. 4), very difficult. For schedulability, for instance,
using classical analytical methods is practically unfeasible, as it
would be particularly tedious and error-prone to try to extract
manually the worst case response time of a task in a complex
robotic application where conflicts between numerous codels are
very common.

2.2 Fiacre and TINA

2.2.1 The Fiacre Language. Fiacre [5] is a high-level, formal
specification language designed to represent both the behavioral
and timing aspects of reactive systems. Fiacre has been used in
several projects pertaining to various domains such as robotics [14]
and avionics [8].

A Fiacre process is the building unit of Fiacre descriptions. Pro-
cesses describe state machines with timing aspects based on the
Strong Time Semantics of Time Petri nets [23]. Processes can be
composed into components that may themselves be hierarchically
composed. Both processes and components may interact and/or
communicate through synchronization ports and/or shared variables.
Fiacre is a strongly typed language, meaning that type annotations
are exploited in order to avoid unchecked run-time errors. In our
examples, we will use FIFO queues and arrays, which are native
datatypes in Fiacre. We also use interval types, denoted n..m (where
n andm are integer constants withn ≤ m), that define integer values
in the range [n,m]. Fiacre provides more complex data types, such
as tagged union and records and supports user-defined functions.

A Fiacre specification can also declare properties on the form of
patterns [2]. Patterns provide a user-friendly way to express tem-
poral and timed properties. For instance, Fiacre provides a pattern
called leadsto; the property a leadsto b abbreviates the LTL expres-
sion □ (a ⇒ ♢b), which states that an event b (such as service
termination) will always follow an event a (such as service start)
in the future. Patterns can be extended with a scope modifier, like
within, to express a timing constraint between the occurrence date
of the two events. For example, the timed property a leadsto b

within [0,3[translates to: b will always follow a in less than 3 units
of time. Fiacre implements an observer process to encode such a
timed property, reducing it to a reachability property. While this
method may be costly as it implies a larger state space, it allows
on-the-fly verification (the interested reader may find more about
the leadsto within observer in [14]).

2.2.2 The TINA Toolbox. TINA [7], for TIme Petri Nets Ana-
lyzer, is a framework for specifying, analyzing and verifying Time
Petri nets (TPN for short) and their extensions with e.g. data, in-
hibitor arcs and priorities. TPN state spaces are infinite due to the
dense nature of time. Finite abstractions known as State Classes are
available since [6]. The State classes construction, known as the
State Class Graph (SCG), is suitable for LTL model-checking as it
preserves markings and traces. The tools provided by TINA feature
a variety of SCG constructions and support model checking for LTL
and modal µ-calculus. On-the-fly verification is possible for some
types of properties, e.g. safety properties. TINA model checkers
produce a counterexample when a property is violated which can
be analyzed for diagnosis purposes.

2.2.3 Verification of Fiacre descriptions. A compiler called frac
is used to translate Fiacre descriptions into enriched TPN. It also
translates the properties declared within a Fiacre description into
the format supported by the TINA model checker specified as the
compilation target. The verification is then performed within TINA
using the compiled description and properties. The compilation
process is fully automatic and transparent for the user.

3 SCHEDULERS

In this section, we show how we model the schedulers in Fi-
acre. We refer the reader to [14] and [13] for examples on how
GenoM3 constituents (e.g. execution tasks, non-thread-safe codels)
and mechanisms (e.g. concurrency, execution of activities) were
mapped into Fiacre.

The schedulers are formally modeled in Fiacre. An advantage of
this approach is that it enables model-checking of the schedulability
property at the same time as other behavioral and timed properties.
Another advantage is that, by taking into account the hardware
resources (processors/cores) and integrating the scheduling policies,
the verification results have a greater value as the real hardware
specificities are considered.

We chose two multicore cooperative (non-preemptive) sched-
ulers: FCFS and SJF where a task cannot be preempted when exe-
cuting active activities. These schedulers are adapted to our Quad-
copter hardware and easily implementable on a real-time OS (see
Sect. 4). They are also suitable for model-checking as they prevent
preemption. To ease the comprehension of the modeling details,
we give in the sequel brief definitions of the queues in Fiacre and
the primitives that operate on them.

3.1 Fiacre Queues

Fiacre provides the special type queue that allows the implemen-
tation of bounded First-In-First-Out (FIFO) queues. Hereafter the
primitives that may operate on a bounded queue q:
• empty q: returns true if q is empty, false otherwise.
• full q: returns true if q is full, false otherwise.
• enqueue (q,e): returns a queue equal to q with the element e
inserted at the back.
• append (q,e): returns a queue equal to q with the element e
inserted at the front.
• dequeue q: returns a queue equal to q deprived of its front
element.
• first q: returns the front element of q.

3.2 First-Come-First-Served (FCFS) Scheduler

The preemptive FCFS scheduling policy is based on serving jobs
in the order of their arrival while allowing higher priority tasks to
preempt lower priority ones. Here, we choose a cooperative ver-
sion of FCFS (preemption is not allowed). For more details about
the policy, both versions (preemptive and cooperative) are studied
in [29]. To model the scheduler, three shared variables are intro-
duced into the Fiacre model. The first one is a queue, named fifo,
which represents the list of tasks identifiers ordered by tasks activa-
tion dates. Tasks identifiers, i.e. the elements of fifo, are positive
integers ranging from 1 to N , where N is the number of tasks in
the robotic specification. The second shared variable is an array

3

1 process scheduler (&fifo: queue N of 1..N, &launch: array 1..N of
bool, &cores: 0..P) is

2 states start

3 from start

4 on (not empty fifo) and (cores > 0);

5 wait [0,0];

6 cores:= cores-1;

7 launch [first fifo]:= true;
8 fifo := dequeue fifo;

9 to start

Listing 3: Fiacre model of the FCFS scheduler

1 process Taskmanager_n (..., &tick_n: bool, &fifo: queue N of
1..N, &launch: array 1..N of bool, &cores: 0..P) is

2 states ask, start, manage

3 from ask

4 wait [0,0];

5 on tick_n; tick_n:= false;
6 fifo:= enqueue(fifo, n); to start

7 from start

8 wait [0,0]; on launch[n];

9 lock_n:= 1; to manage

10 from manage

11 wait [0,0]; on lock_n=0;

12 cores:= cores+1; launch[n]:= false; to ask

Listing 4: Fiacre model of a task manager

1 process Timer_n (&tick_n: bool) is
2 states start

3 from start

4 wait [PERIOD,PERIOD];

5 tick_task_n := true;
6 to start

Listing 5: Fiacre model of a timer

of boolean values, named launch, that represents the signals to
release tasks. Each task is statically associated to a specific index of
this array, i.e. the task whose identifier is i can execute only when
launch[i] is set to true. The last shared variable, cores, is an
integer that ranges from 0 to P . P is the number of cores provided
by the platform and is thus the initial value of cores.

Listing 3 gives an overview of the scheduler Fiacre model. It is a
process parameterized with fifo, launch and cores (line 1). It has
only one state called start (line 2). A self-loop transition is taken
only when the fifo is not empty and there is at least one available
core (line 4). Such a transition is then urgently (line 5) fired (line 9).
The firing allows the first task in the queue to execute by assigning
an available core (line 6), sending the right release signal through
launch (line 7) and dequeuing the fifo (line 8). Note that, since
the operation of line 7 depends on the value of first fifo, there are
as many possible self-loop transitions as tasks in the underlying
robotic specification, but the choice is deterministic. Note also that
a more readable encoding of the scheduler is possible by using more
explicit task identifiers. For instance, one may use a union type for
task identifiers as task names instead of integers.

Now, we show the relation between the scheduler and periodic
tasks. A periodic task is modeled by a Taskmanager and a Timer.

Listing 4 shows the Taskmanager process for a generic task (peri-
odic or not), with identifier n associated to the index n of the array
launch. The process Taskmanager has three states (line 2): ask,
start and manage. The transition from ask to start (lines 3-6)
represents the activation of the task at the beginning of its period.
The period signal is given by the Timer as it assigns true to the
variable tick_n each PERIOD unit(s) of time (Listing 5). Upon ac-
tivation, tick_n becomes false and the task identifier is inserted
at the back of fifo. To prevent queue overflow, we set the size of
fifo to the number of tasks in the robotic specification. State start
(lines 7-9 in Listing 4) is used to wait on the release signal, that
happens as soon as launch[n] becomes true (this urgency is ex-
pressed by the timing constraint wait [0,0]). In this transition, the
variable lock_n is used to allow the codels of active activities (not
presented here) to start executing. Finally, state manage remains
the current state of the manager until the end of the execution, that
is until variable lock_n is set to 0. As soon as that occurs, the task
manager releases the core and transits back to ask (line 12) to wait
for the next period signal.

3.3 Shortest-Job-First (SJF) Scheduler

The SJF scheduler, aka SPN (Shortest Process Next), is a coop-
erative scheduler based on priorities related to the jobs estimated
execution time (aka burst time) [21]. That is, the insertion of a job
in the waiting queue is based on its Estimated Execution Time (EET)
rather than its activation date. For instance, for the jobs a and b
with the respective EETs ta = 1 and tb = 2, there is no possible
configuration where b is before a in the waiting queue (while such
configuration is possible in FCFS). Jobs with equal EET will be
sorted in a FIFO fashion, as in FCFS.

To encode such a scheduler, we need first to define the EET
for a GenoM3 task. Normally, EETs are computed dynamically in
SJF which renders its implementation on OS difficult. There exist
methods that predict the EET of a job based on e.g. an average of
its previous execution times. Here, we find it rather convenient
to assign EETs statically. Indeed, the robotic programmer assigns
periods to the tasks in their components according to the tasks
estimated load. Accordingly, we will consider the period as the EET
for a periodic execution task. For aperiodic tasks, including the
control tasks, the programmers expect these to react and execute
as promptly and quickly as possible. Their EET is thus considered
shorter than any EET of a periodic task. Assigning static EETs will
ease the implementation of SJF on the OS (Sect. 4).

The Fiacre encoding is therefore similar to that of FCFS 3.2
except that the insertion in the queue fifo is done through the Fiacre
recursive function insert_sj f (Listing 6) rather than the classical
enqueue primitive. This function ensures that the jobs are inserted
according to their respective EET if different, and to their activation
date otherwise.

The function eet , called within insert_sj f , returns for each task
its EET. Listing 7 shows howwe can generate such a function from a
GenoM3 component c using a template function (Sect. 2.1.2). In line
1, the expression between markers will be replaced by the number
of tasks in c (the +1 is for counting the control task as well, always
present in a GenoM3 component). The statement case ... of (line 3)
is similar to the switch case statement in theC language. The first

4

1 function insert_sjf (q: queue N of 1..N, t: 1..N) : queue N of
1..N is

2 var temp: 1..N

3 begin

4 if (empty(q) or eet(t) < eet(first(q))) then
5 return append(q,t)

6 end if;
7 temp:= first(q);
8 return append(insert_sjf (dequeue(q), t),temp)

9 end

Listing 6: Queue insertion function for the SJF scheduler

1 function eet (t: 1..<"[expr [llength [$c tasks]] + 1]">) : nat is
2 begin

3 case t of
4 1 →return 0

5 <'set k 2

6 foreach task [$c tasks] {

7 if {![catch {$task period}]} {'>

8 | <"$k"> →return <"[$task period]">

9 <'} else {'>

10 | <"$k"> →return 0

11 <'}

12 incr k}'>

13 end
14 end

Listing 7: Generating the function eet for a component c

clause of the case ... of statement (line 4) returns 0 for the control
task, encoded by the integer 1. This ensures that the control task
EET is always smaller than any EET of a periodic execution task.
The same goes for aperiodic execution tasks (line 10). For periodic
execution tasks, the function simply returns their periods (line 8).

4 EXPERIMENTS AND DISCUSSION

In this section, two Fiacre models are automatically generated
from a real-world Quadcopter specification (Fig. 2): one integrates a
cooperative FCFS scheduler and the other an SJF scheduler (as seen
in Sect. 3)2. These models are verified in order to assess schedula-
bility properties on the underlying GenoM3 components. We also
give a couple of examples of other behavioral and timed properties
that we can verify on the same models. The considered hardware is
the quad-core ODROID-C0 board running Ubuntu 14.04. We refer
the interested reader to [13] for more details on the Quadcopter
components shown in Fig. 2. In either context, FCFS or SJF, the
affinity, i.e. the core on which the tasks will run, is set as any task
may run on any available core. As mentioned in Sec. 2.1, GenoM3
components interact with external clients in order to be able to ex-
ecute services. We add a client corresponding to a stationary flight
(hovering) application that involves all the components shown in
Fig. 2 except maneuver. We have then ten tasks, and consequently
a queue of size ten.

2Details on how Fiacre models (without schedulers) are automatically generated from
GenoM3 specifications are available in [14]

Functional Level

actual
velocityIMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan 5ms
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor
set_ramp

mocap
pose

optitrack
Task:
publish 4ms
Services:
Init
(pos updated
100Hz)

Figure 2: The quadcopter functional level. Only a partial list

of services is presented. Activities are in Italic font.

4.1 Schedulability with FCFS

Scheduler Implementation. The cooperative FCFS scheduler can
be easily implemented by using the real-time policy SCHED_FIFO
on Ubuntu with all tasks given the same priority.

Schedulability Properties. As mentioned in 2.1.4, schedulability
properties are hard to reason upon analytically due, especially,
to the fine-grain mutual exclusion implemented in GenoM3. We
express the schedulability properties for periodic tasks within the
Fiacre specification as invariants. A task is schedulable iff the value
of the timer tick is never reset to true (by its timer) while the task
is waiting for the core allowance (its manager is in its state start)
or executing (its manager is in its state manage). For instance, the
schedulability property is expressed for the task io (component
pom) as follows:

property sched_io is always (not (pom/io_manager/state ask)

⇒not (pom/io_manager/value tick_odo))

We build the SCG and assert the schedulability properties for
each periodic task. We prove that all tasks are schedulable, con-
sidering the given hardware and a cooperative FCFS scheduling
policy. We also prove that the minimum number of cores to ensure
such schedulability is 3 as the task filter (component pom) misses
its deadline when this number is reduced to 2. Table 1 summarizes

5

the results according to the number of cores. It gives the details
of the SCG (its size and the time needed to build it) in each case.
Note that the verification time is negligible compared to the SCG
construction time, thus not given here. All the verification process
(SCG construction and verification of properties) is carried out on
a laptop with Intel Core i5 2.7 GHz and 8GB of RAM.

4.2 Schedulability with SJF

Scheduler Implementation. Since the EETs are assigned statically,
this scheduler is easily implementable using the same real-time
policy as that used for FCFS, namely SCHED_FIFO on Ubuntu, with
the following differences:
• Priorities: Priorities are assigned according to the rules ex-
plained in 3.3: the smaller the period, the higher the priority,
and aperiodic tasks have the same, highest priority.
• Preemption: To prevent higher priority tasks from preempt-
ing lower priority ones, a semaphore is initialized to the
number of cores. A wait operation on this semaphore is
added at the beginning of each task and a signal operation
at the end.

Schedulability Properties. The verification results are given in
Table 2. With SJF, the minimum number of cores to ensure the
schedulability of all tasks is 2.

4.3 FCFS vs SJF

We prove that using SJF improves the schedulability of tasks
as the application may be run on a dual-core platform while the
minimum number of cores needed with FCFS is 3. By analyzing
the traces of counterexamples, we realize that the scenarios where
the task filter (component pom) misses its deadline correspond to
execution paths where the task publish (component optitrack)
position in the queue precedes that of filter. These paths are, how-
ever, eliminated in the SJF context thanks to the insert_sj f function
(listing 6) since the EET of publish (4ms) is larger than the EET of
filter (1ms).

4.4 Other Properties

The same model, either with FCFS or SJF, is readily usable to
verify other behavioral and timed properties like the ones verified
in [14]. Results of verification on such a model are more realistic in
the sense that it integrates the real hardware on which the robotic
application is implemented with a realistic scheduling policy. Also,
since the model is automatically generated, one may carry out
similar experiments on other applications with different hardware
constraints. In the sequel, we give two examples of behavioral and
timed properties that we can verify on the FCFS model. In both
examples, the number of cores is fixed to 4.

Liveness. In contrast to schedulability for periodic tasks, liveness
is a key property for sporadic ones. It is important, for instance,
to verify that a control task always finishes its execution to make
sure that further requests can be received and processed in the
future. GenoM3 does not provide any guarantee of such a property,
especially in the presence of non-deterministic mutual exclusion
(Sect. 2.1.4). We use the Fiacre pattern leadsto (Sect. 2.2) to formulate
the liveness property, e.g. for mikrokopter’s control task:

property live_comm is (mikrokopter/CT/state start) leadsto
(mikrokopter/CT/state idle)

The control task is initially in the state idle. When a request is
received, it transits to start. Different behaviors corresponding to
processing the request are possible from start to finish through
intermediate states. When execution finishes, a transition is taken
back to idle from finish. The property above expresses that if the
control task starts executing, it will eventually go back to idle (after
execution finishes) and therefore other requests can be received.
This property evaluates to true for all control tasks in the specifica-
tion. The SCG size and construction time are the same as in table 1
(first row, 4 cores).

Bounded response. The aperiodic task comm keeps, through its
permanent activity, polling data in order to store it inmikrokopter’s
IDS. An important timed property to verify is the minimum and
maximum time that could elapse between receiving the data and
actually storing it. Computing such bounds is tedious and subject
to errors considering (i) the mutual exclusion between comm’s
permanent activity codels and other codels within and outside
mikrokopter and (ii) the different concurrent scenarios under the
scheduling policy. We rely on the Fiacre pattern leadsto within
(Sect. 2.2) to express the property as follows:

property bounded_comm is (mikrokopter/comm_permanent/state

poll) leadsto (mikrokopter/comm_permanent/state end)
within [min,max]

with poll and end being, respectively, the codel where data is re-
ceived and the codel where processing such data is finished. The
bounds min and max are tuned manually while verifying the prop-
erty on the fly so the construction of the SCG is stopped as soon as
the property is violated. We prove min to be equal to 0.27ms and
max to be equal to 0.32ms. These results are acceptable since the
upper bound is three times less than the smallest period in the spec-
ification. The new SCG is 7 923 690 classes large (roughly 600 000
classes more induced by the observer) and is built in 374.408s. The
whole verification process, including tuning and on-the-fly verifi-
cation, lasted about 20mn.

5 RELATEDWORK

The next two paragraphs give references to some of the works on
formal verification and schedulability analysis of functional robotic
components. In each category, we outline the main limitations.
We then show through the last paragraph how our contribution
addresses such limitations and thus distinguishes itself from the
related work.

Formal verification. In [12, 19, 32], functional components of sim-
ple robotic applications are manually translated into ESTEREL [9]
models. The latter are model-checked for various real-time proper-
ties ranging from reachability to bounded liveness. In [1], D-Finder,
an invariant-based verification tool, is used to formally verify BIP
(formal framework) models synthesized from functional robotic
specifications. The verification of ROS [26] robotic specifications is
the subject of several works [16, 17, 35]. We find in the literature
also works using other techniques such as Discrete-Time Markov
Chains models [10]. The contributions are thus numerous yet still

6

Cores SCG (size) SCG (time) sched_main
(mikrokopter)

sched_main
(nhfc)

sched_publish
(optitrack)

sched_io
(pom)

sched_filter
(pom)

4 7 338 151 351.840s True True True True True
3 10 459 826 485.764s True True True True True
2 10 788 413 391.040s True True True True False
1 40 545 0.880s False False False False False

Table 1: Schedulability results with FCFS

Cores SCG (size) SCG (time) sched_main
(mikrokopter)

sched_main
(nhfc)

sched_publish
(optitrack)

sched_io
(pom)

sched_filter
(pom)

4 6 210 003 301.691s True True True True True
3 7 986 495 333.289s True True True True True
2 7 008 957 244.609s True True True True True
1 32 049 0.670s False False False False False

Table 2: Schedulability results with SJF

face fundamental issues. First, the high complexity (number of com-
ponents, level of parallelism, time constraints, etc.) of functional
layer specifications leads to scalability problems. As a result, unre-
alistic abstractions are made such as ignoring timing constraints
(e.g. [1]). Second, most functional-level software (e.g. ROS) are not
model based and do not use formal languages. Their formalization
is thus time-consuming and non-reusable, in the sense that it has
to be redone for each new application (e.g. [12, 16, 17, 32]). Last,
hardware constraints (numbers of processors/cores and schedul-
ing policy) are ignored while applying automatic verification to
the functional components. Results are thus valid only when the
number of processors/cores in the platform is at least equal to that
of the robotic tasks, which is seldom the case in reality. In [24], the
first two issues are tackled using RoboChart, while the last issue
is not addressed. RoboChart models are automatically translated
into CSP [28]. In contrast to GenoM3, RoboChart is not a robotic
framework (its models are, so far, not executable on robotic plat-
forms). That is, each robotic application, initially specified in a
robotic framework, needs to be modeled first in RoboChart before
it can be verified in CSP. This reduces the reusability of the method
from a roboticist point of view. In [14], we particularly address the
first two issues and set the last one as a line of future work.

Schedulability analysis. The goal of schedulability analysis is to
check whether tasks in a system meet their temporal requirements
(e.g. deadlines) following a certain scheduling policy on a given
hardware. For robotic systems, schedulability is mainly checked
using classical real-time analytical approaches. For instance, the
worst-case response time approach is used in [25] while utilization
factor and dedicated analytical bound are used in [30] and [33],
respectively. In [15], the authors use MAUVE, a functional robotic
framework, to specify their components, but the schedulability is
checked again with an analytical approach (worst-case response
time). Schedulability analysis approaches are both non automatic
and difficult to extend to verify specific temporal constraints (such
as end to end). Moreover, the absence of formal models of the
underlying robotic application prevents the verification of other
vital behavioral and timed properties in robotics e.g. undesirable

state(s) are never reached or some data is always processed within
a time interval.

Our contribution. The contribution presented in this paper is
thus an extension to that presented in [14] and compares favorably
to previous works. Schedulability analysis is automatized and prop-
erties such as liveness and bounded response are verified given the
real hardware setting (number of processors/cores and two different
scheduling policies). Within the same framework, engineers may
verify both schedulability and other real-time properties in a fully
automatic manner. The integration of the number of processors/-
cores and the scheduling policies of the real robotic platform into
the generated formalmodelmakes the results more accurate. Indeed,
ignoring hardware constraints, as mentioned above, restricts the
validity of the verification results to (often) unrealistic assumptions
about the hardware. The chosen scheduling policies are suitable for
robotic applications (e.g. FCFS with priorities was used in [15]). This
overcomes the limitation of [13], where we emphasized that the
chosen non-deterministic scheduler was not adapted for real-time
applications.

6 CONCLUSION

We present an approach for verifying schedulability properties as
well as other real-time properties (liveness and bounded response)
on robotic functional components using model checking. Our effort
distinguishes itself from the related work presented in Sec. 5 in
being, simultaneously, automatic (and therefore reusable), rigor-
ous (e.g. all timing constraints are taken into account) and realistic
with respect to the actual hardware constraints, i.e. the number of
available cores and the scheduling policies, as it integrates them
into the generated models. Overall, to our knowledge, this is the
first work that attempts to find a common ground between formal
verification and schedulability analysis in robotics, while taking
hardware resources and scheduling policies into account. Verifica-
tion results are therefore more reliable as models are closer to the
real hardware-software setting.

7

For futurework, further cooperative scheduling algorithms should
be explored. Most optimized cooperative schedulers such as coop-
erative EDF [18] and Highest Response Ratio Next (HRNN) require,
however, tracking not only the execution time but also the waiting
time of jobs in the queues. The experience acquired from our work
here indicates that TPN-based languages, such as Fiacre, where
time intervals depend on transitions enabledness, are not suitable
for such schedulers. It follows that Timed Automata (TA) [4] are a
promising alternative to capture the time elapsed in queues using
clocks. We plan thus to integrate these schedulers to TA models
of GenoM3 specifications and compare the results with those pre-
sented here. This will be possible by modeling the schedulers in
the TA-based model checker UPPAAL [20] and integrating them to
the recently developed GenoM3-to-UPPAAL template.

The work in this paper is also a basis for future work on au-
tomatic source code generation from a verified formal model. A
prototype has already been built from Fiacre models to generate C
code on a Xenomai platform. In this context, we highlight that the
schedulers models presented in our work here, associated with the
behavioral model of the robotic application, are an effective way to
guarantee temporal constraints of the system during its execution.
On the long term, the execution model will allow us to perform
runtime verification and enforce desired properties online.

Overall, the work presented in this paper is beneficial to the
robotics, the formal methods, and the real-time systems commu-
nities. It confronts a model-checking framework to a real-word
complex application and, by considering the hardware constraints
and automatizing the process, advances the state of the art toward
a more correct and less tedious formal verification of robotic and
autonomous applications. This work may be, consequently, con-
sidered as a step forward in the direction of a safe deployment of
autonomous systems in real-world critical applications in human
environments.

REFERENCES

[1] T. Abdellatif, S. Bensalem, J. Combaz, L. de Silva, and F. Ingrand. 2012. Rigorous
design of robot software: A formal component-based approach. Robotics and
Autonomous Systems 60, 12 (2012), 1563–1578.

[2] NouhaAbid, SilvanoDal Zilio, and Didier Le Botlan. 2012. Real-Time Specification
Patterns and Tools. In Formal Methods for Industrial Critical Systems. 1–15.

[3] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. 1998. An architecture
for autonomy. The International Journal of Robotics Research 17, 4 (1998), 315–337.

[4] Rajeev Alur and David L Dill. 1994. A theory of timed automata. Theoretical
computer science 126, 2 (1994), 183–235.

[5] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang,
and F. Vernadat. 2008. Fiacre: an Intermediate Language for Model Verification
in the Topcased Environment. In ERTSS.

[6] Bernard Berthomieu and Miguel Menasche. 1983. An enumerative approach for
analyzing time Petri nets. In IFIP Congress.

[7] B. Berthomieu, P.O. Ribet, and F. Vernadat. 2004. The tool TINA – Construction
of Abstract State Spaces for Petri Nets and Time Petri Nets. Journal of Production
Research 42, 14 (2004).

[8] P A Bourdil, Bernard Berthomieu, and E Jenn. 2014. Model-Checking Real-Time
Properties of an Auto Flight Control System Function. In ISSREW.

[9] Frédéric Boussinot and Robert de Simone. 1991. The ESTEREL Language. In
Proceeding of the IEEE, Vol. 79. 1293–1304.

[10] Giuseppe Cicala, Ali Khalili, Giorgio Metta, Lorenzo Natale, Shashank Pathak,
Luca Pulina, and Armando Tacchella. 2016. Engineering approaches and methods
to verify software in autonomous systems. In IAS.

[11] Alessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli. 2004. Conformant
planning via symbolic model checking and heuristic search. Artificial Intelligence
159, 1-2 (2004), 127–206.

[12] B Espiau, K Kapellos, and M Jourdan. 1996. Formal verification in robotics: Why
and how?. In International Symposium on Robotics Research. Springer, 225–236.

[13] Mohammed Foughali. 2017. Toward a Correct-and-Scalable Verification of Con-
current Robotic Systems: Insights on Formalisms and Tools. In ACSD.

[14] M. Foughali, B. Berthomieu, S. Dal Zilio, F. Ingrand, and A. Mallet. 2016. Model
Checking Real-Time Properties on the Functional Layer of Autonomous Robots.
In International Conference on Formal Engineering Methods. Springer, 383–399.

[15] Nicolas Gobillot, Fabrice Guet, David Doose, Christophe Grand, Charles Lesire,
and Luca Santinelli. 2016. Measurement-based real-time analysis of robotic
software architectures. In IROS.

[16] Raju Halder, José Proença, Nuno Macedo, and André Santos. 2017. Formal verifi-
cation of ROS-based robotic applications using timed-automata. In Proceedings of
the 5th International FME Workshop on Formal Methods in Software Engineering.
IEEE Press, 44–50.

[17] Jeff Huang, Cansu Erdogan, Yi Zhang, Brandon Moore, Qingzhou Luo, Aravind
Sundaresan, and Grigore Rosu. 2014. ROSRV: Runtime verification for robots. In
International Conference on Runtime Verification. Springer, 247–254.

[18] Mehdi Kargahi and Ali Movaghar. 2005. Non-preemptive earliest-deadline-first
scheduling policy: a performance study. In Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2005. 13th IEEE International Sympo-
sium on. IEEE, 201–208.

[19] M. Kim and K. C. Kang. 2005. Formal Construction and Verification of Home
Service Robots: A Case Study. In Automated Technology for Verification and
Analysis. 429–443.

[20] K. G. Larsen, P. Pettersson, and W. Yi. 1997. UPPAAL in a nutshell. International
Journal on Software Tools for Technology Transfer (STTT) 1, 1 (1997), 134–152.

[21] Simone Lupetti and Dmitrii Zagorodnov. 2006. Data popularity and shortest-
job-first scheduling of network transfers. In Digital Telecommunications„ 2006.
ICDT’06. International Conference on. IEEE, 26–26.

[22] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand. 2010. GenoM3:
Building middleware-independent robotic components. In Robotics and Automa-
tion (ICRA), 2010 IEEE International Conference on. IEEE, 4627–4632.

[23] P. M. Merlin and D. J. Farber. 1976. Recoverability of Communication Protocols:
Implications of a Theoretical Study. IEEE transactions on Communications 24, 9
(1976), 1036–1043.

[24] A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, and J. Timmis. 2017. Automatic
Property Checking of Robotic Applications. In The International Conference on
Intelligent Robots and Systems.

[25] Ala’ Adel Qadi, Steve Goddard, Jiangyang Huang, and Shane Farritor. 2005. A
performance and schedulability analysis of an autonomous mobile robot. In
ECRTS.

[26] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, 5.

[27] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Y. Ng. 2009. ROS: an open-source Robot Operating System. In ICRA
workshop on open source software, Vol. 3. Kobe, 5.

[28] Andrew William Roscoe. 2010. Understanding concurrent systems. Springer
Science & Business Media.

[29] Uwe Schwiegelshohn and Ramin Yahyapour. 1998. Analysis of first-come-first-
serve parallel job scheduling. In SODA, Vol. 98. 629–638.

[30] Jiazheng Shi, Steve Goddard, Anagh Lal, and Shane Farritor. 2004. A real-time
model for the robotic highway safety marker system. In RTAS.

[31] Reid Simmons, Charles Pecheur, and G Srinivasan. 2000. Towards Automatic
Verification of Autonomous Systems. In IROS.

[32] A. Sowmya, D. Tsz-Wang So, and W. Hung Tang. 2002. Design of a Mobile Robot
Controller using Esterel Tools. Electronic Notes in Theoretical Computer Science
65, 5 (2002), 3–10.

[33] John D Sweeney, Huan Li, Roderic A Grupen, and Krithi Ramamritham. 2003.
Scalability and schedulability in large, coordinated, distributed robot systems. In
ICRA.

[34] Kai Weng Wong and Hadas Kress-Gazit. 2016. Need-based coordination for
decentralized high-level robot control. In IROS.

[35] Safdar Zaman, Gerald Steinbauer, Johannes Maurer, Peter Lepej, and Suzana
Uran. 2013. An integrated model-based diagnosis and repair architecture for ROS-
based robot systems. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE, 482–489.

8

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 G0Tto0enoM3
	2.2 Fiacre and TINA

	3 Schedulers
	3.1 Fiacre Queues
	3.2 First-Come-First-Served (FCFS) Scheduler
	3.3 Shortest-Job-First (SJF) Scheduler

	4 Experiments and Discussion
	4.1 Schedulability with FCFS
	4.2 Schedulability with SJF
	4.3 FCFS vs SJF
	4.4 Other Properties

	5 Related Work
	6 Conclusion
	References

