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Abstract

We consider single-server scheduling to minimize holding costs where the capacity, or rate of
service, depends on the number of jobs in the system, and job sizes become known upon arrival.
In general, this is a hard problem, and counter-intuitive behavior can occur. For example, even
with linear holding costs the optimal policy may be something other than SRPT or LRPT, it
may idle, and it may depend on the arrival rate.

We first establish an equivalence between our problem of deciding which jobs to serve when
completed jobs immediately leave, and a problem in which we have the option to hold on
to completed jobs and can choose when to release them, and in which we always serve jobs
according to SRPT. We thus reduce the problem to determining the release times of completed
jobs. For the clearing, or transient system, where all jobs are present at time 0, we give a
complete characterization of the optimal policy and show that it is fully determined by the
cost-to-capacity ratio. With arrivals, the problem is much more complicated, and we can
obtain only partial results. We show that if the cost-to-capacity ratio is linear, then all non-
idling policies yield the same average cost. We further characterize the optimal policy in some
special cases. For example, we show that as long as capacity is increasing in the number of
jobs, LRPT stochastically minimizes the mean busy period.

1 Introduction

In most practical service systems, capacity varies with the number of customers, or jobs. In
some cases, it deteriorates as the system becomes more congested. For example, human servers
may experience extra overhead, in terms of distractions, crowd control, stress and fatigue, etc.,
with more jobs. On the other hand, in many telecommunications and computer applications,
such as wireless systems or peer-to-peer file sharing, capacity may increase with the number of
jobs. Moreover, capacity changes may not be monotonic; for some applications capacity first
increases and then decreases with congestion [7]. Increasing and convex capacities can also occur,
for example, in device-to-device systems that use opportunistic scheduling, where jobs can serve
each other, and speed may be related to proximity. These capacity dynamics complicate scheduling
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control. For example, idling may be optimal, and the optimal scheduling policy may depend on
the arrival rate.

In our model there is a single server, with speed that scales with the number of jobs. That
is, work in the system can decrease at maximum rate C(i) ≥ 0 when there are i jobs in the system.
If C(i) = I{i > 0}, we recover the classical single-server queue. However, our model is different
from a multi-server queue, even if C(i) = min{i, s} for some s = 2, 3, . . ., because we allow all the
capacity to be dedicated to a single job. In other words, if we had multiple servers, they would be
allowed to collaborate on the same job. Preemption (and processor sharing) is permitted without
penalty, and without increasing work. Job sizes are observed upon arrival. We also permit a
general holding cost function, where the cost depends on the number of jobs present, but not on
which jobs are present. We generally assume known job sizes (total service time for the job).

There are many results for the problem with constant capacity. For example it is well known
that (non-idling) SRPT (shortest-remaining-processing-time first) stochastically maximizes the
departure process for a single-server constant-capacity system with a general arrival process and
general service times [12]. However, when we allow the capacity to depend on the number of jobs,
the problem, with otherwise general assumptions is hard. In the next section we will give several
examples that exhibit counter-intuitive behavior for the objective of minimizing average sojourn
time.

We first show that our scheduling problem, with and without arrivals, can be transformed
into an equivalent problem in which jobs are served according to SRPT but we are allowed to
hold completed jobs, so the problem can be reduced to the question of when to release them. For
example, LRPT is equivalent to SRPT when jobs are held until the last one completes service, at
which time all jobs are released simultaneously. In the case when there are no arrivals, we obtain
an algorithm that characterizes the optimal release times, which turns out to be fully determined
by the cost-to-capacity ratio. In particular we show that that if C(i) is star-shaped (anti-star-
shaped), defined later, then LRPT (SRPT) minimizes the total holding cost. We then consider the
case with arrivals. We show that if the cost-to-capacity ratio is linear, then all non-idling policies
yield the same average cost. We further characterize the optimal policy in some special cases. For
example, as long as capacity is increasing, LRPT stochastically minimizes the mean busy period
length for stable systems.

The rest of the paper is organized as follows. In Section 2 we review the most important
related literature. In Section 3 we introduce the model description and we present various examples
that illustrate the complexity and richness of the problem. In Section 4 we show that there exists
an optimal policy within the class of policies that deploys SRPT and that may hold jobs. Section 5
covers the case without arrivals, and Section 6 considers arrivals.

2 Related literature

The problem of scheduling jobs with a constant speed or capacity is a classical area in operations
research. If the service times are known, Schrage [12] showed that SRPT minimizes sample-path-
wise the number of jobs in the system. If only the distribution of the service time is known, then,
depending on its properties, the optimal policy might be FCFS (First-Come-First-Served) or LAS
(Least-Attained-Service), see [9] and [10]. In a multi-class setting, another classical result is that
the so-called cµ-rule minimizes the holding cost among preemptive (with exponential service times)
and non-preemptive policies, see for example [6]. For a survey on scheduling results we refer to
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Weiss [15] and Righter [8].
If the capacity can vary, most of the literature on speed scaling takes the scheduling policy

as given (generally SRPT - shortest remaining processing time first or PS, processor sharing) and
dynamically adjusts the speed depending on congestion (number in system) to minimize costs
that depend on both response time and energy (e.g., [2], [3], [16]). We take the dynamic speed
scaling, C(i), as given, and find the optimal scheduling policy. A related research area, in which
the scheduling policy affects the capacity, is in opportunistic scheduling in wireless networks. Here
different flows or users face different capacities, and the overall capacity region depends on the
present flows. Sadiq and de Veciana [11] consider a system that can be modeled with nested
capacity regions, and where the total capacity depends on the allocation to flows. They give a
characterization of the optimality of a variant of SRPT in their setting. Bekker et al. [4] study a
queueing model in which service rates and arrival rates depend on the work in system rather than
the number in system, but they do not consider optimal scheduling.

A few researchers have studied the problem in which the capacity depends on the number of
jobs in the system. Timmermans and Vredeveld [14] consider weighted flowtime minimization for a
model with a fixed set of initial jobs and no arrivals and job-dependent weights, and machine speed
that depends on the number of remaining jobs, and show that the problem is NP-hard. Gupta
and Harchol-Balter [7] investigate admission control policies when C(i) is initially increasing, but
starts falling beyond a certain point due to resource contention and thrashing. In recent work,
Berg et al. [5] investigate how to split a multi-core processor among jobs, which in turn determines
the speed profile.

3 Model description and motivating examples

We assume that the capacity in the system is C(j) ≥ 0 when there are j jobs in the system, and
we let g(j) ≥ 0 be the total holding cost rate when there are j jobs in the system.

In the case without arrivals we are given a fixed set ofK jobs with known service requirements,
or job sizes.We consider the set Π of scheduling policies that are size-aware, preemptive and possibly
idling, and the objective is to schedule the jobs (to choose π ∈ Π) in order to minimize the total
holding cost:

V π :=

∫ ∞
0

g(Nπ(s))ds, (1)

where Nπ(s) is the number of jobs in the system at time s under π. As particular cases, when
g(j) = j, minimizing the total cost is equivalent to minimizing the flowtime, or mean sojourn time,
and when g(j) = I{j > 0}, our objective becomes minimization of makespan, or time to complete
all jobs.

In the case of arrivals, we will assume that new jobs arrive according to some stochastic
process with finite rate. The objective is then to determine the scheduling policy π ∈ Π that
minimizes the long-run average holding cost:

E[V π] := lim sup
T→∞

1

T

∫ T

0
g(Nπ(s))ds. (2)

When g(j) = j, minimizing average holding cost is equivalent to minimizing the average response
time or sojourn time, and when g(j) = I{j > 0}, the objective is to minimize the average length
of the busy period.
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Capacity function Makespan Mean soujourn time

Profile # of jobs C(1) C(2) C(3) SRPT LRPT SRPT LRPT

(a) 2 1 3 - 7 3 4 3
(b) 2 1 1.5 - 8 6 5 6
(c) 2 1 0.5 - 12 18 9 18
(d) 3 1 3 4.3 7.23 2.33 8.70 6.99

Table 1: Example 1. The optimal values are underlined.

We now present a few examples to illustrate the complexity of the problem.
Example 1. (No arrivals)

In the first example, there are no arrivals to the system except the jobs that are present at
time 0. First, we shall compare SRPT and LRPT when there are only two jobs for the three speed
profiles (a), (b), and (c) as given in Table 1. In profiles (a) and (b), C(i) is increasing while in
(c) it is decreasing. Assume that one job of size 3 and one of size 6 are present at time 0. Table 1
gives the makespan as well as the mean sojourn times for each of these profiles under SRPT and
LRPT. The values in the table illustrate the fact that which of SPRT or LRPT is better depends
not only on the objective and whether C(i) is increasing, but also, if C(i) is increasing, on how it
is increasing. In Section 5, we shall show that the optimal policy depends upon both C(i) as well
as upon C(i)/i. Note that in profile (a) C(i)/i is increasing while in profile (b) it is decreasing.

For profile (d) in Table 1, we assume that there are three jobs and no arrivals, and the sizes
of jobs 1, 2 and 3 are 1, 3, and 6, respectively. We also consider the policy S-L (short then long)
which serves job 1 to completion (so it follows SRPT for the first job), and then applies LRPT for
the remaining two jobs. The makespan for S-L is 3.23 and the mean sojourn time 6.70. In this
case LRPT minimizes the makespan, but the best policy for the mean sojourn time is S-L; neither
SRPT or LRPT minimizes the mean sojourn time for this example.

The next two examples illustrate some possibilities when there are arrivals, and the objective
is the minimization of sojourn time, i.e, g(i) = i.
Example 2.

This example shows that the optimal policy may idle even when jobs are present. As we
noted in the introduction, if the server speed is constant, because we allow preemption, it will
never be optimal to idle. This is no longer the case with speed scaling. Suppose that C(1) = 1,
C(i) = 5 for i ≥ 2, and suppose jobs of size 1 arrive starting at time 0 and with interarrival time
10, and jobs of size 5 arrive starting at time 2 with interarrival time of 10. Then a non-idling
policy will have mean long-run average sojourn time of 3. The optimal policy is to idle from time
1 − ε, for infinitesimally small ε, until time 2, and then follow non-idling LRPT until both jobs
are finished; this is repeated in each cycle. For this policy the long-run average sojourn time, as
ε→ 0, is 2.

Example 3.
We now consider an example in which the optimal policy depends on the arrival rate, and

where it could be something other than SRPT or LRPT. Here we assume C(1) = 1; C(i) = 3/2
for i ≥ 2. Suppose batches of two jobs arrive at t = (4 + τ)n, n = 0, 1, . . ., where τ ≥ 0, so the
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Figure 1: Workload process with deterministic arrivals.

interarrival times are 4 + τ , and their service times are 1 and 5 time units. Thus, the load is

ρ =
3

4 + τ
.

In this case we will not want to idle the server.
We first consider LRPT and SRPT, and show that which of these is preferred depends on

the arrival rate. The workload process for SRPT and LRPT and τ = 0 are shown in Figure 1. For
LRPT, the workload process is saw-toothed with a period 4 + τ seconds, and the mean sojourn
time is 4. For SRPT, the process is more complicated, and we present the full analysis in the
appendix. We deduce that, for minimizing mean sojourn time,

τ < 2/3⇒ LRPT is better than SRPT;

τ > 2/3⇒ SRPT is better than LRPT.

In terms of the load, LRPT is better than SRPT for 9/14 < ρ < 1, and SRPT is better than
LRPT if ρ < 9/14.

The optimal policy may be something “in between” SRPT and LRPT. In particular, for
0 < τ < 2/3, starting at time 0 with two jobs, the optimal policy is to work on the two jobs in
such a way that the second departure is at time 4+ τ , which means the first departure is at 4−2τ ,
and the mean sojourn time is 4− τ/2. This could be implemented by, e.g., working on job 2 (the
size-5 job) for 31

3 − 2τ time units, and then working on the size-1 job to completion, i.e., for 2/3
time units, and then switching back to job 2 until time 4 + τ . This repeats for each cycle.

4 Complete set of policies

In this section we show that we can restrict ourselves to a subclass of policies without loss of
generality. Note, for example, that under non-idling LRPT all jobs finish service at once, and this
policy can be emulated by any policy that never completes work on a job until the end of a busy
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period. So, let us suppose that when idling is permitted we are allowed to “hold” jobs that are
complete, i.e., they can remain in the system until we decide to release them, and we can release
them at any time. When idling is not permitted, let us suppose that we are allowed to “hold” jobs
that are complete as long as there is work in the system (i.e., up until the end of a busy period).

We then define two classes of policies:

• SRPT-hold policies are policies where jobs are always served according to non-idling SRPT,
but each job may be held after it completes for an arbitrary amount of time. We shall denote
the set of these policies by SRPTh.

• SRPT-work-hold policies are defined similarly, except that now jobs can only be held as long
as there is non-zero work in the system. The set of these policies will be denoted by SRPTwh.

For an arbitrary policy π, for time t, let Nπ(t) be the number of jobs (either unfinished
or finished and held) at t, let W π(t) be the total unfinished work at t, and let Mπ(t) be the
cumulative number of released jobs by time t. We say two policies π1 and π2 are state-equivalent
if {Nπ1(t),W π1(t),Mπ1(t)}∞t=0 =st {Nπ2(t),W π2(t),Mπ2(t)}∞t=0, i.e., if we can construct sample
paths on the same probability space such that the sample paths of these processes are identical
almost surely. We have the following state-equivalence between arbitrary policies and SRPTh or
SRPTwh policies.

Lemma 1 Any idling policy is state-equivalent to an SRPTh policy, and any non-idling policy is
state-equivalent to an SRPTwh policy.

Proof. We focus on the non-idling case for ease of notation; the idling case follows similarly. For
an arbitrary non-idling policy π, let Rπi (t) be the i-th smallest remaining service time among the un-

released jobs at time t, so W π(t) =
∑Nπ(t)

=1 Rπi (t). Let Sπ(t) = (Nπ(t),Mπ(t), Rπ1 (t), . . . , RπNπ(t)(t))
be the extended state at time t. For coupled sample paths for two policies π1 and π2 we say that
{Sπ1(t)} ≺ {Sπ1(t)} if, jointly for all t, Nπ1(t) = Nπ2(t), Mπ1(t) = Mπ2(t), and remaining service
times are smaller under π1in the majorization order. That is, the total workload is the same,
while the partial sums of remaining service times are ordered for all j = 1, ..., Nπ1(t) = Nπ2(t),

j∑
i=1

Rπ1i (t) ≤
j∑
i=1

Rπ2i (t),

W π1(t) =

Nπ1 (t)∑
i=1

Rπ1i (t) =

Nπ2(t)∑
i=1

Rπ2i (t) = W π2(t).

Let π be an arbitrary non-idling policy, and let σ ∈ SRPTwh be the SRPT-work-hold policy that we
will construct, which releases jobs at the same time as π, with Sπ(0) = Sσ(0) (so Sπ(0) ≺ Sσ(0)).
We will couple the processes under the two policies so that, with probability 1, {Sπ(t)} ≺ {Sσ(t)}.
In particular, assume sample paths of the arrival processes (including associated job service times)
are identical for both policies. We argue by induction on event times, which are the (common)
arrival epochs as well as the departure epochs induced by π. Let us assume that up until and
including an event time t0, we have coupled the processes so that {Sπ(t)}t0t=0 ≺ {Sσ(t)}t0t=0 with
probability 1. Let t1 the time of the next event after t0, which can be an arrival or a service
completion under π. Let σ not release any jobs until time t1. Between t0 and t1, the capacity
remains constant, at C(Nπ(t0)), under both policies. Then, for t ∈ [t0, t1), N

π(t) = Nσ(t),
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Mπ(t) = Mσ(t), W π(t) = W σ(t), and from [1, Proposition 1], we can also conclude that the
majorization order for remaining service times is preserved, i.e., Sπ(t) ≺ Sσ(t), for t ∈ [t0, t1). If
the event at t1 is an arrival, then clearly Sπ(t1) ≺ Sσ(t1) still holds. If the event at t1 under π is a
departure, of k jobs say, then necessarily k jobs have already finished their service under σ, because
of the majorization order. We let σ also release k jobs, and again we will have Sπ(t1) ≺ Sσ(t1),
thus completing the induction step. �

Note that SRPT is an SRPTh policy that never holds a job, i.e., it is the earliest release
policy among all SRPTh policies, and non-idling LRPT is an SRPTwh policy that holds all jobs
until the end of the busy period, i.e., it is the latest release policy among all SRPTwh policies.
Within SRPTh policies, idling corresponds to not releasing any jobs when they are all complete.
For the original problem formulation in which holding jobs is not permitted, an SRPTh or SRPTwh
policy can be arbitrarily closely approximated by an SRPT-ε policy, defined as follows. Let ε > 0
be arbitrarily small. We say a job is large if its remaining processing time is greater than ε. We
define the SRPT-ε class of policies as those that never idle when there are large jobs, and, when
serving large jobs, always serve them in SRPT order.

With Lemma 1 we have reduced our problem to one of determining the release times of
completed jobs, and otherwise following SRPT (possibly with idling).

5 Model without Arrivals

In this section we assume that all jobs are present at time 0, with no future arrivals, and job sizes
are known. We give a complete characterization of the optimal policy for a general state-dependent
cost function.

First, we observe that it is never optimal to idle when there are no future job arrivals. This
observation together with Lemma 1 says that we can restrict our search for the optimal policy
to the class of SRPTwh policies. This reduction thus determines the order in which jobs will be
served in the optimal policy. The only remaining variables which can be used to vary the cost are
the release times of completed jobs. Because jobs differ only in size, the choice of which of the
completed jobs to be released does not influence the total cost. Assume that jobs are ordered in
decreasing order of their sizes, i.e., job 1 is the longest job and job K is the shortest job, and let
xi denote the size of job i. If there are two or more jobs with the same size, then they can be
ordered arbitrarily amongst themselves without affecting the cost. Since SRPT is the preferred
service discipline, job K will be the first one to enter service followed by job K − 1 and so on until
we get to job 1.

For some feasible policy π, let T πi be the amount of time there are i jobs in the system, so,
abusing notation a bit, π = (T πK , . . . , T

π
1 ), and all jobs will be complete at time

∑K
i=1 T

π
i . Then

V π =

∫ ∞
0

g(Nπ(t))dt =

K∑
i=1

g(i)T πi .

Let W π
i be the amount of work done by time

∑K
j=i T

π
j , so W π

i =
∑K

j=iC(j)T πj . Since a feasible
policy can’t release more jobs than are completed, and jobs are served in SRPT order, for any
feasible policy π, W π

i ≥
∑K

j=i xj . We therefore have the following linear program to find the
optimal policy.
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Theorem 1 The optimal policy is the solution to the linear program:

P : min
π
V π =

K∑
i=1

g(i)T πi subject to

K∑
j=i

C(j)T πj ≥
K∑
j=i

xj for i = 1, . . . ,K

T πi ≥ 0 for i = 1, . . . ,K

Now let us consider a constant-speed problem, i.e., Ĉ(i) ≡ 1, and with a new cost function
ĝ(i) = g(i)/C(i). The optimal policy for this new problem is the solution to the linear program:

P̂ : min
π̂
V̂ π̂ =

K∑
i=1

ĝ(i)T̂ π̂i subject to

K∑
j=i

T π̂j ≥
K∑
j=i

xj for i = 1, . . . ,K

T π̂i ≥ 0 for i = 1, . . . ,K

Let π̂ = (T π̂K , . . . , T
π̂
1 ) be a feasible solution for P̂ , and let π be such that T πi = T π̂i /C(i).

Then π is a feasible solution to P , and V π = V π̂. We have the following corollaries.

Corollary 1 To solve the speed-scaled problem, we need only solve the constant-speed problem with
costs ĝ(i) = g(i)/C(i), and let T ∗i = T π̂

∗
i /C(i).

Corollary 2 The optimal release times will occur at job completion times, with jobs processsed in
SRPT order.

Proof. Because the optimal solution to a linear program is at the vertices of the constraint space
(when the constraints are binding), the result follows. �

Let si be the number of jobs that are in the system when job i (the i’th longest job) is in
service. From Lemma 1 and Corollary 2, any feasible policy π ∈ SRPTwh is uniquely characterized
by its sequence (si)i=1...K . Note that under this characterization, the corresponding policy in the
constant-speed model, π̂, is the same as π, π = π̂. Also, under the constant speed model, the total
cost incurred while processing job i under π is ĝ(i)xi from the definition of si, so,

V π =
K∑
i=1

ĝ(i)xi =
K∑
i=1

g(si)

C(si)
xi. (3)

Since a job cannot be recalled once it is released, it follows that, for any feasible policy,

i ≤ si ≤ si+1, i = 1, 2, . . . ,K − 1,

sK = K.
(4)

Corollary 3 The optimal policy is the solution (sK , . . . , s1) to the linear program that minimizes
(3) subject to the constraints (4).
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Figure 2: Evolution of the number of jobs in the system over time.

A graphical illustration of Corollary 3 is given in Figure 2.
Consider the algorithm NA∗ whose pseudocode is given below. The algorithm determines

s∗j for each j, and we shall prove that it outputs an optimal policy. We note that there could be
several equivalent optimal policies based on which jobs are released and which among the several
possible s∗j s are picked. If there are several minimizers for some job then we arbitrarily chose any

Algorithm NA∗: Optimal scheduling algorithm for no arrivals

Input : Vectors a, g, and C
1 sK ← K; Serve job K
2 for j=K-1:1 do

3 s∗j ∈ arg mini:j≤i≤K
g(i)
C(i)

/* choose arbitrarily one minimizer ensuring that j ≤ s∗j ≤ s∗j+1 ≤ K */

4 Release s∗j+1 − s∗j jobs.

/* chosen arbitrarily */

5 Serve job j

6 end

one of these. We shall show that this does not influence the total cost.
For each job, NA∗ myopically computes the best possible number in the system to be held

while processing that job, to minimize the contribution of the job to the total cost. Using Corollary
3, we now prove that this myopic algorithm is globally optimal.

Theorem 2 Algorithm NA∗ minimizes total holding cost.

Proof. First, we shall show that s∗ as computed by Algorithm NA∗ gives a feasible policy as
defined in (4). The first inequality s∗j ≥ j follows from the definition because the minimizer is
searched over the set of values that are larger than j. The second inequality follows from the fact
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that s∗j is a minimizer over a larger set compared to the set over which s∗j+1 is a minimizer. Thus,
there will always exist an s∗j ≤ s∗j+1.

Next, by definition of s∗j , for any other feasible policy g(sj)/C(sj) ≥ g(s∗j )/C(s∗j ). It then
follows that s∗ minimizes (3) subject to (4).

Note that the choice among the minimizers does not influence the total cost as it depends
only upon g(s∗j )/C(s∗j ) which is the same for all the minimizers. �

The optimal policy serves jobs K, . . . , 1 in order. When job j ends service, there are s∗j jobs
still in the system. The optimal policy then releases s∗j−1−s∗j jobs. If no jobs are released until the
last job ends service, then we have standard LRPT, whereas if every job is released immediately
upon completion of service, we have standard SRPT. This motivates us to consider special cases
of cost functions for which either LRPT or SRPT is optimal.

The following definitions from [13] will be useful.

1. We say that C(i) is star-shaped if C(i)/i is increasing in i.

2. We say that C(i) is anti-star-shaped if C(i)/i is decreasing in i.

In addition we assume, without loss of generality, that C(0) = 0. Under this condition, if
C(i) is increasing and concave it is also anti-star-shaped, and if it is increasing and convex it is also
star-shaped. The converse is not true. If C(i) is decreasing for i ≥ 1 then it is anti-star-shaped,
because we assume C(i) ≥ 0.

The following result can be be deduced from Theorem 2.

Corollary 4 Among policies that may be preemptive and may idle:

(i) If g(i)/C(i) is decreasing (increasing), then LRPT (SRPT) minimizes total holding cost.
Therefore,

(ii) If C(i) is star-shaped (average capacity per job increases in the number of jobs) then LRPT
minimizes mean sojourn time.

(iii) If C(i) is anti-star-shaped (average capacity per job decreases) then SRPT minimizes mean
sojourn time.

(iv) If C(i) is increasing (decreasing), then LRPT (SRPT) minimizes the makespan.

(v) If g(i)/C(i) = b for some constant b, then total holding costs are the same for any nonidling
policy, and it will not be optimal to idle when the objective is cost minimization.

(vi) If there exists a k0, 1 ≤ k0 ≤ K such that k0 minimizes g(i)/C(i) over 1 ≤ i ≤ K, and
g(i)/C(i) increases for i ≥ k0, then an S-L k0 policy is optimal, i.e., follow SRPT until there
are only k0 remaining jobs, and then follow LRPT.

Proof. We have (i) and (v) from Algorithm NA∗, because s∗i = K (s∗i = i), for i = 1, . . .K, if
g(i)/C(i) is decreasing (increasing), and, if g(i)/C(i) is constant, s∗i can be any integer between i
and K. Results (vi) follows similarly from Algorithm NA∗. Then (ii) and (iii) follow from (i) with
g(i) = i, and (iv) follows from (i) with g(i) = I{i > 0}. �
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Note that Corollary 4 (iv) tells us that under the model of Gupta and Harchol Balter [7],
where the capacity first increases and then decreases in the number in system, the optimal policy
is an S-L k0 policy.

We may also want upper bounds on total holding cost for any policy. For a non-trivial
problem formulation, we restrict ourselves to policies in which there is no idling. The proof of the
following corollary is similar to that above.

Corollary 5 Among preemptive, nonidling policies:

(i) If g(i)/C(i) is decreasing (increasing), then SRPT (LRPT) maximizes total holding cost.
Therefore,

(ii) If C(i) is star-shaped (average capacity per job increases in the number of jobs) then SRPT
maximizes mean sojourn time.

(iii) If C(i) is anti-star-shaped (average capacity per job decreases) then LRPT maximizes mean
sojourn time.

(iv) If C(i) is increasing (decreasing), then SRPT (LRPT) maximizes the makespan.

(v) If g(i)/C(i) = b for some constant b, then total holding costs are the same for any nonidling
policy, and it will not be optimal to idle when the objective is cost minimization.

Remark 1 Note that when there are no arrivals, LRPT also minimizes the variability in sojourn
times.

6 Model with Arrivals

As we saw in section 3, adding arrivals to our model can significantly complicate both the analysis
and the results. As illustrated in Example 2, the optimal policy might idle, waiting for an arrival,
in order to profit from the increment of capacity available in larger states. The important charac-
terization provided in Lemma 1 is still true, i.e, even with arrivals there exists an optimal policy
that is either SRPTh or SRPTwh. That is, jobs will be served according to SRPT and the problem
reduces to the question of when to release jobs that have already completed service. Idling now
corresponds to not releasing all jobs when there is no work to do.

In this section we extend parts of Corollaries 4 and 5, but the proofs are quite different. We
assume the arrival process and job sizes are arbitrary, but independent of the policy and system
state, and job sizes are observed upon arrival.

6.1 The linear cost-to-capacity case

We first extend Corollary 5 (v) to arrivals.

Theorem 3 If we have a linear cost-to-capacity ratio, i.e., g(i)/C(i) = b for some constant b,
then all non-idling policies yield the same long-run average cost per job, which will be b times the
average job size. It will not be optimal to idle.

11



Proof. We assume a finite number of arrivals, N , and use induction on N . Let us fix the
(remaining) service times of all current jobs and all future arrivals, as well as the arrival times for
future arrivals. Suppose there are n jobs available at time 0, and there are N+1 jobs yet to arrive.
Let xi be the remaining service time of the i’th current job, and let ai and yi be the arrival and job
size of the i’th future arrival. LetV π

N+1(x,y,a) be the total cost, starting at time 0, for all current
and future jobs, for an arbitrary non-idling policy π. For N = 0, the result follows from Corollary
4, and it is easy to show that V π

0 (x) = b
∑n

i=1 xi. Suppose that V π
N (x,y,a) = b

∑n
i=1 xi+b

∑N
i=1 yi

for all non-idling π. Then, by induction,

V π
N+1(x,y,a) = Gπ(a1) + bxπ + b

N+1∑
i=1

yi

where xπ is the total unfinished work remaining at time a1 from the jobs present at time 0, and
Gπ(a1) is the total cost incurred between times 0 and a1. Let di be the departure times of jobs
under π, for jobs that depart by time a1, i = 0, ...,m for some m ≤ n, and dm ≤ a1. Then

xπ =

n∑
i=1

xi − [C(n)d1 − C(n− 1)d2 − · · ·

−C(n−m+ 1)dm − C(n−m)(a1 − dm)] ,

Gπ(a1) = g(n)d1 + g(n− 1)d2 + · · ·+ g(n−m+ 1)dm

+g(n−m)(a1 − dm) =

n∑
i=1

xi − bxπ

so

V π
N+1(x,y,a) = b

n∑
i=1

xi + b
N+1∑
i=1

yi.

The same argument shows that we should not idle, because idling until time min{δ, a1}
for some δ > 0 and not thereafter (by induction), has cost g(n)δ + b

∑n
i=1 xi + b

∑N+1
i=1 yi >

V π
N+1(x,y,a). �

We can therefore think of the linear cost-to-capacity queue as being equivalent to an infinite
server queue with linear costs, and, regardless of the scheduling discipline, the long-run average
cost rate is λb, where λ is the long-run average arrival rate. Note that this result does not depend
on job sizes being i.i.d., and is true even if job sizes are not observed upon arrival, among policies
that do not use size information.

6.2 Optimizing the busy period length

We now extend Corollaries 4 (iv) and 5 (iv) from makespan to busy periods. Using Lemma 1, we
assume, without loss of generality, that we are permitted to hold completed jobs. A busy period
ends the first time there are no jobs in the system, which, if idling is permitted, may be later
than the first time the total work in the system hits 0 if we hold completed jobs. In the theorem,
by LRPT we mean nonidling LRPT, so all jobs are released if there is no remaining work in the
system.

Theorem 4 (i) If C(i) is increasing, then LRPT stochastically minimizes the length of the current
busy period.
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(ii) If C(i) is increasing (decreasing), then SRPT (LRPT) stochastically maximizes the length of
the current busy period among non-idling policies.

(iii) If C(i) is decreasing, then SRPT stochastically maximizes the departure process, {D(t)}∞t=0,
where D(t) is the number of departures by time t, (and therefore it minimizes the current
busy period length, and it minimizes mean sojourn time).

(iv) If C(i) is increasing until i = K and then decreasing, following LRPT while i ≤ K and
following SRPT while i > K stochastically minimizes the length of the current busy period.

Proof. (i) From Lemma 1, idling corresponds to not releasing all jobs as soon as there is no
work in the system, and not releasing those jobs just extends the busy period, so idling is clearly
not optimal for minimizing the current busy period length. Not following LRPT corresponds to
releasing a job before the end of the busy period. Fix an initial state and a sample path of arrival
times and job sizes, τi, σi, i = 1, 2, . . .. If policy π releases a job at some time t before all the
work has emptied, then from t until the end of the LRPT busy period π will have fewer jobs than
LRPT, and hence lower capacity and more work. Therefore, its current busy period must be
larger than that under LRPT.

(ii) Suppose C(i) is increasing. Again, fixing a sample path, throughout an SRPT busy
period the number of jobs is smaller, and hence server speed is smaller, under SRPT than any
other policy. Therefore, the SRPT busy period will end later. The argument for the other cases
is similar.

(iii) For a fixed sample path with C(i) decreasing, SRPT now maximizes capacity over its
busy period, so work gets done faster, and, for any fixed capacity profile, SRPT also produces the
earliest possible release of jobs.

(iv) This follows from arguments similar to those of (i) and (iii).
�

From (i) and (iii) of Theorem 4 it is not hard to show the following.

Corollary 6 If we have Poisson arrivals and i.i.d job sizes, and if C(i) is increasing (decreasing),
and g(i) is decreasing (increasing), then LRPT (SRPT) stochastically minimizes long-run average
costs.

7 Conclusions

We have investigated the optimal scheduling problem when the capacity is state-dependent. This
is a modeling abstraction that has applications in server-farms, peer-to-peer downloading, wireless
scheduling, and other situations. In full generality the solution space can be very complex. For
instance, we have presented examples that illustrate that idling may be optimal, or that the optimal
policy could depend on the load, and could be something other than SRPT or LRPT.

One of our main results is that there exists an optimal policy that always serves jobs according
to SRPT, but may hold jobs after they complete. The key question becomes determining the
optimal moment to release jobs from the system. In the case without arrivals we have shown that
the optimal releasing moment crucially depends on the cost-to-capacity ratio. For the case with
arrivals we have obtained partial results, but various interesting questions remain open.
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Appendix: Analysis of Example 3

First consider the case when τ = 0. Then, at t = (4 + n)+, i.e., right after the n’th arrival, the
remaining service times of the jobs in the system are 1, 5, and xn, where 1 < xn < 5, and xn is an
increasing sequence that follows the recursion:

xn+1 =
2

3
xn +

5

3
, n ≥ 0,

with x0 = 0.
In the interval [4n, 4(n+1)), the jobs of size 1 and of xn are served entirely under SRPT. The

job of size xn finishes service at time 4n+ 2
3(1+xn) and the job of size 5 enters service. This job is

served partially before the next arrival, at which point its remaining service time at t = 4(n+ 1)+

is given by xn+1. Since limn→∞ xn → 5, when n→∞ the workload process of SRPT converges to
a periodic process of period 4. The remaining service times of jobs at the beginning of each cycle
are 1, 5, and 5, where one of the size-5 jobs arrived at the beginning of the previous previous cycle.
The job of size 1 will leave after 2/3 units, one of the size-5 jobs will leave at the end of the cycle,
and the other will leave at the end of the next cycle, that is after 8 units. The mean sojourn time
is then (2/3 + 8)/2 > 4.

For τ ≥ 0, the workload process under SRPT will converge to a cycle with a period of 4 + τ
units. If τ ≥ 5/3, cycles will not overlap, and the mean sojourn time is (4/3 + 5)/2 < 4. Suppose
that τ < 5/3. At the beginning of a cycle (that is, just after an arrival), the remaining service
times will be 1, 5, and 5− 3τ . Within a cycle, the job of size 1 will enter service immediately and
will leave at time 2/3. At this point the job of remaining size 5 − 3τ will enter service and will
leave at 4 − 2τ units. During the remaining 3τ units, the job of size 5 will be served at rate 1,
which will leave it with 5− 3τ remaining service at the beginning of the next cycle. This job will
spend (4 + τ) + (4 − 2τ) = 8 − τ time units in the system. Thus, the mean sojourn time of jobs
will be

2
3 + 8− τ

2
= 4 +

1

3
− τ

2
.

One then deduces that

τ < 2/3⇒ LRPT is better than SRPT;

τ > 2/3⇒ SRPT is better than LRPT.

In terms of the load, we can conclude that LRPT is better than SRPT for 6/7 < ρ < 1, and SRPT
is better than LRPT if ρ < 6/7.

Also, it is worth noting that in the long run, for 0 ≤ τ < 5/3, under SRPT there are always
three jobs in the system whereas under LRPT there are always two jobs in the system. This is
not true in the transient phase in which the number of jobs with SRPT oscillates between 1 and 3,
whereas there are always two with LRPT. Thus, LRPT is better in terms of the long-run average
number of jobs, but it is not better across the sample path in the transient phase.
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