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in Crash-prone Asynchronous Message-Passing Systems

Achour Mostéfaoui · Michel Raynal ·
Matthieu Roy
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Abstract The atomic register is one of the most basic and useful object of com-
puting science, and its simple read-write semantics is appealing when programming
distributed systems. Hence, its implementation on top of crash-prone asynchronous
message-passing systems has received a lot of attention. It was shown that having a
strict minority of processes that may crash is a necessary and sufficient requirement
to build an atomic register on top of a crash-prone asynchronous message-passing
system.

This paper visits the notion of a fast implementation of an atomic register, and
presents a new time-efficient asynchronous algorithm that reduces latency in many
cases: a write operation always costs a round-trip delay, while a read operation costs
a round-trip delay in favorable circumstances (intuitively, when it is not concurrent
with a write). When designing this algorithm, the design spirit was to be as close as
possible to the original algorithm proposed by Attiya, Bar-Noy, and Dolev.

Keywords: Asynchronous message-passing system, Atomic read/write register, Con-
currency, Fast operation, Process crash failure, Synchronous behavior, Time-efficient
operation.

1 Introduction

Since Sumer time [8], and –much later– Turing’s machine tape [15], read/write ob-
jects are certainly the most basic memory-based communication objects. Such an
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object, usually called a register, provides its users (processes) with a write operation
which defines the new value of the register, and a read operation which returns the
value of the register. When considering sequential computing, registers are universal
in the sense that they allow us to solve any problem that can be solved [15]. Although
named differently in recent architectures such as multi-core systems, the read/write
semantics of a register is the most clean and easy to understand abstraction of shared
memory and is extensively used in multi-threaded programs.

Register in message-passing systems. In a message-passing system, the computing
entities communicate only by sending and receiving messages transmitted through a
communication network. Hence, in such a system, a register is not a communication
object given for free, but constitutes a communication abstraction which must be built
with the help of the communication network and the local memories of the processes.

Several types of registers can be defined according to which processes are allowed
to read or write it, and the quality (semantics) of the value returned by each read
operation. We consider here registers which are single-writer multi-reader (SWMR)
and atomic. Atomicity means that (a) each read or write operation appears as if it had
been executed instantaneously at a single point of the time line, between is start event
and its end event, (b) no two operations appear at the same point of the time line, and
(c) a read returns the value written by the closest preceding write operation (or the
initial value of the register if there is no preceding write) [9]. Algorithms building
multi-writer multi-reader (MWMR) atomic registers from single-writer single-reader
(SWSR) registers with a weaker semantics (safe or regular registers) are described in
several textbooks (e.g., [3,10,13]).

Many distributed algorithms have been proposed to build a register on top of a
message-passing system, be it failure-free or failure-prone. In the failure-prone case,
the addressed failure models are the process crash failure model, or the Byzantine
process failure model (see, the textbooks [3,10,12,14]). The most famous of these
algorithms was proposed by H. Attiya, A. Bar-Noy, and D. Dolev in [2]. This al-
gorithm, which is usually called ABD according to the names its authors, considers
an n-process asynchronous system in which up to t < n/2 processes may crash
(it is also shown in [2] that t < n/2 is an upper bound of the number of process
crashes which can be tolerated). This simple and elegant algorithm, relies on (a) quo-
rums [16], and (b) a simple broadcast/reply communication pattern. ABD uses this
pattern once in a write operation, and twice in a read operation implementing an
SWMR register.

Fast operation. To our knowledge, the notion of a fast implementation of an atomic
register operation, in failure-prone asynchronous message-passing systems, was in-
troduced in [5] for process crash failures, and in [6] for Byzantine process failures.
These papers consider a three-component model, namely there are three different
types of processes: a set of writersW , a set of readersR, and a set of servers S which
implements the register. Moreover, a client (a writer or a reader) can communicate
only with the servers, and the servers do not communicate among themselves.

In these papers, fast means that a read or write operation must entail exactly one
communication round-trip delay between a client (the writer or a reader) and the
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servers. When considering the process crash failure model (the one we are interested
in in this paper), it is shown in [5] that, when (|W | = 1) ∧ (t ≥ 1) ∧ (|R| ≥ 2),
the condition (|R| < |S|

t − 2) is necessary and sufficient to have fast read and write
operations (as defined above), which implement an atomic register. It is also shown
in [5] that there is no fast implementation of an MWMR atomic register if

(
(|W | ≥

2) ∧ (|R| ≥ 2) ∧ (t ≥ 1)
)
.

Algorithms suited to this three-tier model (writers, readers, and servers) providing
very fast read operations are described in [7].

Another notion of efficiency is related to the size of the control information car-
ried by messages. This issue is mainly addressed in [11], where it is shown that two
bits are sufficient.

Content of the paper: bounded delay assumption and time-efficiency. The work de-
scribed in [5,6] is mainly on the limits of the three-component model (writers, read-
ers, and servers constitute three independent sets of processes) in the presence of
process crash failures, or Byzantine process failures. These limits are captured by
predicates involving the set of writers (W ), the set of readers (R), the set of servers
(S), and the maximal number of servers that can be faulty (t). Both the underlying
model used in this paper and its aim are different from this previous work.

While keeping the spirit (basic principles and simplicity) of ABD, our aim is to
design a time-efficient implementation of an atomic register in the classical model
used in many articles and textbooks (see, e.g., [2,3,10,13]). This model, where any
process can communicate with any process, can be seen as a peer-to-peer model in
which each process is both a client (it can invoke operations) and a server (it manages
a local copy of the register that is built).1

Adopting the usual distributed computing assumption that (a) local processing
times are negligible and assumed consequently to have zero duration, and (b) only
communication takes time, this paper focuses on the communication time needed to
complete a read or write operation. For this reason the term time-efficiency is defined
here in terms on message transfer delays, namely, the cost of a read or write opera-
tion is measured by the number of “consecutive” message transfer delays they require
to terminate. Let us notice that this includes transfer delays due to causally related
messages (for example round trip delays generated by request/acknowledgment mes-
sages), but also (as we will see in the proposed algorithm) message transfer delays
which occur sequentially without being necessarily causally related. Let us notice
that this notion of a time-efficient operation does not involve the model parameter t.

In order to give a precise meaning to the notion of a “time-efficient implementa-
tion” of a register operation, this paper considers the duration of read and write oper-
ations based on a specific additional synchrony assumption, usually named “bounded
delay” assumption. This assumptions and the associated time-efficiency of the pro-
posed algorithm are the following.

1 Considering the three-component model where each reader is also a server (i.e., R = S), we obtain
a two-component model with one writer and reader-server processes. In this model, the necessary and
sufficient condition (|R| < |S|

t
− 2) can never be satisfied, which means that, it is impossible to design a

fast implementation of a SWMR atomic register in such a two-component model.
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Let us consider the case where every message takes at most ∆ time units to be
transmitted from its sender to any of its receivers. In such a context, the algorithm
presented in the paper has the following time-efficiency properties:

– A write operation takes at most 2∆ time units.
– A read operation which is write-latency-free takes at most 2∆ time units. (The

notion of write-latency-freedom is defined in Section 3. Intuitively, it captures the
fact that the behavior of the read does not depend on a concurrent or faulty write
operation, which is the usual case in read-dominated applications.) Otherwise,
it takes at most 3∆ time units, except in the case where the read operation is
concurrent with a write operation and the writer crashes during this write, where
it can take up to 4∆ time units. (Let us remark that a process can experience at
most once the 4∆ read operation scenario.)

Hence, while it remains correct in the presence of any asynchronous message pat-
tern (e.g., when each message takes one more time unit than any previous message),
the proposed algorithm is particularly time-efficient when “good” scenarios occur.
Those are the ones defined by the previous synchrony patterns where the duration
of a read or a write operation is a single round-trip delay. Moreover, in the other
synchrony scenarios, where a read operation is concurrent with a write, the maximal
duration of the read operation is precisely quantified. A concurrent write adds uncer-
tainty whose resolution by a read operation requires one more message transfer delay
(and two if the concurrent write crashes).

Roadmap. The paper consists of 7 sections. Section 2 presents the system model.
Section 3 defines the atomic register abstraction, and the notion of a time-efficient
implementation. Then, Section 4 presents an asynchronous algorithm providing an
implementation of an atomic register with time-efficient operations, as previously
defined. Section 5 proves its properties. Section 6 provides insights on the practi-
cal impact of the latency-efficiency in real systems. Finally, Section 7 concludes the
paper.

2 System Model

Processes. The computing model is composed of a set of n sequential processes de-
noted p1, ..., pn. Each process is asynchronous which means that it proceeds at its own
speed, which can be arbitrary and remains always unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctly its local
algorithm until it possibly crashes. The model parameter t denotes the maximal num-
ber of processes that may crash in a run. A process that crashes in a run is said to be
faulty. Otherwise, it is correct or non-faulty.

Communication. The processes cooperate by sending and receiving messages through
bi-directional channels. The communication network is a complete network, which
means that any process pi can directly send a message to any process pj (including
itself). Each channel is reliable (no loss, corruption, nor creation of messages), not
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necessarily first-in/first-out, and asynchronous (while the transit time of each message
is finite, there is no upper bound on message transit times).

A process pi invokes the operation “send TAG(m) to pj” to send pj the message
tagged TAG and carrying the value m. It receives a message tagged TAG by invoking
the operation “receive TAG()”. The macro-operation “broadcast TAG(m)” is a short-
cut for “for each j ∈ {1, . . . , n} send TAG(m) to pj end for”. (The sending order is
arbitrary, which means that, if the sender crashes while executing this statement, an
arbitrary – possibly empty– subset of processes will receive the message.)

Let us notice that, due to process and message asynchrony, no process can know
if an other process crashed or is only very slow.

Notations. In the following, the previous computation model, restricted to the case
where t < n/2, is denoted CAMPn,t[t < n/2] (Crash Asynchronous Message-
Passing).

It is important to notice that, in this model, all processes are a priori “equal”. As
we will see, this allows each process to be at the same time a “client” and a “server”.
In this sense, and as noticed in the Introduction, this model is the “fully connected
peer-to-peer” model (whose structure is different from other computing models such
as the client/server model, where processes are partitioned into clients and servers,
playing different roles).

3 Atomic Register and Time-efficient Implementation

3.1 Atomic read/write register

Read/write register. A concurrent object is an object that can be accessed by several
processes (possibly simultaneously). An SWMR register (say REG) is a concurrent
object which provides exactly one process (called the writer) with an operation de-
noted REG .write(), and all processes with an operation denoted REG .read(). When
the writer invokes REG .write(v) it defines v as being the new value of REG .

Effective operation. The notion of an effective read or write operation is from [14].
When a process crashes while executing an operation, this operation may take effect
or not. The notion of an effective operation captures the fact that, due to process
crashes, some operations “participate” in the computation, while others do not. More
precisely, we have the following [14].

– A read operation is effective if the invoking process does not crash during its
execution.

– A write operation is effective if the invoking process does not crash during its
execution, or, despite the fact that it crashes during its execution, the value it
writes is returned by an effective read operation.
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Atomic read/write register. An SWMR atomic register (we also say the register is
linearizable [4]) is defined by the following set of properties [9].

– Liveness. The invocation of an effective operation by a correct process terminates.
– Consistency (safety). All the effective operations appear as if they have been ex-

ecuted sequentially and this sequence S of operations is such that:
– each effective read returns the value written by the closest write that precedes

it in S (or the initial value of REG if there is no preceding write),
– if an effective operation op1 terminated before an effective operation op2

started, then op1 appears before op2 in the sequence S.

This set of properties states that, from an external observer point of view, the
object appears as if it was accessed sequentially by the processes, this sequence i)
respecting the real time access order, and ii) belonging to the sequential specification
of a read/write register.

3.2 Bounded delay-based time-efficient implementation

The notion of a time-efficient operation is not related to its correctness, but is a
property of its implementation. It is sometimes called non-functional property. In
the present case, it captures the time efficiency of operations2. Time-efficiency is a
property that is closely related to the notion of fast [5] implementation. While a fast
implementation focus on the minimum number of round-trip transfers that are neces-
sary, a time-efficient operation, as we consider here, provides us with time guarantees
when favorable synchrony conditions hold on the system execution.

Let us remember that it is assumed that the local processing times needed to
implement these high level read and write operations are negligible, and consider a
scenario where all message transfer delays are upper bounded by ∆. Notice that we
consider the synchrony assumption applies to parts of the execution only.

Write-latency-free read operation and interfering write. Intuitively, a read operation
is write-latency-free if its execution does “not interleave” with the execution of a
write operation. More precisely, let τr be the starting time of a read operation. This
read operation is write-latency-free if (a) it is not concurrent with a write operation,
and (b) the closest preceding write did not crash and started at a time τw < τr −∆.

Let opr be a read operation, which started at time τr. Let opw be the closest write
preceding opr. If opw started at time τw ≥ τr − ∆, it is said to be interfering with
opr. A graphical representation of write-latency-freedom and interfering operations
is depicted in Fig. 1.

2 Another example of a non-functional property is quiescence. This property is on algorithms imple-
menting reliable communication on top of unreliable networks [1]. It states that the number of underlying
implementation messages generated by an application message must be finite. Hence, if there is a time
after which no application process sends messages, there is a time after which the system is quiescent.
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Fig. 1 Left: A write-latency-free read operation opr. Right: a write operation opw interfering with a read.

Time-efficiency: Bounded delay-based definition. An implementation of a read/write
register is time-efficient (from a bounded delay point of view) if it satisfies the fol-
lowing properties.

– A write operation takes at most 2∆ time units.
– A read operation which is write-latency-free takes at most 2∆ time units.
– A read operation which is not write-latency-free takes at most

– 3∆ time units if the writer does not crash while executing the interfering
write,

– 4∆ time units if the writer crashes while executing the interfering write (this
scenario can appear at most once for each process).

4 An Algorithm with Time-efficient Operations

The algorithm described in Algorithm 1 implements an SWMR atomic register in the
asynchronous system model CAMPn,t[t < n/2], and is time-efficient with respect
to the “bounded delay”-based definition. This algorithm is voluntarily formulated
to be as close as possible to ABD, for facilitating its understanding by ABD-aware
readers.

Local variables. Each process pi manages the following local variables.

– regi contains the value of the constructed register REG , as currently known by
pi. It is initialized to the initial value of REG (e.g., the default value ⊥).

– wsni is the sequence number associated with the value in regi.
– rsni is the sequence number of the last read operation invoked by pi.
– swsni is a synchronization local variable. It contains the sequence number of the

most recent value of REG that, to pi’s knowledge, is known by at least (n − t)
processes. This variable (which is new with respect to other algorithms) is at the
heart of the time-efficient implementation of the read operation.

– resi is the value of REG whose sequence number is swsni.

Client side: operation write() invoked by the writer. Let pi be the writer. When it
invokes REG .write(v), it increases wsni, updates regi, and broadcasts the message
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Algorithm 1 Time-efficient SWMR atomic register in CAMPn,t[t < n/2]

local variables initialization: regi ← ⊥; wsni ← 0; swsni ← 0; rsni ← 0.

operation write(v) is
(1) wsni ← wsni + 1; regi ← v; broadcast WRITE(wsni, v);
(2) wait

(
WRITE(wsni,−) received from (n− t) different processes

)
;

(3) return()
end operation.

operation read() is % the writer may directly return regi %
(4) rsni ← rsni + 1; broadcast READ(rsni);
(5) wait

(
(msgs STATE(rsn,−) rec. from (n− t) different proc.) ∧ (swsni ≥ maxwsn)
where maxwsn is the greatest seq. nb in the previous STATE(rsn,−) msgs

)
;

(6) return(resi)
end operation.

when WRITE(wsn, v) is received do
(7) if (wsn > wsni) then regi ← v; wsni ← wsn end if;
(8) if (not yet done) then broadcast WRITE(wsn, v) end if;
(9) if

(
WRITE(wsn,−) received from (n− t) different processes

)
(10) then if (wsn > swsni) ∧ (not already done) then swsni ← wsn; resi ← v end if
(11) end if.

when READ(rsn) is received from pj do
(12) send STATE(rsn,wsni) to pj .

WRITE(wsni, v) (line 1). Then, it waits until it has received an acknowledgment mes-
sage from (n − t) processes (line 2). When this occurs, the operation terminates
(line 3). Let us notice that the acknowledgment message is a copy of the very same
message as the one it broadcast.

Server side: reception of a message WRITE(wsn, v). When a process pi receives a
WRITE(wsn, v) message, if this message carries a more recent value than the one cur-
rently stored in regi, then pi updates accordingly wsni and regi (line 7). Moreover,
if this message is the first message carrying the sequence number wsn, pi forwards
to all the processes the message WRITE(wsn, v) it has received (line 8). This broad-
cast has two aims: to be an acknowledgment for the writer, and to inform the other
processes that pi “knows” this value.3

Moreover, when pi has received the message WRITE(wsn, v) from (n − t) dif-
ferent processes, and swsni is smaller than wsn, it updates its local synchronization
variable swsni and accordingly assigns v to resi (lines 9-11).

Server side: reception of a message READ(rsn). When a process pi receives such a
message from a process pj , it sends by return to pj the message STATE(rsn,wsni),
thereby informing it on the freshness of the last value of REG it knows (line 12). The
parameter rsn allows the sender pj to associate the messages STATE(rsn,−) it will
receive with the corresponding request identified by rsn.

3 Let us observe that, due to asynchrony, it is possible that wsni > wsn when pi receives a message
WRITE(wsn, v) for the first time.
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Client side: operation read(). When a process pi invokes REG .read(), it first broad-
casts the message READ(rsni) with a new sequence number. Then, it waits until
“some” predicate is satisfied (line 5), and finally returns the current value of resi. Let
us notice that the value resi that is returned is the one whose sequence number is
swsni.

The waiting predicate is the heart of the algorithm. Its first part states that pi must
have received a message STATE(rsn,−) from (n − t) processes. Its second part,
namely (swsni ≥ maxwsn), states that the value in pi’s local variable resi is as
recent or more recent than the value associated with the greatest write sequence num-
ber wsn received by pi in a message STATE(rsn,−). Combined with the broadcast
of messages WRITE(wsn,−) issued by each process at line 8, this waiting predicate
ensures both the correctness of the returned value (atomicity), and the fact that the
read implementation is time-efficient.

5 Proof of the Algorithm

5.1 Termination and atomicity

The properties proved in this section are independent of the message transfer delays
(provided they are finite).

Lemma 1 If the writer is correct, all its write invocations terminate. If a reader is
correct, all its read invocations terminate.

Proof Let us first consider the writer process. As by assumption it is correct, it broad-
casts the message WRITE(sn,−) (line 1). Each correct process broadcasts WRITE(sn,−)
when it receives it for the first time (line 8). As there are at least (n− t) correct pro-
cesses, the writer eventually receives WRITE(sn,−) from these processes, and stops
waiting at line 2.

Let us now consider a correct reader process pi. It follows from the same rea-
soning as before that the reader receives the message STATE(rsn,−) from at least
(n− t) processes (lines 5 and 12). Hence, it remains to prove that the second part of
the waiting predicate, namely swsni ≥ maxwsn (line 5) becomes eventually true,
where maxwsn is the greatest write sequence number received by pi in a message
STATE(rsn,−). Let pj be the sender of this message. The following list of items is
such that item x =⇒ item (x + 1), from which follows that swsni ≥ maxwsn
(line 5) is eventually satisfied.

1. pj updated wsnj to maxwsn (line 7) before sending STATE(rsn,maxwsn)
(line 12).

2. Hence, pj received previously the message WRITE(maxwsn,−), and broadcast
it the first time it received it (line 8).

3. It follows that any correct process receives the message WRITE(maxwsn,−) (at
least from pj), and broadcasts it the first time it receives it (line 8).

4. Consequently, pi eventually receives the message WRITE(maxwsn,−) from (n−
t) processes. When this occurs, it updates swsni (line 10), which is then ≥
maxwsn, which concludes the proof of the termination of a read operation.
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2Lemma 1

Lemma 2 The register REG is atomic.

Proof Let read[i, x] be a read operation issued by a process pi which returns the
value with sequence number x, and write[y] be the write operation which writes the
value with sequence number y. The proof of the lemma is the consequence of the
three following claims.

– Claim 1. If read[i, x] terminates before write[y] starts, then x < y.
– Claim 2. If write[x] terminates before read[i, y] starts, then x ≤ y.
– Claim 3. If read[i, x] terminates before read[j, y] starts, then x ≤ y.

Claim 1 states that no process can read from the future. Claim 2 states that no process
can read overwritten values. Claim 3 states that there is no new/old read inversions [3,
12].

Proof of Claim 1.
This claim follows from the following simple observation. When the writer exe-
cutes write[y], it first increases its local variable wsn which becomes greater than
any sequence number associated with its previous write operations (line 1). Hence if
read[i, x] terminates before write[y] starts, we necessarily have x < y.

Proof of Claim 2.
It follows from line 2 and lines 7-8 that, when write[x] terminates, there is a set Qw

of at least (n− t) processes pk such that wsnk ≥ x. On another side, due to lines 4-5
and line 12, read[i, y] obtains a message STATE() from a set Qr of at least (n − t)
processes.

As |Qw| ≥ n− t, |Qr| ≥ n− t, and n > 2t, it follows that Qw ∩Qr is not empty.
There is consequently a process pk ∈ Qw ∩Qr, such that that wsnk ≥ x. Hence, pk
sent to pi the message STATE(−, z), where z ≥ x.

Due to (a) the definition ofmaxwsn ≥ z, (b) the predicate swsni ≥ maxwsn ≥
z (line 5), and (c) the value of swsni = y, it follows that y = swsni ≥ z when
read[i, y] stops waiting at line 5. As, z ≥ x, it follows y ≥ x, which proves the
claim.

Proof of Claim 3.
When read[i, x] stops waiting at line 5, it returns the value resi associated with the
sequence number swsni = x. Process pi previously received the message WRITE(x,−)
from a set Qr1 of at least (n − t) processes. The same occurs for pj , which, before
returning, received the message WRITE(y,−) from a set Qr2 of at least (n − t) pro-
cesses.

As |Qr1| ≥ n − t, |Qr2| ≥ n − t, and n > 2t, it follows that Qr1 ∩ Qr2 is
not empty. Hence, there is a process pk which sent STATE(, x) to pi, and later sent
STATE(−, y) to pj . As swsnk never decreases, it follows that x ≤ y, which completes
the proof of the lemma. 2Lemma 2
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Theorem 1 Algorithm 1 implements an SWMR atomic register in the distributed
system model CAMPn,t[t < n/2].

Proof The proof follows from Lemma 1 (termination) and Lemma 2 (atomicity).
2Theorem 1

5.2 Time-efficiency with respect to the bounded delay assumption

As already indicated, this underlying synchrony assumption considers that every mes-
sage takes at most ∆ time units. Moreover, let us remind that a read (which started at
time τr) is write-latency-free if it is not concurrent with a write, and the last preceding
write did not crash and started at time τw < τr −∆.

Lemma 3 A write operation takes at most 2∆ time units.

Proof The case of the writer is trivial. The message WRITE() broadcast by the writer
takes at most ∆ time units, as do the acknowledgment messagesWRITE() sent by
each process to the writer. In this case 2∆ correspond to a causality-related maximal
round-trip delay (the reception of a message triggers the sending of an associated
acknowledgment). 2Lemma 3

When the writer does not crash while executing a write operation The cases where
the writer does not crash while executing a write operation are captured by the next
two lemmas.

Lemma 4 A write-latency-free read operation takes at most 2∆ time units.

Proof Let pi be a process that issues a write-latency-free read operation, and τr be
its starting time. Moreover, Let τw the starting time of the last preceding write. As
the read is write latency-free, we have τw + ∆ < τr. Moreover, as messages take
at most ∆ time units, and the writer did not crash when executing the write, each
non-crashed process pk received the message WRITE(x,−) (sent by the preceding
write at time τw +∆ < τr), broadcast it (line 8), and updated its local variables such
that we have wsnk = x (lines 7-11) at time τw +∆ < τr. Hence, all the messages
STATE() received by the reader pi carry the write sequence number x. Moreover, due
to the broadcast of line 8 executed by each correct process, we have swsni = x at
some time τw + 2∆ < τr +∆. It follows that the predicate of line 5 is satisfied at pi
within 2∆ time units after it invoked the read operation. 2Lemma 4

Lemma 5 A read operation which is not write-latency-free, and during which the
writer does not crash during the interfering write operation, takes at most 3∆.

Proof Let us consider a read operation that starts at time τr, concurrent with a write
operation that starts at time τw and during which the writer does not crash. From
the read operation point of view, the worst case occurs when the read operation is
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invoked just after time τw − ∆, let us say at time τr = τw − ∆ + ε. As a message
STATE(rsn,−) is sent by return when a message READ(rsn) is received, the mes-
sages STATE(rsn,−) received by pi by time τr +2∆ can be such that some carry the
sequence number x (due to last previous write) while others carry the sequence num-
ber x+ 1 (due to the concurrent write)4. Hence, maxwsn = x or maxwsn = x+ 1
(predicate of line 5). If maxwsn = x, we also have swsni = x and pi terminates
its read. If maxwsn = x + 1, pi must wait until swsni = x + 1, which occurs at
the latest at τw + 2∆ (when pi receives the last message of the (n − t) messages
WRITE(y,−) which makes true the predicates of lines 9-10, thereby allowing the
predicate of line 5 to be satisfied). When this occurs, pi terminates its read operation.
As τw = τr +∆ − ε, pi returns at the latest τr + 3∆ − ε time units after it invoked
the read operation. 2Lemma 4

When the writer crashes while executing a write operation. The problem raised by
the crash of the writer while executing the write operation is when it crashes while
broadcasting the message WRITE(x,−) (line 1): some processes receive this mes-
sage by ∆ time units, while other processes do not. This issue is solved by the prop-
agation of the message WRITE(x,−) by the non-crashed processes that receive it
(line 8). This means that, in the worst case (as in synchronous systems), the message
WRITE(x,−) must be forwarded by (t + 1) processes before being received by all
correct processes. This worst scenario may entail a cost of (t+ 1)∆ time units.

Algorithm 2 Time-efficient read in case of concurrent writer crash
when WRITE(wsn, v) or STATE(rsn,wsn, v) is received do
(7) if (wsn > wsni) then regi ← v; wsni ← wsn; broadcast WRITE(wsn, v) end if;
(8) if (not yet done) then broadcast WRITE(wsn, v) end if;
(9) if

(
WRITE(wsn,−) received from (n− t) different processes

)
(10) then if (wsn > swsni) ∧ (not already done) then swsni ← wsn; resi ← v end if
(11) end if.

when READ(rsn) is received from pj do
(12) send STATE(rsn,wsni, regi) to pj .

Algorithm 2 presents a simple modification of Algorithm 1, which allows a fast
implementation of read operations whose executions are concurrent with a write op-
eration during which the writer crashes. The modifications are underlined.

When a process pi receives a message READ(), it now returns a message STATE()
containing an additional field, namely the current value of regi, its local copy of
REG (line 12).

When a process pi receives from a process pj a message STATE(−, wsn, v), it
uses it in the waiting predicate of line 5, but executes before the lines 7-11, as if this
message was WRITE(wsn, v). According to the values of the predicates of lines 7, 9,

4 Messages STATE(rsn, x) are sent by the processes that received READ(rsn) before τw , while the
messages STATE(rsn, x+1) are sent by the processes that received READ(rsn) between τw and τr+∆ =
τw + ε.
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and 10, this allows pi to expedite the update of its local variables wsni, regi, swsni,
and resi, thereby favoring fast termination.

The reader can check that these modifications do not alter the proofs of Lemma 1
(termination) and Lemma 2 (atomicity). Hence, the proof of Theorem 1 is still correct.

Lemma 6 A read operation which is not write-latency-free, and during which the
writer crashes during the interfering write operation, takes at most 4∆ time units.

Proof Let τr be the time at which the read operation starts. As in the proof of
Lemma 4, the messages STATE(rsn,−,−) received pi by time τr + 2∆ can be such
that some carry the sequence number wsn = x (due to last previous write) while
some others carry the sequence number wsn = x + 1 (due to the concurrent write
during which the writer crashes). If all these messages carrywsn = x, the read termi-
nates by time τr +2∆. If at least one of these messages is STATE(rsn, x+1,−), we
havemaxwsn = x+1, and pi waits until the predicate swsni ≥ maxwsn (= x+1)
becomes true (line 5).

When it received STATE(rsn, x+1,−), if not yet done, pi broadcast the message
WRITE(rsn, x + 1,−), (line 8 of Algorithm 2), which is received by the other pro-
cesses within ∆ time units. If not yet done, this entails the broadcast by each correct
process of the same message WRITE(rsn, x + 1,−). Hence, at most ∆ time units
later, pi has received the message WRITE(rsn, x+ 1) from (n− t) processes, which
entails the update of swsni to (x+1). Consequently the predicate of line 5 becomes
satisfied, and pi terminates its read operation.

When counting the number of consecutive communication steps, we have: The
message READ(rsn) by pi, followed by a message STATE(rsn, x+1,−) sent by some
process and received by pi, followed by the message WRITE(rsn, x + 1) broadcast
by pi, followed by the message WRITE(rsn, x + 1) broadcast by each non-crashed
process (if not yet done). Hence, when the writer crashes during a concurrent read,
the read returns within at most τr + 4∆ time units. 2Lemma 6

Theorem 2 The algorithm described in Algorithm 1, modified as indicated in Algo-
rithm 2, implements a time-efficient SWMR atomic register in the distributed system
model CAMPn,t[t < n/2].

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 3,
Lemma 4, Lemma 5, and Lemma 6 (time-efficiency). 2Theorem 2

6 Practical Implications: a System’s Viewpoint

The algorithm presented in this paper shares many similarities with the well-known
ABD algorithm. ABD is at the basis of real-life implementations of scalable repli-
cated storage services used in today’s large data centers and clouds, and distributed
shared memory systems. Keeping as close as possible to the design ideas of the orig-
inal algorithm eases the integration of the proposed ideas in implemented systems.
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While the notion of a time-efficient algorithm has a theoretical interest —the
lower bounds and the worst cases are not the “end of the road”— its practical impli-
cation is much more important.

In all possible scenarios that may happen in an actual execution, the worst case
scenarios in terms of message transfer delays and asynchrony patterns are usually
rare. From a practical viewpoint, it is more important to optimize cases that occur
regularly than just focus on those worst case scenarios. What we show with this al-
gorithm is that it possible to match the lower bound, whatever asynchrony pattern
happens in the system, and still provide a fast and time-efficient solution when the
system is more synchronous. The price to pay for optimizing those good cases is
an increase of the message complexity of a write operation, making the algorithm
well suited for read-dominated applications that run on almost always synchronous
systems.

Indeed, many real-life systems experience lots of “stability” periods during which
the results described in this paper apply —cloud systems deployed by Google, Apple,
Facebook, Amazon and Microsoft run on dedicated in-house hardware solutions, and
are not purely asynchronous. With regards to IoT applications, sensor networks usu-
ally have a synchronous mode of operation in order to reduce energy consumption:
a Time-Division Multiple Access (TDMA) communication scheme allows sensors to
sleep most of the time and wake up at predefined time slots to communicate.

7 Conclusion

This work presented a new distributed algorithm that implements an atomic read/write
register on top of an asynchronous n-process message-passing system in which up to
t < n/2 processes may crash. When designing it, the constraints we imposed on this
algorithm were (a) from an efficiency point of view: provide time-efficient implemen-
tations for read and write operations, (b) and from a design principle point of view:
remain “as close as possible” to the flagship ABD algorithm introduced by Attiya,
Bar-Noy and Dolev [2].

Table 1 recapitulates the “time-efficiency” property of the proposed algorithm.
Under the “upper bound ∆ on message transfer delays”, any write operation takes
then at most 2∆ time units, and a read operation takes at most 2∆ time units when
executed in good circumstances (i.e., when there is no write operation concurrent
with the read operation). Hence, the inherent cost of an operation is a round-trip
delay, always for a write and in favorable circumstances for a read. A read operation
concurrent with a write operation during which the writer does not crash, may require
an additional cost of ∆, which means that it takes at most 3∆ time units. Finally, if
the writer crashes during a write concurrent with a read, the read may take at most
4∆ time units. This shows clearly the incremental cost imposed by the adversaries
(concurrency of write operations, and failure of the writer).

It is important to remind that the proposed algorithm remains correct in the pres-
ence of any asynchrony pattern. Its time-efficiency features are particularly interest-
ing when the system has long synchrony periods.
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Cost of the operations according to upper bound ∆
the underlying synchrony assumption on transfer delays
write operation 2∆
read operation (no concurrent write) 2∆
read operation (concurrent write) 3∆
read operation (conc. crashing write) 4∆

Table 1 Summary for the upper bound delay assumption

Differently from the proposed algorithm, the ABD algorithm does not display
different behaviors in different concurrency and failure patterns. In ABD, the duration
of all write operations is upper bounded by 2∆ time units, and the duration of all read
operations is upper bounded by 4∆ time units. The trade-off between ABD and our
algorithm lies the message complexity, which isO(n) in ABD for both read and write
operations, while it is O(n2) for a write operation and O(n) for a read operation in
the proposed algorithm. Hence our algorithm is particularly interesting for registers
used in read-dominated applications run on systems that are often synchronous.
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