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Introduction

In most practical service systems, capacity varies with the number of customers, or jobs. In some cases, it deteriorates as the system becomes more congested. For example, human servers may experience extra overhead, in terms of distractions, crowd control, stress and fatigue, etc., with more jobs. On the other hand, in many telecommunications and computer applications, such as wireless systems or peer-to-peer file sharing, capacity may increase with the number of jobs. Moreover, capacity changes may not be monotonic; for some applications capacity first increases and then decreases with congestion [START_REF] Gupta | Self-adaptive Admission Control Policies for Resource-sharing Systems[END_REF]. Increasing and convex capacities can also occur, for example, in device-to-device systems that use opportunistic scheduling, where jobs can serve each other, and speed may be related to proximity. These capacity dynamics complicate scheduling control. For example, idling may be optimal, and the optimal scheduling policy may depend on the arrival rate.

In our model there is a single server, with speed that scales with the number of jobs. That is, work in the system can decrease at maximum rate C(i) ≥ 0 when there are i jobs in the system. If C(i) = I{i > 0}, we recover the classical single-server queue. However, our model is different from a multi-server queue, even if C(i) = min{i, s} for some s = 2, 3, . . ., because we allow all the capacity to be dedicated to a single job. In other words, if we had multiple servers, they would be allowed to collaborate on the same job. Preemption (and processor sharing) is permitted without penalty, and without increasing work. Job sizes are observed upon arrival. We also permit a general holding cost function, where the cost depends on the number of jobs present, but not on which jobs are present. We generally assume known job sizes (total service time for the job).

There are many results for the problem with constant capacity. For example it is well known that (non-idling) SRPT (shortest-remaining-processing-time first) stochastically maximizes the departure process for a single-server constant-capacity system with a general arrival process and general service times [START_REF] Schrage | Letter to the Editor -A Proof of the Optimality of the Shortest Remaining Processing Time Discipline[END_REF]. However, when we allow the capacity to depend on the number of jobs, the problem, with otherwise general assumptions is hard. In the next section we will give several examples that exhibit counter-intuitive behavior for the objective of minimizing average sojourn time.

We first show that our scheduling problem, with and without arrivals, can be transformed into an equivalent problem in which jobs are served according to SRPT but we are allowed to hold completed jobs, so the problem can be reduced to the question of when to release them. For example, LRPT is equivalent to SRPT when jobs are held until the last one completes service, at which time all jobs are released simultaneously. In the case when there are no arrivals, we obtain an algorithm that characterizes the optimal release times, which turns out to be fully determined by the cost-to-capacity ratio. In particular we show that that if C(i) is star-shaped (anti-starshaped ), defined later, then LRPT (SRPT) minimizes the total holding cost. We then consider the case with arrivals. We show that if the cost-to-capacity ratio is linear, then all non-idling policies yield the same average cost. We further characterize the optimal policy in some special cases. For example, as long as capacity is increasing, LRPT stochastically minimizes the mean busy period length for stable systems.

The rest of the paper is organized as follows. In Section 2 we review the most important related literature. In Section 3 we introduce the model description and we present various examples that illustrate the complexity and richness of the problem. In Section 4 we show that there exists an optimal policy within the class of policies that deploys SRPT and that may hold jobs. Section 5 covers the case without arrivals, and Section 6 considers arrivals.

Related literature

The problem of scheduling jobs with a constant speed or capacity is a classical area in operations research. If the service times are known, Schrage [START_REF] Schrage | Letter to the Editor -A Proof of the Optimality of the Shortest Remaining Processing Time Discipline[END_REF] showed that SRPT minimizes sample-pathwise the number of jobs in the system. If only the distribution of the service time is known, then, depending on its properties, the optimal policy might be FCFS (First-Come-First-Served) or LAS (Least-Attained-Service), see [START_REF] Righter | Extremal Properties of the FIFO Discipline in Queueing Networks[END_REF] and [START_REF] Righter | Scheduling Multiclass Single Server Queueing Systems to Stochastically Maximize the Number of Successful Departures[END_REF]. In a multi-class setting, another classical result is that the so-called cµ-rule minimizes the holding cost among preemptive (with exponential service times) and non-preemptive policies, see for example [START_REF] Buyukkoc | The cµ rule revisited[END_REF]. For a survey on scheduling results we refer to Weiss [START_REF] Weiss | A tutorial in stochastic scheduling[END_REF] and Righter [START_REF] Righter | Scheduling." Chapter in Stochastic Orders[END_REF].

If the capacity can vary, most of the literature on speed scaling takes the scheduling policy as given (generally SRPT -shortest remaining processing time first or PS, processor sharing) and dynamically adjusts the speed depending on congestion (number in system) to minimize costs that depend on both response time and energy (e.g., [START_REF] Bansal | Speed scaling to manage energy and temperature[END_REF], [START_REF] Bansal | Dynamic speed scaling to manage energy and temperature[END_REF], [START_REF] Wierman | Power-aware speed scaling in processor sharing systems[END_REF]). We take the dynamic speed scaling, C(i), as given, and find the optimal scheduling policy. A related research area, in which the scheduling policy affects the capacity, is in opportunistic scheduling in wireless networks. Here different flows or users face different capacities, and the overall capacity region depends on the present flows. Sadiq and de Veciana [START_REF] Sadiq | Balancing SRPT prioritization vs. opportunistic gain in wireless systems with flow dynamics[END_REF] consider a system that can be modeled with nested capacity regions, and where the total capacity depends on the allocation to flows. They give a characterization of the optimality of a variant of SRPT in their setting. Bekker et al. [START_REF] Bekker | Queues with workload-dependent arrival and service rates[END_REF] study a queueing model in which service rates and arrival rates depend on the work in system rather than the number in system, but they do not consider optimal scheduling.

A few researchers have studied the problem in which the capacity depends on the number of jobs in the system. Timmermans and Vredeveld [START_REF] Timmermans | Scheduling with state-dependent machine speed, WAOA Workshop? on Approximation and Online Algorithms[END_REF] consider weighted flowtime minimization for a model with a fixed set of initial jobs and no arrivals and job-dependent weights, and machine speed that depends on the number of remaining jobs, and show that the problem is NP-hard. Gupta and Harchol-Balter [START_REF] Gupta | Self-adaptive Admission Control Policies for Resource-sharing Systems[END_REF] investigate admission control policies when C(i) is initially increasing, but starts falling beyond a certain point due to resource contention and thrashing. In recent work, Berg et al. [START_REF] Berg | Towards Optimality in Parallel Job Scheduling[END_REF] investigate how to split a multi-core processor among jobs, which in turn determines the speed profile.

Model description and motivating examples

We assume that the capacity in the system is C(j) ≥ 0 when there are j jobs in the system, and we let g(j) ≥ 0 be the total holding cost rate when there are j jobs in the system.

In the case without arrivals we are given a fixed set of K jobs with known service requirements, or job sizes.We consider the set Π of scheduling policies that are size-aware, preemptive and possibly idling, and the objective is to schedule the jobs (to choose π ∈ Π) in order to minimize the total holding cost:

V π := ∞ 0 g(N π (s))ds, (1) 
where N π (s) is the number of jobs in the system at time s under π. As particular cases, when g(j) = j, minimizing the total cost is equivalent to minimizing the flowtime, or mean sojourn time, and when g(j) = I{j > 0}, our objective becomes minimization of makespan, or time to complete all jobs.

In the case of arrivals, we will assume that new jobs arrive according to some stochastic process with finite rate. The objective is then to determine the scheduling policy π ∈ Π that minimizes the long-run average holding cost:

E[V π ] := lim sup T →∞ 1 T T 0 g(N π (s))ds. ( 2 
)
When g(j) = j, minimizing average holding cost is equivalent to minimizing the average response time or sojourn time, and when g(j) = I{j > 0}, the objective is to minimize the average length of the busy period. In the first example, there are no arrivals to the system except the jobs that are present at time 0. First, we shall compare SRPT and LRPT when there are only two jobs for the three speed profiles (a), (b), and (c) as given in Table 1. In profiles (a) and (b), C(i) is increasing while in (c) it is decreasing. Assume that one job of size 3 and one of size 6 are present at time 0. Table 1 gives the makespan as well as the mean sojourn times for each of these profiles under SRPT and LRPT. The values in the table illustrate the fact that which of SPRT or LRPT is better depends not only on the objective and whether C(i) is increasing, but also, if C(i) is increasing, on how it is increasing. In Section 5, we shall show that the optimal policy depends upon both C(i) as well as upon C(i)/i. Note that in profile (a) C(i)/i is increasing while in profile (b) it is decreasing.

For profile (d) in Table 1, we assume that there are three jobs and no arrivals, and the sizes of jobs 1, 2 and 3 are 1, 3, and 6, respectively. We also consider the policy S-L (short then long) which serves job 1 to completion (so it follows SRPT for the first job), and then applies LRPT for the remaining two jobs. The makespan for S-L is 3.23 and the mean sojourn time 6.70. In this case LRPT minimizes the makespan, but the best policy for the mean sojourn time is S-L; neither SRPT or LRPT minimizes the mean sojourn time for this example.

The next two examples illustrate some possibilities when there are arrivals, and the objective is the minimization of sojourn time, i.e, g(i

) = i. Example 2.
This example shows that the optimal policy may idle even when jobs are present. As we noted in the introduction, if the server speed is constant, because we allow preemption, it will never be optimal to idle. This is no longer the case with speed scaling. Suppose that C(1) = 1, C(i) = 5 for i ≥ 2, and suppose jobs of size 1 arrive starting at time 0 and with interarrival time 10, and jobs of size 5 arrive starting at time 2 with interarrival time of 10. Then a non-idling policy will have mean long-run average sojourn time of 3. The optimal policy is to idle from time 1 -ε, for infinitesimally small ε, until time 2, and then follow non-idling LRPT until both jobs are finished; this is repeated in each cycle. For this policy the long-run average sojourn time, as ε → 0, is 2.

Example 3.

We now consider an example in which the optimal policy depends on the arrival rate, and where it could be something other than SRPT or LRPT. Here we assume C(1) = 1; C(i) = 3/2 for i ≥ 2. Suppose batches of two jobs arrive at t = (4 + τ )n, n = 0, 1, . . ., where τ ≥ 0, so the interarrival times are 4 + τ , and their service times are 1 and 5 time units. Thus, the load is

ρ = 3 4 + τ .
In this case we will not want to idle the server. We first consider LRPT and SRPT, and show that which of these is preferred depends on the arrival rate. The workload process for SRPT and LRPT and τ = 0 are shown in Figure 1. For LRPT, the workload process is saw-toothed with a period 4 + τ seconds, and the mean sojourn time is 4. For SRPT, the process is more complicated, and we present the full analysis in the appendix. We deduce that, for minimizing mean sojourn time,

τ < 2/3 ⇒ LRPT is better than SRPT; τ > 2/3 ⇒ SRPT is better than LRPT.
In terms of the load, LRPT is better than SRPT for 9/14 < ρ < 1, and SRPT is better than LRPT if ρ < 9/14.

The optimal policy may be something "in between" SRPT and LRPT. In particular, for 0 < τ < 2/3, starting at time 0 with two jobs, the optimal policy is to work on the two jobs in such a way that the second departure is at time 4 + τ , which means the first departure is at 4 -2τ , and the mean sojourn time is 4 -τ /2. This could be implemented by, e.g., working on job 2 (the size-5 job) for 3 1 3 -2τ time units, and then working on the size-1 job to completion, i.e., for 2/3 time units, and then switching back to job 2 until time 4 + τ . This repeats for each cycle.

Complete set of policies

In this section we show that we can restrict ourselves to a subclass of policies without loss of generality. Note, for example, that under non-idling LRPT all jobs finish service at once, and this policy can be emulated by any policy that never completes work on a job until the end of a busy period. So, let us suppose that when idling is permitted we are allowed to "hold" jobs that are complete, i.e., they can remain in the system until we decide to release them, and we can release them at any time. When idling is not permitted, let us suppose that we are allowed to "hold" jobs that are complete as long as there is work in the system (i.e., up until the end of a busy period).

We then define two classes of policies:

• SRPT-hold policies are policies where jobs are always served according to non-idling SRPT, but each job may be held after it completes for an arbitrary amount of time. We shall denote the set of these policies by SRPTh. • SRPT-work-hold policies are defined similarly, except that now jobs can only be held as long as there is non-zero work in the system. The set of these policies will be denoted by SRPTwh.

For an arbitrary policy π, for time t, let N π (t) be the number of jobs (either unfinished or finished and held) at t, let W π (t) be the total unfinished work at t, and let M π (t) be the cumulative number of released jobs by time t. We say two policies π 1 and

π 2 are state-equivalent if {N π 1 (t), W π 1 (t), M π 1 (t)} ∞ t=0 = st {N π 2 (t), W π 2 (t), M π 2 (t)} ∞ t=0 , i.
e., if we can construct sample paths on the same probability space such that the sample paths of these processes are identical almost surely. We have the following state-equivalence between arbitrary policies and SRPTh or SRPTwh policies.

Lemma 1 Any idling policy is state-equivalent to an SRPTh policy, and any non-idling policy is state-equivalent to an SRPTwh policy.

Proof. We focus on the non-idling case for ease of notation; the idling case follows similarly. For an arbitrary non-idling policy π, let R π i (t) be the i-th smallest remaining service time among the unreleased jobs at time t, so W π (t) =

N π (t) =1 R π i (t). Let S π (t) = (N π (t), M π (t), R π 1 (t), . . . , R π N π (t) (t)
) be the extended state at time t. For coupled sample paths for two policies π 1 and π 2 we say that {S π 1 (t)} ≺ {S π 1 (t)} if, jointly for all t, N π 1 (t) = N π 2 (t), M π 1 (t) = M π 2 (t), and remaining service times are smaller under π 1 in the majorization order. That is, the total workload is the same, while the partial sums of remaining service times are ordered for all j = 1, ..., N π 1 (t) = N π 2 (t),

j i=1 R π 1 i (t) ≤ j i=1 R π 2 i (t), W π 1 (t) = N π 1 (t) i=1 R π 1 i (t) = N π2 (t) i=1 R π 2 i (t) = W π 2 (t).
Let π be an arbitrary non-idling policy, and let σ ∈ SRPTwh be the SRPT-work-hold policy that we will construct, which releases jobs at the same time as π, with S π (0) = S σ (0) (so S π (0) ≺ S σ (0)). We will couple the processes under the two policies so that, with probability 1, {S π (t)} ≺ {S σ (t)}.

In particular, assume sample paths of the arrival processes (including associated job service times) are identical for both policies. We argue by induction on event times, which are the (common) arrival epochs as well as the departure epochs induced by π. Let us assume that up until and including an event time t 0 , we have coupled the processes so that {S π (t)} t 0 t=0 ≺ {S σ (t)} t 0 t=0 with probability 1. Let t 1 the time of the next event after t 0 , which can be an arrival or a service completion under π. Let σ not release any jobs until time t 1 . Between t 0 and t 1 , the capacity remains constant, at C(N π (t 0 )), under both policies. Then, for t ∈ [t 0 , t 1 ), N π (t) = N σ (t), M π (t) = M σ (t), W π (t) = W σ (t), and from [1, Proposition 1], we can also conclude that the majorization order for remaining service times is preserved, i.e., S π (t) ≺ S σ (t), for t ∈ [t 0 , t 1 ). If the event at t 1 is an arrival, then clearly S π (t 1 ) ≺ S σ (t 1 ) still holds. If the event at t 1 under π is a departure, of k jobs say, then necessarily k jobs have already finished their service under σ, because of the majorization order. We let σ also release k jobs, and again we will have S π (t 1 ) ≺ S σ (t 1 ), thus completing the induction step.

Note that SRPT is an SRPTh policy that never holds a job, i.e., it is the earliest release policy among all SRPTh policies, and non-idling LRPT is an SRPTwh policy that holds all jobs until the end of the busy period, i.e., it is the latest release policy among all SRPTwh policies. Within SRPTh policies, idling corresponds to not releasing any jobs when they are all complete. For the original problem formulation in which holding jobs is not permitted, an SRPTh or SRPTwh policy can be arbitrarily closely approximated by an SRPT-ε policy, defined as follows. Let ε > 0 be arbitrarily small. We say a job is large if its remaining processing time is greater than ε. We define the SRPT-ε class of policies as those that never idle when there are large jobs, and, when serving large jobs, always serve them in SRPT order.

With Lemma 1 we have reduced our problem to one of determining the release times of completed jobs, and otherwise following SRPT (possibly with idling).

Model without Arrivals

In this section we assume that all jobs are present at time 0, with no future arrivals, and job sizes are known. We give a complete characterization of the optimal policy for a general state-dependent cost function.

First, we observe that it is never optimal to idle when there are no future job arrivals. This observation together with Lemma 1 says that we can restrict our search for the optimal policy to the class of SRPTwh policies. This reduction thus determines the order in which jobs will be served in the optimal policy. The only remaining variables which can be used to vary the cost are the release times of completed jobs. Because jobs differ only in size, the choice of which of the completed jobs to be released does not influence the total cost. Assume that jobs are ordered in decreasing order of their sizes, i.e., job 1 is the longest job and job K is the shortest job, and let x i denote the size of job i. If there are two or more jobs with the same size, then they can be ordered arbitrarily amongst themselves without affecting the cost. Since SRPT is the preferred service discipline, job K will be the first one to enter service followed by job K -1 and so on until we get to job 1.

For some feasible policy π, let T π i be the amount of time there are i jobs in the system, so, abusing notation a bit, π = (T π K , . . . , T π 1 ), and all jobs will be complete at time K i=1 T π i . Then

V π = ∞ 0 g(N π (t))dt = K i=1 g(i)T π i .
Let W π i be the amount of work done by time K j=i T π j , so W π i = K j=i C(j)T π j . Since a feasible policy can't release more jobs than are completed, and jobs are served in SRPT order, for any feasible policy π, W π i ≥ K j=i x j . We therefore have the following linear program to find the optimal policy. Theorem 1 The optimal policy is the solution to the linear program:

P : min π V π = K i=1 g(i)T π i subject to K j=i C(j)T π j ≥ K j=i x j for i = 1, . . . , K T π i ≥ 0 for i = 1, . . . , K
Now let us consider a constant-speed problem, i.e., Ĉ(i) ≡ 1, and with a new cost function ĝ(i) = g(i)/C(i). The optimal policy for this new problem is the solution to the linear program:

P : min π V π = K i=1 ĝ(i) T π i subject to K j=i T π j ≥ K j=i x j for i = 1, . . . , K T π i ≥ 0 for i = 1, . . . , K Let π = (T π K , .
. . , T π 1 ) be a feasible solution for P , and let π be such that

T π i = T π i /C(i).
Then π is a feasible solution to P , and V π = V π. We have the following corollaries.

Corollary 1 To solve the speed-scaled problem, we need only solve the constant-speed problem with costs ĝ(i) = g(i)/C(i), and let

T * i = T π * i /C(i).
Corollary 2 The optimal release times will occur at job completion times, with jobs processsed in SRPT order.

Proof. Because the optimal solution to a linear program is at the vertices of the constraint space (when the constraints are binding), the result follows.

Let s i be the number of jobs that are in the system when job i (the i'th longest job) is in service. From Lemma 1 and Corollary 2, any feasible policy π ∈ SRPTwh is uniquely characterized by its sequence (s i ) i=1...K . Note that under this characterization, the corresponding policy in the constant-speed model, π, is the same as π, π = π. Also, under the constant speed model, the total cost incurred while processing job i under π is ĝ(i)x i from the definition of s i , so,

V π = K i=1 ĝ(i)x i = K i=1 g(s i ) C(s i ) x i . (3) 
Since a job cannot be recalled once it is released, it follows that, for any feasible policy,

i ≤ s i ≤ s i+1 , i = 1, 2, . . . , K -1, s K = K. (4) 
Corollary 3 The optimal policy is the solution (s K , . . . , s 1 ) to the linear program that minimizes (3) subject to the constraints (4).

time t A graphical illustration of Corollary 3 is given in Figure 2.
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Consider the algorithm N A * whose pseudocode is given below. The algorithm determines s * j for each j, and we shall prove that it outputs an optimal policy. We note that there could be several equivalent optimal policies based on which jobs are released and which among the several possible s * j s are picked. If there are several minimizers for some job then we arbitrarily chose any

Algorithm N A * : Optimal scheduling algorithm for no arrivals Input : Vectors a, g, and

C 1 s K ← K; Serve job K 2 for j=K-1:1 do 3 s * j ∈ arg min i:j≤i≤K g(i) C(i)
/* choose arbitrarily one minimizer ensuring that j ≤ s

* j ≤ s * j+1 ≤ K */ 4
Release s * j+1 -s * j jobs. /* chosen arbitrarily */

5

Serve job j 6 end one of these. We shall show that this does not influence the total cost. For each job, N A * myopically computes the best possible number in the system to be held while processing that job, to minimize the contribution of the job to the total cost. Using Corollary 3, we now prove that this myopic algorithm is globally optimal.

Theorem 2 Algorithm N A * minimizes total holding cost.

Proof. First, we shall show that s * as computed by Algorithm N A * gives a feasible policy as defined in [START_REF] Bekker | Queues with workload-dependent arrival and service rates[END_REF]. The first inequality s * j ≥ j follows from the definition because the minimizer is searched over the set of values that are larger than j. The second inequality follows from the fact that s * j is a minimizer over a larger set compared to the set over which s * j+1 is a minimizer. Thus, there will always exist an s * j ≤ s * j+1 . Next, by definition of s * j , for any other feasible policy g(s j )/C(s j ) ≥ g(s * j )/C(s * j ). It then follows that s * minimizes (3) subject to [START_REF] Bekker | Queues with workload-dependent arrival and service rates[END_REF].

Note that the choice among the minimizers does not influence the total cost as it depends only upon g(s * j )/C(s * j ) which is the same for all the minimizers. The optimal policy serves jobs K, . . . , 1 in order. When job j ends service, there are s * j jobs still in the system. The optimal policy then releases s * j-1 -s * j jobs. If no jobs are released until the last job ends service, then we have standard LRPT, whereas if every job is released immediately upon completion of service, we have standard SRPT. This motivates us to consider special cases of cost functions for which either LRPT or SRPT is

The following definitions from [START_REF] Shaked | Stochastic orders[END_REF] will be useful.

1. We say that C(i) is star-shaped if C(i)/i is increasing in i.

2. We say that C(i) is anti-star-shaped if C(i)/i is decreasing in i.

In addition we assume, without loss of generality, that C(0) = 0. Under this condition, if C(i) is increasing and concave it is also anti-star-shaped, and if it is increasing and convex it is also star-shaped. The converse is not true. If C(i) is decreasing for i ≥ 1 then it is anti-star-shaped, because we assume C(i) ≥ 0.

The following result can be be deduced from Theorem 2.

Corollary 4 Among policies that may be preemptive and may idle:

(i) If g(i)/C(i) is decreasing (increasing), then LRPT (SRPT) minimizes total holding cost. Therefore,

(ii) If C(i) is star-shaped (average capacity per job increases in the number of jobs) then LRPT minimizes mean sojourn time.

(iii) If C(i) is anti-star-shaped (average capacity per job decreases) then SRPT minimizes mean sojourn time.

(iv) If C(i) is increasing (decreasing), then LRPT (SRPT) minimizes the makespan.

(v) If g(i)/C(i) = b for some constant b, then total holding costs are the same for any nonidling policy, and it will not be optimal to idle when the objective is cost minimization.

(vi) If there exists a k 0 , 1 ≤ k 0 ≤ K such that k 0 minimizes g(i)/C(i) over 1 ≤ i ≤ K, and g(i)/C(i) increases for i ≥ k 0 , then an S-L k 0 policy is optimal, i.e., follow SRPT until there are only k 0 remaining jobs, and then follow LRPT.

Proof. We have (i) and (v) from Algorithm N A * , because s * i = K (s * i = i), for i = 1, . . . K, if g(i)/C(i) is decreasing (increasing), and, if g(i)/C(i) is constant, s * i can be any integer between i and K. Results (vi) follows similarly from Algorithm N A * . Then (ii) and (iii) follow from (i) with g(i) = i, and (iv) follows from (i) with g(i) = I{i > 0}.

Proof. We assume a finite number of arrivals, N , and use induction on N . Let us fix the (remaining) service times of all current jobs and all future arrivals, as well as the arrival times for future arrivals. Suppose there are n jobs available at time 0, and there are N +1 jobs yet to arrive. Let x i be the remaining service time of the i'th current job, and let a i and y i be the arrival and job size of the i'th future arrival. LetV π N +1 (x, y, a) be the total cost, starting at time 0, for all current and future jobs, for an arbitrary non-idling policy π. For N = 0, the result follows from Corollary 4, and it is easy to show that V π 0 (x) = b n i=1 x i . Suppose that V π N (x, y, a) = b n i=1 x i +b N i=1 y i for all non-idling π. Then, by induction,

V π N +1 (x, y, a) = G π (a 1 ) + bx π + b N +1 i=1 y i
where x π is the total unfinished work remaining at time a 1 from the jobs present at time 0, and G π (a 1 ) is the total cost incurred between times 0 and a 1 . Let d i be the departure times of jobs under π, for jobs that depart by time a 1 , i = 0, ..., m for some m ≤ n, and d m ≤ a 1 . Then

x π = n i=1 x i -[C(n)d 1 -C(n -1)d 2 -• • • -C(n -m + 1)d m -C(n -m)(a 1 -d m )] , G π (a 1 ) = g(n)d 1 + g(n -1)d 2 + • • • + g(n -m + 1)d m +g(n -m)(a 1 -d m ) = n i=1 x i -bx π so V π N +1 (x, y, a) = b n i=1 x i + b N +1 i=1 y i .
The same argument shows that we should not idle, because idling until time min{δ, a 1 } for some δ > 0 and not thereafter (by induction), has cost g

(n)δ + b n i=1 x i + b N +1 i=1 y i > V π N +1 (x, y, a).
We can therefore think of the linear cost-to-capacity queue as being equivalent to an infinite server queue with linear costs, and, regardless of the scheduling discipline, the long-run average cost rate is λb, where λ is the long-run average arrival rate. Note that this result does not depend on job sizes being i.i.d., and is true even if job sizes are not observed upon arrival, among policies that do not use size information.

Optimizing the busy period length

We now extend Corollaries 4 (iv) and 5 (iv) from makespan to busy periods. Using Lemma 1, we assume, without loss of generality, that we are permitted to hold completed jobs. A busy period ends the first time there are no jobs in the system, which, if idling is permitted, may be later than the first time the total work in the system hits 0 if we hold completed jobs. In the theorem, by LRPT we mean nonidling LRPT, so all jobs are released if there is no remaining work in the system.

Theorem 4 (i) If C(i) is increasing, then LRPT stochastically minimizes the length of the current busy period.

(ii) If C(i) is increasing (decreasing), then SRPT (LRPT) stochastically maximizes the length of the current busy period among non-idling policies.

(iii) If C(i) is decreasing, then SRPT stochastically maximizes the departure process, {D(t)} ∞ t=0 , where D(t) is the number of departures by time t, (and therefore it minimizes the current busy period length, and it minimizes mean sojourn time).

(iv) If C(i) is increasing until i = K and then decreasing, following LRPT while i ≤ K and following SRPT while i > K stochastically minimizes the length of the current busy period.

Proof. (i) From Lemma 1, idling corresponds to not releasing all jobs as soon as there is no work in the system, and not releasing those jobs just extends the busy period, so idling is clearly not optimal for minimizing the current busy period length. Not following LRPT corresponds to releasing a job before the end of the busy period. Fix an initial state and a sample path of arrival times and job sizes, τ i , σ i , i = 1, 2, . . .. If policy π releases a job at some time t before all the work has emptied, then from t until the end of the LRPT busy period π will have fewer jobs than LRPT, and hence lower capacity and more work. Therefore, its current busy period must be larger than that under LRPT.

(ii) Suppose C(i) is increasing. Again, fixing a sample path, throughout an SRPT busy period the number of jobs is smaller, and hence server speed is smaller, under SRPT than any other policy. Therefore, the SRPT busy period will end later. The argument for the other cases is similar.

(iii) For a fixed sample path with C(i) decreasing, SRPT now maximizes capacity over its busy period, so work gets done faster, and, for any fixed capacity profile, SRPT also produces the earliest possible release of jobs.

(iv) This follows from arguments similar to those of (i) and (iii).

From (i) and (iii) of Theorem 4 it is not hard to show the following.

Corollary 6 If we have Poisson arrivals and i.i.d job sizes, and if C(i) is increasing (decreasing), and g(i) is decreasing (increasing), then LRPT (SRPT) stochastically minimizes long-run average costs.

Conclusions

We have investigated the optimal scheduling problem when the capacity is state-dependent. This is a modeling abstraction that has applications in server-farms, peer-to-peer downloading, wireless scheduling, and other situations. In full generality the solution space can be very complex. For instance, we have presented examples that illustrate that idling may be optimal, or that the optimal policy could depend on the load, and could be something other than SRPT or LRPT. One of our main results is that there exists an optimal policy that always serves jobs according to SRPT, but may hold jobs after they complete. The key question becomes determining the optimal moment to release jobs from the system. In the case without arrivals we have shown that the optimal releasing moment crucially depends on the cost-to-capacity ratio. For the case with arrivals we have obtained partial results, but various interesting questions remain open.
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 1 Figure 1: Workload process with deterministic arrivals.

Figure 2 :

 2 Figure 2: Evolution of the number of jobs in the system over time.

Table 1 :

 1 Example 1. The optimal values are underlined. We now present a few examples to illustrate the complexity of the problem. Example 1. (No arrivals)

		Capacity function			Makespan	Mean soujourn time
	Profile # of jobs C(1) C(2) C(3) SRPT LRPT SRPT	LRPT
	(a)	2	1	3	-	7	3	4	3
	(b)	2	1	1.5	-	8	6	5	6
	(c)	2	1	0.5	-	12	18	9	18
	(d)	3	1	3	4.3	7.23	2.33	8.70	6.99
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Note that Corollary 4 (iv) tells us that under the model of Gupta and Harchol Balter [START_REF] Gupta | Self-adaptive Admission Control Policies for Resource-sharing Systems[END_REF], where the capacity first increases and then decreases in the number in system, the optimal policy is an S-L k 0 policy.

We may also want upper bounds on total holding cost for any policy. For a non-trivial problem formulation, we restrict ourselves to policies in which there is no idling. The proof of the following corollary is similar to that above.

Corollary 5 Among preemptive, policies:

Therefore,

(ii) If C(i) is star-shaped (average capacity per job increases in the number of jobs) then SRPT maximizes mean sojourn time.

(iii) If C(i) is anti-star-shaped (average capacity per job decreases) then LRPT maximizes mean sojourn time.

(iv) If C(i) is increasing (decreasing), then SRPT (LRPT) maximizes the makespan.

(v) If g(i)/C(i) = b for some constant b, then total holding costs are the same for any nonidling policy, and it will not be optimal to idle when the objective is cost minimization.

Remark 1 Note that when there are no arrivals, LRPT also minimizes the variability in sojourn times.

Model with Arrivals

As we saw in section 3, adding arrivals to our model can significantly complicate both the analysis and the results. As illustrated in Example 2, the optimal policy might idle, waiting for an arrival, in order to profit from the increment of capacity available in larger states. The important characterization provided in Lemma 1 is still true, i.e, even with arrivals there exists an optimal policy that is either SRPTh or SRPTwh. That is, jobs will be served according to SRPT and the problem reduces to the question of when to release jobs that have already completed service. Idling now corresponds to not releasing all jobs when there is no work to do.

In this section we extend parts of Corollaries 4 and 5, but the proofs are quite different. We assume the arrival process and job sizes are arbitrary, but independent of the policy and system state, and job sizes are observed upon arrival.

The linear cost-to-capacity case

We first extend Corollary 5 (v) to arrivals.

Theorem 3 If we have a linear cost-to-capacity ratio, i.e., g(i)/C(i) = b for some constant b, then all non-idling policies yield the same long-run average cost per job, which will be b times the average job size. It will not be optimal to idle.

Appendix: Analysis of Example 3

First consider the case when τ = 0. Then, at t = (4 + n) + , i.e., right after the n'th arrival, the remaining service times of the jobs in the system are 1, 5, and x n , where 1 < x n < 5, and x n is an increasing sequence that follows the recursion:

, n ≥ 0, with x 0 = 0. In the interval [4n, 4(n+1)), the jobs of size 1 and of x n are served entirely under SRPT. The job of size x n finishes service at time 4n + 2 3 (1 + x n ) and the job of size 5 enters service. This job is served partially before the next arrival, at which point its remaining service time at t = 4(n + 1) + is given by x n+1 . Since lim n→∞ x n → 5, when n → ∞ the workload process of SRPT converges to a periodic process of period 4. The remaining service times of jobs at the beginning of each cycle are 1, 5, and 5, where one of the size-5 jobs arrived at the beginning of the previous previous cycle. The job of size 1 will leave after 2/3 units, one of the size-5 jobs will leave at the end of the cycle, and the other will leave at the end of the next cycle, that is after 8 units. The mean sojourn time is then (2/3 + 8)/2 > 4.

For τ ≥ 0, the workload process under SRPT will converge to a cycle with a period of 4 + τ units. If τ ≥ 5/3, cycles will not overlap, and the mean sojourn time is (4/3 + 5)/2 < 4. Suppose that τ < 5/3. At the beginning of a cycle (that is, just after an arrival), the remaining service times will be 1, 5, and 5 -3τ . Within a cycle, the job of size 1 will enter service immediately and will leave at time 2/3. At this point the job of remaining size 5 -3τ will enter service and will leave at 4 -2τ units. During the remaining 3τ units, the job of size 5 will be served at rate 1, which will leave it with 5 -3τ remaining service at the beginning of the next cycle. This job will spend (4 + τ ) + (4 -2τ ) = 8 -τ time units in the system. Thus, the mean sojourn time of jobs will be

One then deduces that τ < 2/3 ⇒ LRPT is better than SRPT; τ > 2/3 ⇒ SRPT is better than LRPT.

In terms of the load, we can conclude that LRPT is better than SRPT for 6/7 < ρ < 1, and SRPT is better than LRPT if ρ < 6/7. Also, it is worth noting that in the long run, for 0 ≤ τ < 5/3, under SRPT there are always three jobs in the system whereas under LRPT there are always two jobs in the system. This is not true in the transient phase in which the number of jobs with SRPT oscillates between 1 and 3, whereas there are always two with LRPT. Thus, LRPT is better in terms of the long-run average number of jobs, but it is not better across the sample path in the transient phase.