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Abstract—We present, in this paper, a fault-tolerant approach
to cope with accidental communication data corruption in critical
embedded systems. One of the classical integrity approaches
is the redundancy-based approach that consists particularly in
replicating the message and sending all copies via the same
communication channel consecutively or sending them via repli-
cated communication channels. Yet, such approach is vulnerable
to some cases of Common-Mode Failure. So, we propose to
diversify the copies to be sent by diversifying either the error
detection function (which generate the check bits) or the data
payload. This paper focus on the first proposal by presenting
experiments and results to validate its effectiveness. Besides, it
describes basic theoretical concepts of the second proposal. Our
case study is the Flight Control System (FCS). Yet, our approach
could be deployed in other systems for which we describe the
key properties.

Keywords—fault tolerance; diversity; communication integrity;
critical embedded systems; flight control system.

I. INTRODUCTION

In critical embedded systems, it is extremely important
to enhance the system safety. In fact, the occurrence of
failures (e.g., a computer failure) could lead if not detected
and recovered to damages and even fatalities. To meet safety
requirements and since systems are too complex and operate in
uncertain environments, many designers rely on fault tolerance
means in addition to fault avoidance, fault elimination and
fault forecasting techniques. As defined in [1], fault tolerance
is aimed at avoiding service failures despite the occurrence
of faults, based in particular on redundancy. For example, to
tolerate faults in a system (or in some parts of the system), one
safety measure is to duplicate data (to be stored or transmitted),
software components (e.g., operating systems) or hardware
components (e.g., sensors and network nodes) of the system.
Thus, the system could continue to operate and to fulfil its
functionalities while some of its components do not operate
correctly.

In this paper, we address a particular aspect of the sys-
tem safety which is communication integrity. Indeed, the
occurrence of corruption in exchanged data could result in
catastrophic events particularly if corrupted messages are not
detected and recovered.

The occurrence of errors in exchanged data is due to several
factors namely noise and failures in network nodes (edge or

interstage). To enhance the communication integrity, a com-
mon classical approach consists in the transmission of several
similar copies of the same message in different refresh cycles
[2] (called temporal redundancy) or via duplicated commu-
nication channels [2] (called spatial redundancy). These latter
methods belong to the class of “symmetric redundancy” which
is vulnerable to the problem of “Common-Mode Failure”. This
problem makes replicated data likely to exhibit the same errors
(repetitive errors). Since our goal is to cope with multiple
repetitive random errors, we propose to adopt alternatively an
“asymmetric redundancy” approach that consists in diversify-
ing the message copies to be sent. To enhance communication
integrity, we explore, in this paper, the latter idea taking
inspiration of existing “asymmetric redundancy techniques”,
that are aimed at enhancing software dependability based on
diversity [2] [3]. Such techniques are generally based on the
traditional concept of “Design Diversity” that is sometimes
recommended to tolerate software design faults [4]. We aim
at proposing a diversity-based fault-tolerant integrity approach
to be deployed in the application layer in order to cover all
residual errors occurring in the under-layers .

To diversify message copies, we consider both payload
and check bits (added extra-data to detect errors) parts of the
message. We propose two diversity-based policies. A policy
based on a concept called “data diversity” [5] [6] and a policy
consisting in using a multi-function error detection policy
whom we describe the basic concepts in [7] and which was
inspired from the works described in [8]. The former pro-
posal (Data Diversity based Policy DDP) consists in sending
copies of the message comprising differently re-expressed data
(generated by different re-expressing functions). An error is
detected if restored data of different received copies do not
match. The latter proposal (Multi-Function error Detection
Policy MFDP) suggests the use of a different error detection
function for each transmitted message. So, each message has
its own different check bits. The different used error detection
functions must be complementary in terms of error detection
capability in order to improve the error detection performance.

Our intent in this paper is to present both proposed policies.
Yet, the emphasis is on describing the Multi-Function error
Detection Policy by presenting simulations and results in order
to prove and validate its effectiveness. We first present some
background by describing the characteristics of targeted critical
embedded systems in Section II. Section III discusses the com-



munication integrity concerns in such systems. It presents the
techniques usually adopted to cope with data corruption and
describes characteristics of commonly used network technolo-
gies. Section IV introduces the Multi-Function error Detection
Policy. Then, Section V details the case study of a Flight
Control System (FCS) to illustrate this approach. Section VI
presents the MFDP validation by describing simulations and
results. Section VII introduces basic concepts of our ongoing
work on the Data Diversity based Policy. Finally, section VIII
concludes this paper.

II. KEY PROPERTIES OF TARGETED CRITICAL EMBEDDED
SYSTEMS (CES)

Defining an efficient strategy for ensuring communication
integrity is closely dependent on the specific features of the
investigated systems. In this section, we describe the key prop-
erties of our targeted systems. We start by presenting generic
features that impact the communication integrity strategy to
be adopted. The second part of this section is devoted to de-
scribing different redundancy strategies which are deployed in
critical embedded systems to enhance communication integrity.

A. High criticality, limited resources and complex networks

Targeted critical embedded systems (CES) are defined by
strict safety requirements. In fact, the criticality level of a
system is judged according to the consequences of potential
failures. If failures could result in fatalities or significant dam-
age (material or environmental), this system is safety-critical.
Safety-critical systems are used in different application areas
(e.g., railways, aircraft flight control and nuclear systems).
Typically, in such systems, the failure rate must be less than a
threshold to be set according to the system specificity (10−9 to
10−7 failures per hour of system service). To meet such strict
safety requirement, designers often rely on redundancy.

Embedded systems are based on limited resources. Indeed,
we particularly focus on the fact that many embedded systems
do not include huge amounts of resources (e.g., memories,
processors and power supplies). Moreover, they are usually
based on short communication messages. So, one cannot
rely, in such systems, on an error detection policy with high
overheads and computational costs. Redundancy is deployed in
such systems to enhance safety but given the limited resources,
it must be optimized.

Finally, communications in our targeted systems are based
on complex networks including a large number of nodes
(e.g., calculators, actuators and sensors). There are not only
sources and sinks but also intermediate communication nodes
(interstage nodes) which are active. The “active” feature means
that the node has memory and processing capabilities and its
role is not just relaying data messages. This characteristic
increases the occurrence likelihood of repetitive errors (e.g.,
systematic errors) leading to Common-Mode Failure (due e.g.,
to defective registers). We focus, in this paper, on these latter
types of errors.

B. Redundancy

Three redundancy types deployed in critical embedded
systems can be distinguished: spatial, temporal and value
redundancy. Theses different kinds of redundancy can be

either symmetric (the replication of the same system part)
or asymmetric (the diversification of the replicated part). We
focus here on symmetric redundancies that are commonly used
in CES.

Spatial redundancy: Spatial redundancy consists in
deploying (locally or in a distributed manner) multiple copies
of the same system component [2]. For example, the use
of redundant sensors to collect the data. Thus, even when
one of any sensors produces an erroneous data or does not
produce data (in the case of a failure), a correct copy of
data could be available. In the context of communications,
it consists in either using multiple communication channels
or multiple interstage nodes. This type of redundancy allows
to handle potential physical failures and tolerate the loss of
system components.

Temporal redundancy: Temporal redundancy is defined
abstractly by the fact to do the same thing several times [2]. It
is usually used in critical systems to enhance communication
integrity [3]. This technique consists in transmitting several
copies of the same message over the same communication
channel at distinct time instants [3]. This repetitive trans-
mission is either done systematically or triggered by the
occurrence of errors.

Value redundancy: The value redundancy consists in
adding extra-data to the data to be sent in the message [2]. The
extra-data is commonly called “control data” or “check bits”.
It is typically generated by error detection and/or correction
codes, hash functions or a cryptologic methods in order to
detect and/or correct potential errors on data.

We focus in the rest of this paper on error detection
codes and particularly those used in critical embedded systems
(described later). In fact, our multi-function error detection
policy is based on such codes to cope with data corruption.

III. COMMUNICATION INTEGRITY IN CES

This section presents an overview of the communication
integrity concerns in critical embedded systems. It describes
first some used error detection codes. Then, this section
presents commonly used embedded network technologies and
details the error detection techniques they employ.

A. Common error detection codes in CES

We present here common error detection techniques used
to enhance data integrity. Such techniques can be used at lower
communication layers or even at the application level.
We have considered these techniques as examples to design
and illustrate the diversity-based fault tolerant communication
approach presented in this paper.

Parity check codes: This technique consists in adding
a one bit as extra information. This parity bit is used to check
even or odd parity (e.g., for odd parity, it must be equal to 0 if
the number of 1-bits of the data field is an odd number). This
technique is convenient for systems where the probability of
occurrence of errors is very low since it detects only an odd
number of erroneous bits.



Arithmetic checksums: This technique consists in
adding bytes of extra-information calculated by an arithmetic
formula. Fletcher and Adler checksums are commonly used in
critical embedded systems. Fletcher is calculated by summing
the data bytes modulo 2n − 1 such that n is the size of
the checksum (the number of extra-bits). Adler checksum is
calculated by summing the data bytes modulo the first prime
number inferior to 2n such that n is the size of the checksum
(the number of extra-bits). On the receiver side, the checksum
of the received data is calculated then result is compared to the
received checksum. If they do not match, an error is detected.
Compared to parity code, arithmetic checksums have better
error detection capabilities but require a higher redundancy in
terms of check bits and their use increases the computational
cost.

Cyclic Redundancy Codes: A CRC code is defined by
its generator polynomial G(x). The check bits are the rest (the
remaining polynomial) R(x) of the division of the polynomial
corresponding to the data bits Q(x) by the generator poly-
nomial G(x) (R(x) = Q(x)divG(x)). On the receiver side,
the same division is made then the result is compared to the
received CRC field. If they do not match, an error is detected.
This technique is rather carried out in the hardware by applying
shift registers and bitwise XOR. CRC codes provide a high
detection performance compared to parity check codes and
arithmetic checksums. In all cases, CRCs detect all single bits
and all burst errors with a size up to its generator polynomial
degree and all double bit errors if the generator polynomial
G(x) has at least three terms and odd numbers of bit errors if
G(x) has a factor of (x+ 1).
We call CRC-x a CRC whose generator polynomial degree is
equal to x and x is also the number of check bits.

B. Common network technologies in CES

We present here commonly used network technologies in
critical embedded systems in order to clarify the specificity of
embedded technologies used in real critical applications.

Controller Area Network CAN: CAN is a flooding bus
based on CSMA/CR (Carrier Sense Multiple Access with Col-
lision Resolution) technique. The size of exchanged messages
can reach a maximum of 135 bits including the payload data,
the eventual resynchronizing bits and the bits of the identifier
which are equal to 11 for the standard version of CAN and
equal to 29 for the extended version. CAN relies on a set of
error detection mechanisms. In particular, it uses CRC error
detection code to cope with data corruption. For CAN 2.0, the
used CRC is defined by the following generator polynomial:
G(x) = x15+x14+x10+x8+x7+x4+x3+1. Moreover, CAN
uses the stuffing technique which consists in adding a 0-bit
(respectively 1-bit) after each 5 consecutive 1-bits (respectively
0-bits).
So, an error is detected if the received data includes 6 similar
consecutive bits. It relies also on verifying the frame structure
in order to track out data corruption.

FlexRay: FlexRay is a fault-tolerant protocol which can
be based on a bus topology, a star (simple or multiple) topology
or a combination of different topologies. It supports payload
data from 8 bytes up to 254 bytes. The FlexRay message is
composed of 5 bytes of header, data payload and a set of

CRC bits to enhance data integrity. It supports two different
CRCs. The first one is a CRC-11 used to protect exclusively the
header data. The second one is a CRC-24 used to protect the
header and the payload data. The FlexRay protocol provides
increased bandwidth over CAN and also incorporates new
mechanisms to increase communication fault tolerance and
determinism while retaining a high degree of flexibility [9].
FlexRay is based on local bus guardian that was designed to
be a simple temporal enforcement mechanism and has evolved
to become in current implementation more complex having
the same capabilities as a communication controller [9] and
proving high error detection performance.

Local Interconnect Network LIN: LIN is a protocol for
embedded networks which is based on a serial bus and is
characterized by a low cost and low complexity. The message
size of LIN could reach 8 bytes. To cope with data corruption,
LIN is based on a 8-bit arithmetic checksum [10].

Time-Triggered Protocol TTP: TTP is based on a
duplex star bus based on TDMA (Time Division Multiple
Access). It is based on CRC-16 in order to enhance data
integrity. TTP deploys an hybrid redundancy (spatial and
temporal) consisting in a nodes duplication. This redundancy
is managed by a Fault Tolerant Unit (FTU) such that each
node sends a copy of the same data in each TDMA round.
Another possibility of redundancy offered is the deployment
of passive redundant nodes that take the place of the principal
node in the case of a failure. This redundancy is called passive
redundancy.

ARINC 429: ARINC 429 is based on simplex transmis-
sion (a communication channel allows to transmit data in one
direction). Bidirectional transmission requires two channels or
buses. ARINC 429 is based on end-to-end topology. It is based
on parity code to enhance communication integrity. The size
of exchanged messages is equal to 32 bits.

IV. THE MULTI-FUNCTION ERROR DETECTION POLICY
(MFDP)

Traditional deployed redundancy consists in a simple repli-
cation of data or system software or/and hardware components.
This approach could deal with the problem of system failures
in many cases. It makes possible to tolerate failures by provid-
ing a back-up that keeps the system fulfilling its functionalities
despite the fact that there are some components that are failed
or in the presence of corrupted data. Yet, this does not deal
with the problem of Common-Mode Failure.

Thus, we propose to substitute traditional symmetric re-
dundancy with an asymmetric redundancy. This means diver-
sifying the redundant parts of the system. We introduce here
the proposed Multi-Function error Detection Policy to enhance
communication integrity.

The multi-function error detection policy we propose is
inspired from preliminary work described in [8] for which
we present here a significant extension. Our idea consists
in exploiting the symmetric redundancy that already exists
in targeted systems. We focus on spatial or/and temporal
redundancies that result in transmitting N copies of each
message (N to be set according to the system specificities).
These N copies are sent either in the same refresh cycle via



different communication channels (spatial redundancy) or in
different refresh cycles via the same communication channel
(temporal redundancy). A refresh cycle is the time between two
successive transmissions. This duration may either be a design
choice, or a design constraint imposed by the application or
the system.

Despite the fact that sending multiple messages copies
seems to be restrictive, we can notice that many systems
transmit messages repetitively to enhance communication de-
pendability (e.g., via duplicated channels described in [9]) by
dealing with the problem of data corruption, message loss or
links failures.

In addition to redundancy, we focus on error detection
codes. Considering commonly used network technologies in
critical embedded systems (see Section III), regardless of the
code used, they all use always the same principle: a unique
function is used for all messages to be sent (e.g., parity bit in
all transmitted messages in ARINC 429). Each error detection
function is vulnerable to some particular kinds of error patterns
(e.g., even errors for parity code, errors that are multiple of
the generator polynomial for CRC). In this case (when the
code is vulnerable to the considered error) and even though
the message is sent N times, the error will never be detected.

Thus, we propose to use a multi-function error detection
policy based on a set of complementary error detection codes
to minimize the likelihood of the problem of Common-Mode
Failure. Different error detection codes have different weak-
nesses and are vulnerable to different error patterns. Thus,
the idea behind diversifying the error detection function is
to increase the likelihood to detect at least one erroneous
copy of the message subjected to a repetitive error. In the
proposed multi-function error detection policy, we do not
consider the occurrence of one erroneous undetected message
as a dangerous event to be avoided, but rather the case to avoid
is when all N erroneous copies of the message are not detected.
Thus, our goal is to detect the error at least once. Then, the
system could be notified and it could be able to recover the
error according to the deployed recovery strategy.

F 1 Data 1 F 1 Data 1 F 1 Data 1 

F 1 Data 1 F 3 Data 1 F 2 Data 1 

   2- Transmission of three copies of the same data using  
a multi-function error detection policy (F1, F2, F3) 

 1- Transmission of three copies of the message using a 
single error detection function 

  Error detection 

ND ND ND 

ND D D 

ND: Non Detection 
D: Detection 
F1, F2, F3: error 
detection Functions 

Fig. 1. A multi-function error detection policy (F1, F2, F3)

Fig. 1 gives an overview of our proposed multi-function
error detection policy. In this example we assume that F1
is vulnerable to the error to which all copies are subjected.
F1 does not detect error but F2 and F3, being different
and not vulnerable to the error, detect it. This shows that

the proposed multi-function policy increases the detection
capability. It is noteworthy that we take into account in MFDP
these two specific assumptions: i) the policy is implemented
at the application layer so it is independent of the network
architecture and ii) communication channels are binary (two
symbols 0 and 1) and symmetric (0 and 1 bits have the same
probability to be erroneous).

The question now is how to select the set of different codes
to be used. The selection of such functions is not an easy task.
It is a trade-off of the following criteria.

Computational cost: given that we target critical em-
bedded systems, the adopted integrity approach should have
an acceptable low computational overhead. In fact, trends
now aim to speed up heavy error detection codes in order
to make them relevant for small embedded processors (e.g.,
using lookup tables for CRC codes).

Intrinsic detection performance: to select relevant error
detection codes, we rely mainly on their intrinsic error detec-
tion capabilities. This means that we choose codes that are
proven to be efficient in systems sharing similar features with
our targeted ones (e.g., message size, criticality requirements).
We do not rely on standards or conventional classifications but
rather on works evaluating error detection codes.

Complementarity property: the most difficult challenge
of our policy is how to find complementary codes. Let us
define this property: two error detection functions are said to
be complementary if the permanent error is not detected by
the first error detection function, there is a chance that it will
be detected by the second function. This can be formalized as
follows:

(F1 and F2 are complementary) iff (ND1 ∪ND2 6=
ND1 and ND1∪ND2 6= ND2), where F1 and F2 are two
error detection functions. ND1 and ND2 are the set of errors
not detected by F1 and F2 respectively.

V. CASE STUDY: FLIGHT CONTROL SYSTEM (FCS)

To illustrate the proposed MFDP, we consider a Flight
Control System (FCS) as a case study. We start by describing
the main relevant features of an FCS. Then, we explain the
specificity of the temporal redundancy existing in FCS. Finally,
we detail how to apply our approach to FCS. It is noteworthy
that our approach could be deployed in other case studies.

A. Description of the Flight Control System (FCS)

We consider FCS as a case study since it is an industrial
application studied in the context of a past project involving
our research team and an aerospace company. FCS controls the
airplane trajectory by exchanging control-command messages
with the actuators controlling the movable surfaces. Com-
mands are calculated periodically and sent via a digital network
(Fig. 2).

A Flight Control System (FCS) is a critical systems char-
acterized by a set of strict safety requirements, including
integrity requirements. It relies on the fly-by-wire technology
and the control is made by a set of control-command sig-
nals transmitted by Flight Control Computers (FCC) to the
controlled actuators. Digital networks make communications



faster and more accurate but increase the vulnerability in
communications. They increase particularly the probability of
occurrence of permanent errors since interstage nodes have
memory and processing capabilities. Hence, memory faults
could induce permanent errors in all messages memorized and
relayed by the considered interstage nodes.

In civil aviation, events are classified according to their
severity which is defined by the level of damages caused by
the failure occurrence. The most common classification [11]
defines four severity levels which are “Minor”, “Major”, “Haz-
ardous” and “Catastrophic”. Since erroneous control-command
messages could cause, if not detected and recovered, a system
failure (crash), the occurrence of erroneous and undetected
messages is considered as “Catastrophic” and its rate must
be less than 10−9 per hour.

Control & 
Command 

Nodes 

Controlled 
Systems 

!
!

Command 

Control 

Feedbacks 
Digital 

Communication 
System 

Fig. 2. The targeted part in the Flight Control System

B. FCS: a slow-dynamic system with temporal redundancy

Before considering the example of Flight Control System,
we introduce here the definition of a slow-dynamic system
[7]. In fact, we classify systems into two classes (as shown in
Fig. 3): i) fast-dynamic; ii) slow-dynamic. The “slow-dynamic”
property means that the duration of the interval between two
successive significant changes (a significant change means for
example the variation of the value of data to be transmitted) is
much larger than the refresh cycle duration (the refresh cycle is
the duration between two successive transmissions). So, almost
the same data (the same value) is transmitted during a set
of refresh cycles before a significant change occurs. In the
example of Fig. 3, the same message is sent several times. Yet,
in fast-dynamic systems, the duration of the interval between
two successive significant changes is very close to the duration
of the refresh cycle so the message can be sent only once.

The Flight Control system belongs to the class of slow-
dynamic systems. In fact, airplane surfaces are designed to
move slowly and the result of the trajectory calculation remains
the same throughout a set of calculation refresh cycles before
that the result changes. Thus, the same control-command
message with the same data values is sent during this time.
This behaviour is a kind of temporal redundancy where the
same message is sent several times in different refresh cycles.

VI. MFDP VALIDATION

To define a multi-function error detection policy (MFDP),
the first step is the selection of relevant codes. Our approach to
select codes is based on a performance assessment of different
error detection codes relying on both related work and our
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2 - Slow-dynamic system 

D1 C D1 C 

C D 1 

Refresh cycle 

Duration of significant 
change 

C D2 C D3 

  Refresh cycle 

Duration of significant 
          change 
 

D: Data 
C: Check 
 

1 2 3 
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Fig. 3. Comparison between fast-dynamic and slow-dynamic properties

experiments. The codes selection strategy consists in a trade-
off of the following three criteria: the error detection intrinsic
capability, the computational cost and the complementary
property with other codes (see section IV).

A. Relevant error detection codes to be used in MFDP

According to related work on error detection codes and
particularly works targeting systems sharing similar proper-
ties as those of safety-critical embedded systems (adopting
relatively lightweight codes), CRC codes, Adler and Fletcher
checksums are relevant to enhance communication integrity
in such context. Thus, we decided to consider these codes.
We target exclusively 8 check bits because for short messages
typically exchanged in CES, it is crucial to avoid overhead
given limited processing and memory resources.

The first criterion to be met by selected codes is a low com-
putational cost. Since the computational cost is independent of
the error type we rely on results of related work. According
to [12], it is confirmed that, for the same number of check
bits, CRC has the highest computational cost compared to
Adler and Fletcher checksums. In fact, using CRC results in a
factor of two to four higher computational cost [12] compared
to Adler and Fletcher which have similar computational cost.
Although there are different techniques to speed up CRCs (e.g.,
lookup tables [13] and Fast-CRCs [14]), we can not conclude
that these techniques make CRCs as lightweight as Adler and
Fletcher checksums.

According to these results and in order to define a
lightweight MFDP, we should rather use jointly Fletcher
and Adler checksums or at least alternate a CRC and an
Adler/Fletcher checksum. We introduce now our experiments
considering the other two criteria.

B. Experiments: methodology and simulation scenarios

Our experiments are designed not only to explore the
feasibility of MFDP but also to assess its performance. It is
noteworthy that if all data and error patterns are considered,
experiments could be prohibitively slow. For this reason, we
rely mainly on fault injection (via Monte Carlo simulations)
rather than carrying out exhaustive simulations requiring un-
realistic simulation durations.

In our simulations, all generated messages are erroneous.
In each simulation, we generate 107 erroneous messages. Mes-
sages are generated first such that the payload data is generated
randomly then the whole message (payload and check bits)



is subjected to errors. For error generation, we consider a
random strategy too and we simulate the repetitive feature
of the error. In fact, the major goals of our experiments are:
i) evaluating the intrinsic effectiveness of different considered
codes; ii)assessing the complementarity property of considered
codes and iii) comparing the error detection effectiveness of
proposed multi-functions policies to classical single-function
policies.

In this context, we consider different payload data sizes:
16, 32, 64 and 96 bits. We have investigated the following
error detection codes:

• As checksums: Fletcher-8, Adler-8, Adler-16 and
Fletcher-16 (see description in section III-A).

• As CRCS: CRC-8 whose generator polynomial is
G(x) = x8+x4+x3+x2+1, the Fast-CRC-8 whose
generator polynomial is G(x) = x8 + x2 + x + 1,
a CRC-16 whose generator polynomial is G(x) =
x16 + x15 + x2 + 1, the CRC-15-CAN which is
deployed in CAN and whose generator polynomial is
G(x) = x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1
and the Fast-CRC-16 (whose generator polynomial is
G(x) = x16 + x2 + x+ 1).

It is noteworthy that we consider 16-bits codes in order to
compare single-functions policies using 16 check bits in all
messages with multi-function policies using only 8 check bits
and alternating two different 8-bits codes.

We remind that the terminology Code-n means that the
code uses n check bits. We evaluate non-detection rate (NDR)
metric which is the ratio of the number of non detected erro-
neous messages to the number of injected erroneous messages.

C. Validation: Results and conclusive remarks

We present here our results and conclusive remarks con-
sidering the two remaining criteria which are: i) intrinsic error
detection capability and ii) complementarity property.

a) Intrinsic error detection capability of codes: From
our experiments, we notice that different error detection codes
(single function error detection policies) bring similar error
detection performances if using the same number of check
bits. Fig.4 describes the error detection effectiveness of the
considered 8-check bits codes (Adler-8, Fletcher-8, CRC-8
and Fast-CRC-8). The NDRs of different codes are almost
similar (3.88E-03 ≤ NDR ≤ 3.93E-03) with slight differences
according to data payload size. This result is consistent with
the theoretical value (which is called “upper bound” in [15])
of NDR which is equal to 2−n for an n-check bit code. For a
8-check bits code, this value is equal to 3.91E-03. These first
series of experiments validate our prediction that for multiple
repetitive random errors, codes having the same check bits size
exhibit similar effectivenesses. This is different from results
of related work targeting burst errors with a fixed size of
erroneous bits, experiments carried out in [16] show that, for
burst errors and for short messages (≤100 bits), Fletcher and
Adler exhibit similar error detection performances for 8-check
bits codes. Yet, Fletcher lightly outperforms Adler for larger
messages (≥ 100 bits). In the same context and according
to [12], CRC brings better error detection performance than

Fletcher and Adler checksums in the case of short messages
particularly if its generator polynomial is well selected [17].

Since we target multiple repetitive random errors and
according to our results, in terms of error detection capability,
CRC, Adler and Fletcher exhibit similar good performances.
Yet, critical embedded systems require better error detection
performances than those provided by single function policies.
So, The question now is whether the codes are complementary
and whether the MFDP brings better performance.

b) Complementarity property of different codes: the last
selection criterion is the complementarity property. Only the
work presented in [8] investigated this property considering
only CRC codes. This work proposed to use jointly a set
of CRCs based on different generator polynomials sharing a
fewest factors in common in terms of primitive polynomials
(it is noteworthy that each generator polynomial can be de-
composed into a set of primitive polynomials). So, if an error
is not detected by the first CRC, there is a chance that it
could be detected by another used CRC. But this raises another
limitation: it is not easy to find a set of polynomials that are
both more different from each other and each individually with
a high intrinsic error detection capability. In fact to be sure that
a CRC detects some error patterns, the generator polynomial
must meet some criteria (e.g., it must include the term 1 in
order to detect odd errors). All used generator polynomials in
[8] are multiple of (x+1) which decreases the complementarity
property. Another limit of this work consists in the fact that the
CRC computational cost was about 10% of the refresh cycle
which is not adequate when considering the strict requirements
of CES.

Theoretically, two codes having different vulnerabilities
could be complementary. It was noticed in [18] that: i) Fletcher
and Adler checksums are vulnerable to burst errors that invert
bits from all zeros to all ones; ii) Fletcher is vulnerable to some
2 bits errors where the two bits have different values not both
0 or both 1; iii) CRC fails to detect errors that are multiple
of its generator polynomial. We notice that CRC, Adler and
Fletcher are vulnerable to different error patterns. So, they
could be complementary. This conclusion is to be confirmed
by simulations.

We propose to evaluate the effectiveness of some multi-
error detection functions which combine two 8-check bits
based codes. We combine either two checksums (e.g., Adler
and Fletcher) or a checksum and a CRC (e.g., Adler and
CRC). Fig.5 illustrates the effectiveness of some multi-error
detection functions which combine two 8 check-bits based
codes. Either two checksums are combined (e.g., Adler and
Fletcher) or a checksum and a CRC (e.g., Adler and CRC).
These choices reflect the need to provide lightweight policies
that take profit of the low computational cost of checksums
and the complementarity property of combined codes. The
results of the application of a single code are also included
in Fig. 5 for the sake of comparison, and to better highlight
error detection performance improvement. Combining two
error detection codes reduces the non detection rate (NDR) and
then increases the error detection performance. As an example,
for a payload data size equal to 96 bits, CRC-8 brings an
error non detection rate equal to 3.92E-05 to be compared to
1.51E-05 when Adler-8 is combined to CRC-8 (the theoretical
upper bound if using 16 check bits is equal to 1.53E-05).



These results illustrate the effectiveness of our proposed multi-
function error detection approach and the complementarity of
the considered codes.

The MFDP opens the way to another relevant scenario
illustrated in Fig.6: it makes it possible to reduce the number
of check bits per message while providing the same detection
performance. The scenario presented in Fig.6 compares the
conventional CRC code deployed in CAN (considered as
applied to each message), with several MFDP combining two
8 check-bits based codes. Results show that results are similar
or even better. For example, the combination of Fletcher-8 and
Adler-8 leads a NDR equal to 1.81E-05, compared to 3.10E-05
for CRC-15-CAN. We chose CRC-15-CAN in this experiment
because it is widely used.

The scenario described in Fig. 7 aims at evaluating the
error detection performance of proposed multi-function error
detection policies. More precisely, the scenario compares the
use in each single message, of either two 8 check bits based
codes, or a single 16 check bits based codes. We notice that
proposed MFDPs bring similar performances. Yet, we remind
that our policies reduce the computational costs since proposed
MFDP combine either two arithmetic checksums or a CRC and
an arithmetic checksum which require a lower computational
cost in policies using a CRC code in all transmissions.

Fig. 4. The non detection rates of different 8 bits error detection codes

VII. DATA DIVERSITY BASED POLICY (DDP): BASIC
CONCEPTS

In the same context of diversifying the message copies to
be sent taking profit of redundancy, our second diversity-based
proposal is an alternative approach based on the concept of
“data diversity” (Fig. 8) described in some papers devoted to
systems safety and security [5] [6]. This concept is usually
used to enhance security, software integrity, data storages or
communication integrity. For software integrity, it consists in
diversifying the data inputs in order to avoid selecting inputs
causing failures. For communication integrity, its use is less
common, it consists in using re-expression functions in order to
transform data to be transmitted. On the receiver side, original
data provided by different functions are restored and compared
in order to detect potential errors. Paper [6] adopts this concept
to define an approach for enhancing security.

Fig. 5. The non detection rates of different error detection policies based on
single or multiple 8 bits error detection bits

Fig. 6. Comparison of non detection rates between MFDP combining two 8
bits codes and CRC-15-CAN

Fig. 7. Comparison of non detection rates of MFDP combining two 8-bits
codes and 16 bits error detection codes
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Fig. 8. Overview of Data diversity approach for communication integrity

Our work is aimed at adapting this approach in order
to make it relevant to communication integrity in targeted
critical embedded systems. Fig. 8 gives a simplified overview
of the principle of diversity data applied to the case of CES
communication (or network), based on two different data re-
expression functions (F (D) and G(D)). Similar to the re-
expression functions of the approach targeting system security
[6], the adopted re-expression functions in our fault-tolerant
integrity approach must satisfy the two following criteria:

The inverse property: this means that the re-expressing
function has an inverse function (F−1(D) and G−1(D) in
Fig. 8) that makes it possible to restore the original data. This
property is important for two reasons: i) it avoids the likelihood
to loose the semantic of the data currently sent, ii) restored data
is used to compare different received data in order to detect
errors.

The disjointedness property: this means that if we apply
two different functions to the same data vector, the two results
do not match (they are not equal). This allows to detect errors
since the system is notified systematically by the presence of
an error if there are two received similar data vectors provided
by two different data re-expression functions.

In this paper, we just introduce basic concepts of this
approach, Yet, future simulations are needed to validate it.

VIII. CONCLUSION

This paper explored the use of a diversity-based approach
to enhance data communication integrity for critical embedded
systems. Two different policies are discussed: i) diversifying
the error detection functions by combining multiple error
detection codes, and ii) adopting data diversity. Our approach
targets critical embedded systems which deploy in particular
temporal and/or spatial redundancy. We have mainly focussed
on the second approach and carried out simulation experiments
to validate its performance. The simulation allowed us to
highlight the benefits of our proposed approach compared
to conventional strategies based on a single error code. Fu-
ture work will be devoted mainly to further explore the
data diversity based policy by defining appropriate data re-

expression functions and illustrating their effectiveness based
on simulations.
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