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Local Input-to-State Stabilization of 1-D Linear Reaction-Diffusion Equation
with Bounded Feedback

Aneel Tanwani Swann Marx Christophe Prieur

Abstract— The problem of robust stabilization with bounded
feedback control is considered for a scalar reaction-diffusion
system with uncertainties in the dynamics. The maximum value
of the control input acting on one of the boundary points has
to respect a given bound at each time instant. It is shown
that, if the initial condition and the disturbance satisfy the
certain bounds (computed as a function of the bound imposed
on the control input), then the proposed control respects the
desired saturation level and renders the closed-loop system
locally input-to-state stable, that is, the trajectories with certain
bound on the initial condition converge to a ball parameterized
by certain norm of the disturbance.

Index Terms— Boundary controlled PDEs; input-to-state sta-
bility; bounded feedback; Lyapunov methods.

AMS Classification Codes— 93C20; 93D05; 93D09.

I. INTRODUCTION

Over the past decade, there has been a growing emphasis
on generalizing control-theoretic methods for analysis and
design of infinite-dimensional systems modeled by partial
differential equations (PDEs). Design of stabilizing feedback
controllers is one area where sufficient progress has been
made. But, from implementation point of view, it is important
that such controllers possess some robustness properties and
satisfy the constraints imposed by the physical limitations of
the devices. With this motivation, this article addresses the
problem of feedback stabilization in scalar reaction-diffusion
with uncertainties in dynamics. The feedback control not
only robustly stabilizes the system, but must also respect the
constraint that at each time its maximum value is bounded.

When dealing with finite-dimensional systems described
by ordinary differential equations (ODEs), the notion of
input-to-state stability (ISS) very aptly captures the robust-
ness due to uncertainties in dynamics. The paper [20],
which coined this term, also describes the procedure for
constructing robust feedback laws (in ISS sense). Using this
classical recipe as a template, we address the question of
constructing feedback laws for stabilizing one-dimensional
boundary controlled PDE with reaction-diffusion equation.
Due to the presence of uncertainties in the dynamics, the
global feedback that we design must render the system robust
in ISS sense. The notion of ISS for infinite-dimensional sys-
tems has indeed gathered some attention for different classes
of PDEs. The references [14], [15] treat the disturbances
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appearing in dynamics of the equation, whereas the more
recent papers [7], [8], and [22] deal with ISS with respect
to boundary disturbances.

On the other hand, motivated by the practical implemen-
tation, there is an added requirement that we impose on the
control: the absolute value of the control input at each time
must be less than or equal to a prescribed value. This allows
us to address systems where the actuator may saturate and the
control effort that can be injected into the system is limited.
Intuitively speaking, if the open-loop system is unstable and
the feedback is linear, we can only stabilize the system if the
initial condition is not too large in norm while respecting the
prescribed constraint on the maximum value of the control.
Thus, it is reasonable to work with the notion of local
stability, or bounded region of attractions, when the feedback
control is bounded. This is the point of view adopted in
several works in finite-dimensional ODEs. Moreover, even if
the open-loop system is Lyapunov stable, simply saturating a
stabilizing feedback can lead to undesirable behavior for the
asymptotic stability of the closed-loop system (see e.g., [4]).
In these cases, the feedback-law has to be designed taking
into account the nonlinearity (see e.g. the so-called nested
saturation solution given in [23] for the chain of integrators
and generalized in [21], and [12] for another solution based
on optimization). A third viewpoint that exists in dealing
systems with saturation is that the nonlinearity introduced
by the saturation functions satisfies sector conditions. The
sector is a partition of the state-space where the saturation
is bounded by a linear function. Hence, when the trajectory
of a dynamical system evolves in the sector, one can recover
the global asymptotic stability properties.

The goal of this paper is to design a stabilizing feedback
control for a boundary controlled reaction-diffusion equation
with uncertainties, so that the resulting control stays bounded
and the closed-loop system is ISS with respect to the sys-
tem uncertainties. The finite-dimensional approach that we
generalize here relates to that of local stability, that is, our
system is open-loop unstable and find bounds on the initial
conditions and the uncertainties which render the closed-loop
system stable in ISS sense.

To the best of our knowledge, analysis of infinite-
dimensional systems subject to saturations started with [19]
and [18] and it is only very recently that other works such
as [11] and [16] have appeared. In [19] and [18], global
asymptotic stability of the closed-loop system is tackled
using nonlinear semigroup theory. Moreover, [11] and [16]
use similar results, but for a wider class of saturations. In
[11], the Korteweg-de Vries equation (a nonlinear PDE) is



considered and some Lyapunov arguments are used together
with a characterization of the sector condition to establish the
global asymptotic stability of the closed-loop system. Some
nonlinear open-loop abstract control systems are studied in
[10], where an infinite-dimensional version of the LaSalle
Invariance Principle is applied to prove global asymptotic
stability.

All these papers deal with open-loop stable systems.
This explains why these results deal with global asymptotic
stability. For results with bounded region of attractions using
saturated control, the recent article [6] addresses asymptotic
stability for a coupled heat-ODE equation with a feedback
law based on the backstepping method modified due to
saturation. The aim of our paper is to study the asymptotic
stability of a 1-D linear reaction-diffusion equation with
bounded feedback and subjected to a distributed disturbance.
The controllability properties of this system have been stud-
ied in [2] and [3]. The problem of feedback stabilization
with delayed boundary control for such systems is studied
in [17]. In these papers, it is emphasized that only a finite
part of the eigenvalues of the system are unstable so that,
in general, one designs a feedback to compensate only for
these eigenvalues.

Our point of departure is a system, which in open-loop,
can be decomposed into stable and unstable components after
a suitable transformation. The number of unstable modes are
finitely many, and thus, the unstable behavior can be modeled
by a finite-dimensional ODE. We adopt the viewpoint that
for unstable ODEs, bounded feedback laws can be designed
with bounded region of attractions, and one can compute
explicit bounds on the initial conditions which can be driven
to the origin asymptotically with bounded feedbacks. This
fundamental idea allows us to construct bounded feedback
for the unstable subsystem in our PDE and we show that such
feedbacks also achieve ISS property. We then combine this
feedback stabilized component with the stable component,
and analyze the robustness of the whole system in ISS sense.

In the remainder of this paper, we discuss the system
class and problem formulation in Section II. The technical
development for solving the proposed problem appears in
Section III along with the main result appearing at the end
of that section. Some concluding remarks and perspective
directions are provided in Section IV.

II. PROBLEM FORMULATION

This section introduces the class of PDEs and the related
stability notions, which are studied in this paper. We then
formulate the problem which is then solved in the subsequent
sections.

A. System Class

The class of PDEs studied in this paper are described
by one-dimensional linear reaction-diffusion equation with
distributed uncertainties

yt(t, z) = yzz(t, z) + c(z)y(t, z) + d(t, z) (1a)

where y : [0,∞) × [0, 1] → R is the state trajectory, and
c ∈ L2((0, 1);R). The disturbance d appearing in (1a) due
to unmodeled dynamics is assumed to be such that d(t, ·) ∈
L2((0, 1);R) for each t ≥ 0. The boundary conditions with
the control input u are given by

y(t, 0) = 0, y(t, 1) = u(t), (1b)

and the initial condition is

y(0, z) = y0(z), z ∈ (0, 1) (1c)

with y0 ∈ H2((0, 1);R). For system (1), the objective is to
design the control input u such that the closed-loop system
is robustly stable with respect to the disturbance d.

B. Stability notions

The stability notions of interest is a a generalization of
ISS, which has been extensively studied for ODEs. For the
descriptions of notation, or functions used in formulating the
definition, we refer the reader to [9, Chapter 4].

Definition 1: For a given input t 7→ u(t), system (1) is
called ISS with respect to d if there exist a class K function
γ and a class KL function β such that the solution y to the
Cauchy problem (1) satisfies

‖y(t, ·)‖L2((0,L),R) ≤ β(‖y0(·)‖L2((0,L),R), t)

+ γ
(
‖d(t, ·)‖L2((0,L),R)

)
(2)

for each t ≥ 0. We say that the system (1) is locally ISS if
there exists M > 0 such that (2) holds only for y0 satisfying

‖y0(·)‖L2((0,L),R) ≤M (3)

and for each t ≥ 0,

‖d(t, ·)‖L2((0,L),R) ≤M. (4)

As already mentioned, the notion of ISS in infinite dimen-
sional systems is a generalization of definitions developed in
the case of ODEs, and several research directions have been
pursued in the literature to study ISS for PDEs. However,
the notion of local ISS has attracted relatively less attention
and certain results in this direction can be found in [13]. For
our purposes, local ISS comes up rather naturally because
we are dealing with open-loop unstable systems and the
feedback control has to respect some specific bounds. For
this reason, the trajectories must be confined to a bounded
region of attraction which requires us to work with bounded
initial conditions and bounded disturbances.

C. Problem Statement

Without the control input, that is, with u ≡ 0, the system
described in (1) is not necessarily stable if one doesn’t
impose any sign restrictions on the functions c(·). Our basic
goal is to design a boundary control feedback law such that
the resulting system is stable in the sense of Definition 1.
For the case of bounded feedback, we are only interested in
local stability notions.

Problem: Let σ > 0 be given. Does there exist an operator

k : H2((0, 1);R)→ R



and a constant M(σ) > 0 such that the feedback control u
defined as

u(t) := k(w(t, ·))

has the property that |u(t)| ≤ σ, for each t ≥ 0, and for each
initial condition y0 and the disturbance d satisfying

‖y0‖L2((0,1),R) ≤M(σ),

‖d(t, ·)‖L2((0,L),R) ≤M(σ), ∀ t ≥ 0,

the closed-loop system (1) is locally ISS?
A solution to this problem is developed in the next section

where we arrive at the main result after working out a series
of intermediate steps. The kind of feedback we construct
is linear and static, and we provide explicit bounds on the
constant M(σ), which increase linearly with σ, implying
that the volume of the region of attractions increases as
the allowed saturation margin gets large. Moreover, the
robustness margin of the closed-loop system increases with
σ. These observations are indeed consistent with what is
observed in the literature on finite-dimensional ODEs with
bounded feedbacks.

III. SOLUTION METHODOLOGY

This section develops the solution to the problem stated
in the previous section by following a sequence of steps: we
first rewrite the system in coordinates with unforced bound-
ary conditions; then by introducing a spectral decomposition,
we represent the unstable modes of the system by an ODE; a
bounded feedback law is defined for this finite-dimensional
system which is locally ISS; and finally we study the sta-
bility properties of the entire system using Lyapunov-based
techniques. Similar roadmap is adopted in [17] for studying
stabilization problem with delayed feedback control.

A. System Transformation

As a first step in developing the solution to the stabilization
problem, introduce the transformation

w(t, z) = y(t, z)− z u(t)

which results in

wt(t, z) = wzz(z) + c(z)w(z) + c(z)zu(t)− zu̇(t) + d(t, z)
(5a)

with the boundary condition

w(t, 0) = w(t, 1) = 0, (5b)

and the initial condition

w(0, z) = y(0, z)− zu(0). (5c)

By defining the operator A to be

(Aw)(z) := wzz(z) + c(z)w(z)

with the domain dom(A) := H2((0, 1);R) ∩ H1
0((0, 1);R),

and introducing the functions a, b ∈ L2((0, 1);R) as

a(z) := c(z)z, b(z) := z, (6)

we can rewrite (5a) as

wt(t, z) = (Aw)(z) + a(z)u(t)− b(z)u̇(t) + d(t, z). (7)

The operator A in (7) is self-adjoint and has a compact
inverse. We, therefore, consider a Hilbert basis {ej}j∈N of
L2((0, 1);R) consisting of eigenfunctions of A, associated
with the sequence of distinct eigenvalues {λj}j∈N. The
eigenvalues are such that λ1 > λ2 > · · · and limj→∞ λj =
−∞, and for each j ≥ 1, the corresponding eigenfunction
ej ∈ H1

0((0, 1);R) ∩ C2([0, 1];R).
It is now possible to write the solution w(t, ·) as a

convergent series in eigenfunctions {ej}j∈N, so that

w(t, ·) :=

∞∑
j=1

wj(t)ej ,

where

wj(t) := 〈w(t, ·), ej(·)〉L2(0,1), j ∈ N.

Similarly, by assuming that d(t, ·) is sufficiently regular, we
can write

d(t, ·) :=

∞∑
j=1

dj(t)ej , dj(t) := 〈d(t, ·), ej(·)〉L2(0,1)

Also, by letting

aj := 〈a, ej〉L2(0,1), bj := −〈b, ej〉L2(0,1)

for each j ∈ N, we can rewrite (7) as

ẇj(t) = λjwj(t) + aju(t) + bj u̇(t) + dj(t), j ∈ N. (8)

By considering u as a state, and letting v := u̇, we can think
of (8) as an infinite-dimensional linear system controlled by
v. Let n ∈ N be the number of non-negative eigenvalues
associated to the operator A so that

λ1 > λ2 > . . . λn ≥ 0

and λk < 0 for k ≥ n+ 1. We now introduce Rn+1-valued
vector x as follows:

x(t) := col(u(t), w1(t), · · · , wn(t))

and focus our attention on the following finite dimensional
system:

u̇(t) = v(t)

ẇ1(t) = λ1w1(t) + a1u(t) + b1v(t) + d1(t)

...
ẇn(t) = λnwn(t) + anu(t) + bnv(t) + dn(t)

where we only took the first n equations of system (8). This
finite-dimensional system can be written in a more compact
form as

ẋ(t) = Ax(t) +Bv(t) + d̂(t) (9)



where the matrices A,B are

A :=


0 0 0 · · · 0
a1 λ1 0 · · · 0
...

...
...

. . .
...

an 0 0 · · · λn

 , B :=


1
b1
...
bn

 (10)

and the vector d̂ is defined as

d̂(t) := col(d1(t), d2(t), · · · , dn(t)).

Realizing that (8), along with (5b) and (5c), is an equivalent
representation of (1), we now proceed to find a stabilizing
control for the unstable modes of (8), which are represented
by the ODE (9).

B. Bounded Stabilizing Control

We now design a bounded feedback control for system (9).
While this system is controlled by v, it must be noted that
the real control u is a part of the vector x. Thus, it suffices
to design v such that x satisfies specific bounds. This will
ensure that a bounded u stabilizes the system (9) and the
closed-loop system (9) is locally ISS.

To proceed with the design of v, it is of course fundamen-
tal to analyze the existence of stabilizing feedback laws. This
existence is indeed established by the following statement.

Lemma 1: The pair (A,B) in (9) is controllable and
hence, there exists K ∈ R1×Rn+1

such that the matrix
(A+BK) is Hurwitz.

This lemma allows us to work with the input v = Kx and
we can show that it has the desired robustness properties
with respect to the disturbance d.

Proposition 1: Let K be such that (A+BK) is Hurwitz
and P be the symmetric positive definite matrix satisfying

(A+BK)>P + P (A+BK) ≤ −Q (11)

for some symmetric positive definite matrix Q. Let d :=
‖d̂‖L∞([0,∞);R). The solution to system (9), with v = Kx,
has the property that

|x(t)| ≤ max

{
β(|x(0)|, t), 2λmax(P )

λmin(Q)
d

}
, (12)

for some class KL function β. Furthermore, for a given σ >
0, consider the ellipsoid

Ω0 =
{
x ∈ Rn

∣∣x>Px ≤ σ2λmin(P )
}
,

and assume that

d ≤ γ λmin(Q)

2λmax(P )

√
λmin(P )

λmax(P )
σ (13)

for some 0 < γ < 1. The solution x to system (9) with
x(0) ∈ Ω0, and d satisfying (13) is such that

|x(t)| ≤ max

{
exp(−α1t)σ,

√
λmin(P )

λmax(P )
σ

}
(14)

for some α1 > 0, and in particular, the control u satisfies
the bound

|u(t)| ≤ σ

for each t ≥ 0.
Proof: Consider the function W : Rn+1 → R defined

as W (x) = x>Px, where P is the symmetric positive
definite matrix satisfying (11). By substituting v = Kx in
(9), it is then seen that

d

dt
W (x(t)) = −x(t)>Qx(t) + 2x>PDd̂(t)

≤ −λmin(Q)|x(t)|2 + 2λmax(P )|x| · |Dd̂(t)|

≤ −λmin(Q)|x(t)|
(
|x(t)| − 2λmax(P )

λmin(Q)
d

)
.

The bound in (12) follows by observing that the expression
on the right-hand side is strictly negative for

|x(t)| > 2λmax(P )

λmin(Q)
d.

Next, let us introduce the ball Bγ ⊂ Rn+1 as

Bγ :=

{
x ∈ Rn+1

∣∣ |x|2 ≤ λmin(P )

λmax(P )
γ2σ2

}
,

then it is immediately seen that Bγ ⊂ Ω0 and the inclusion
is strict since γ < 1.

From the expression of d
dtW (x(t)), it follows that

d

dt
W (x(t)) ≤ −λmin(Q)|x(t)|

(
|x(t)| − γ

√
λmin(P )

λmax(P )
σ

)
and thus for each x ∈ Ω0 \ Bγ=1

d

dt
W (x(t)) ≤ −λmin(Q)(1− γ)

√
λmin(P )

λmax(P )
σ|x(t)|.

In particular, the set Ω0 is forward invariant and we observe
that |x| ≤ σ, for each x ∈ Ω0. This fact establishes the
desired bound on |x(t)| in (14). Since control u is a part of
the vector x, we obtain

|u(t)| = |x1(t)| ≤ |x(t)| ≤ σ

for each t ≥ 0.

C. Robustness of the Closed-loop system

Having designed a stabilizing control for the finite-
dimensional unstable component, we now analyze the closed-
loop system (7) by substituting u̇ = Kx, and u(0) = 0.
Toward this end, we introduce the Lyapunov function V :
Rn+1 × L2((0, 1);R)→ R≥0 given by

V (x,w) := µx>Px− 1

2
〈w,Aw〉L2((0,1),R)

= µx>Px− 1

2

∞∑
j=1

λjw
2
j

for some constant µ > 0 (large enough) to be specified in
the sequel.

Because of the quadratic term with the negative sign in the
Lyapunov function V , we first make sure that V is positive
definite. This is indeed the case as shown in the following
lemma:



Lemma 2: There exist constants C1 and C2 such that, for
each t ≥ 0,

C1

(
|u(t)|2 + ‖w(t, ·)‖2L2((0,1);R)

)
≤ V (x(t), w(t)) ≤

C2

(
|u(t)|2 + ‖w(t, ·)‖2L2((0,1);R)

)
. (15)

Proof: Let us rewrite the vector x as

x = col(u,w1,...,n).

Since P is symmetric and positive definite, there are con-
stants c1 and c2 such that

c1(|u|2 + |w1,...,n|2) ≤ x>Px ≤ c2(|u|2 + |w1,...,n|2).

On the other hand, we can write

−1

2

∞∑
j=1

λjw
2
j = −1

2

n∑
j=1

λjw
2
j −

1

2

∞∑
j=n+1

λjw
2
j

where the first term on the right-hand side is negative, but the
second term is strictly positive since λj < 0 for j ≥ n+ 1.
We can find µ > 0 large enough such that

µ c1|w1,...,n|2 −
1

2

n∑
j=1

λjw
2
j ≥ c3

n∑
j=1

λjw
2
j

for some c3 > 0, and at the same time there exists c4 > 0
such that

µ c2|w1,...,n|2 −
1

2

n∑
j=1

λjw
2
j ≤ c4

n∑
j=1

λjw
2
j .

Combining the last two inequalities, we get

c1|u|2 + c3

n∑
j=1

λjw
2
j +

n∑
j=1

λjw
2
j ≤ V (x,w) ≤

c2|u|2 + c4

n∑
j=1

λjw
2
j +

n∑
j=1

λjw
2
j

from where one can find constants C1, C2 such that (15)
holds.

The next step is to look at the derivative of the function
V (x,w) and analyze it to show that the desired stability
result indeed holds.

Lemma 3: Consider system (7) and (9) with v = Kx and
u(0) = 0. If x(0) ∈ Ω0 and d̂ is such that (13) holds, then
there exists µ > 0 and α2 > 0, such that

d

dt
V (x(t), w(t)) ≤ −α2V (x(t), w(t)) + ‖d(t, ·)‖2L2((0,1);R)

for each t ≥ 0, and |x(t)| ≥
√

λmin(P )
λmax(P )σ.

Proof: Recalling that V (x,w) = µW (x) −
1
2 〈w,Aw〉L2((0,1);R), we observe that

d

dt
V (x(t), w(t)) = µ

d

dt
W (x(t))

− 〈Aw(t),Aw(t)〉L2((0,1),R)

− 〈a(·)u(t) + b(·)u̇(t),Aw(t)〉L2((0,1),R)

− 〈d(t, ·),Aw(t)〉L2((0,1),R). (16)

We have already analyzed the first term on right-hand side in
the proof of Proposition 1. We analyze the remaining terms
using the Young’s inequality, and the fact that |u(t)| ≤ |x(t)|
and u̇(t) = Kx(t). We thus obtain∣∣〈a(·)u(t),Aw(t, ·)〉L2((0,1);R)

∣∣ ≤ ‖a‖2L2((0,1);R)|x(t)|2

+
1

4
‖Aw(t, ·)‖2L2((0,1);R)

and similarly,∣∣〈b(·)u̇(t),Aw(t, ·)〉L2((0,1);R)
∣∣ ≤ 1

4
‖Aw(t, ·)‖2L2((0,1);R)

+ ‖b‖2L2((0,1);R)‖K‖ |x(t)|2.

Finally, the term involving disturbance d can be bounded as∣∣〈d(t, ·),Aw(t, ·)〉L2((0,1);R)
∣∣ ≤ 1

4
‖Aw(t, ·)‖2L2((0,1);R)

+ ‖d(t, ·)‖2L2((0,1);R).

Substituting these expressions in (16), we get

d

dt
V (x(t), w(t)) ≤ µ d

dt
W (x(t))− 1

4
‖Aw(t, ·)‖2L2((0,1);R)

+ ‖a‖2L2((0,1);R) + ‖K‖ ‖b‖2L2((0,1);R)

+ ‖d(t, ·)‖2L2((0,1);R).

From the proof of Proposition 1, we established that x(t) ∈
Ω0 for each t ≥ 0 which gives |x(t)| ≤ σ, and for |x(t)| ≥√

λmin(P )
λmax(P )σ, we have

d

dt
W (x(t)) ≤ −λmin(Q)(1− γ)

√
λmin(P )

λmax(P )
σ|x(t)|

Choose µ in the definition of V such that

µλmin(Q)(1− γ)

√
λmin(P )

λmax(P )
> ‖a‖2L2((0,1);R)

+ ‖b‖2L2((0,1);R)‖K‖ (17)

then it follows that, there exists C3 > 0 such that for |x(t)| ≥√
λmin(P )
λmax(P )σ, we have

d

dt
V (x(t), w(t)) ≤ −C3W (x(t))−1

4
‖Aw(t, ·)‖2L2((0,1);R)

+ ‖d(t, ·)‖2L2((0,1);R).

One can now introduce a constant α2 > 0 such that

d

dt
V (x(t), w(t)) ≤ −α2V (x(t), w(t)) + ‖d(t, ·)‖2L2((0,1);R)

which is the desired inequality.

The lemma thus establishes that for bounded initial condi-
tions and bounded disturbance, the derivative of V is the sum
of a negative definite term and a positive definite function
of the pointwise L2-norm of the disturbance at each time
instant. Drawing analogy from the literature on ISS for
ODEs, we call V the ISS-Lyapunov function.



D. Main Result

The development of this section can now be put together
to present the solution to the problem posed in Section II.
To state the main result, we first introduce the map π :
L2((0, 1)) → Rn which denotes the vector of coefficients
obtained by orthogonal projection of a function along the
basis vectors e1, · · · , en of L2((0, 1);R), that is,

π1(w) = col(w1, · · · , wn), wj = 〈w, ej〉L2((0,1);Rn).

Next, it is observed that, by choosing, u(0) = 0, we have

w(0, z) = y(0, z) = y0(z).

Also, the vector x appearing in (9) can be written in terms
of y as

x1(t)
x2(t)

...
xn+1(t)

 =


u(t)

〈y(t, ·)− b(·)u(t), e1(·)〉L2((0,1);R)
...

〈y(t, ·)− b(·)u(t), e1(·)〉L2((0,1);R)

 .

(18)
The main result of this paper can now be stated as follows:

Theorem 1: Consider system (1) and let σ > 0 be fixed.
With A,B given in (10), let P be a symmetric positive
definite matrix, and K be such that (11) holds. Choose the
control input u such that

u(0) = 0, u̇(t) = Kx(t)

where x(t) is given in (18). Assume that the initial condition
y0 satisfies

(π1(y0))>P (π1(y0)) ≤ σ2λmin(P ),

and for each t ≥ 0, d(t, ·) is bounded in the sense that

|π1(d(t, ·))| ≤ γ λmin(Q)

2λmax(P )

√
λmin(P )

λmax(P )
σ

for some 0 ≤ γ < 1. Then, the closed-loop system (1) is
locally ISS with respect to the disturbance d.

IV. CONCLUSION

In this paper, it has been proved that, for bounded in-
puts and disturbances, the 1D reaction-diffusion equation is
locally ISS with a bounded feedback law. This result has
been obtained by synthesizing the control law to stabilize
the finite-dimensional unstable part of the system. Then, by
analyzing an infinite-dimensional Lyapunov function, it is
shown that the entire system is locally ISS with the proposed
feedback law.

For future research lines, we would like to study in a more
precise way the basin of attraction of this system. Adapting
the techniques from the literature on finite dimensional sys-
tems, it might be possible to obtain more refined estimates for
the basin of attraction. This potentially allows the possibility
for the control to be saturated. It is also of interest to look
into optimization tools that have been developed for approx-
imating basin of attractions as it is possible to transform
this problem into a polynomial optimization, see [5] for

finite-dimensional counterparts. Also, as an extension to the
framework developed here, it is reviewed in [1] that there
exists a finite-dimensional unstable part for the linearized
Kuramoto-Sivashinsky equation. Adapting the methodology
presented here could lead to similar results for this equation.
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