Nouha Abid 
  
Silvano Dal 
  
A Verified Approach to Checking Real-Time Patterns on Fiacre Programs

An issue limiting the adoption of model-checking technologies by the industry is the ability, for non-experts, to express their requirements using the property languages supported by verification tools. This has motivated the definition of dedicated assertion languages for expressing temporal properties at a higher level. However, only a limited number of these formalisms support the definition of timing constraints and even fewer of them take into account the complexity of checking properties on a system. In this paper, we propose a complete framework that includes: the definition of timed patterns; a tool chain for checking timed properties; and methods to prove the correctness of our verification approach.

Introduction

An issue limiting the adoption of model-checking technologies by the industry is the difficulty, for non-experts, to express their requirements using the specification languages supported by the verification tools. Indeed, there is often a significant gap between the boilerplates used in requirements statements and the low-level formalisms used by model-checking tools; the latter usually relying on temporal logic. This limitation has motivated the definition of dedicated assertion languages for expressing properties at a higher level. However, only a limited number of assertion languages support the definition of timing constraints and even fewer are associated to an automatic verification tool, such as a model-checker. Moreover, few works consider the problem of checking the correctness of the verification approach. Who check the model-checkers!

In this paper, we propose a complete framework that includes: the definition of timed patterns; an approach for checking timed properties; and methods for proving the correctness of our verification approach. We have integrated our framework in a toolchain for Fiacre [START_REF] Berthomieu | Fiacre: an Intermediate Language for Model Verification in the Topcased Environment[END_REF], a formal modelling language for real-time, reactive systems. Our first contribution is the definition of a set of patterns that extends the specification language of Dwyer [START_REF] Dwyer | Patterns in property specifications for finitestate verification[END_REF] with hard, real-time constraints. For example, we define a pattern "Present A after B within [0,[START_REF] Berthomieu | The tool Tina -construction of abstract state spaces for Petri nets and time Petri nets[END_REF]" to express that event A must occur within 4 units of time (u.t.) of the first occurrence of B, if any. Our main objective is to propose an alternative to timed extensions of temporal logic during model-checking. Our patterns are designed to express general timing constraints commonly found in the analysis of real-time systems (such as compliance to deadlines; event duration; bounds on the worst-case traversal time; etc.). They are also designed to be simple in terms of both clarity and computational complexity. In particular, each pattern should correspond to a decidable model-checking problem.

Our second contribution is the definition of a verification approach based on modelchecking. Our approach is based on the use of observers in order to transform the verification of timed patterns into the verification of simpler LTL formulas. We define a set of observers for each pattern and compare them in order to choose the best one in practice. Our goal is to provide the most efficient observer in terms of verification time and system size growth. While the use of observers for model-checking is quite common, our contribution is original in several ways. The most novel aspect is that we formally check that our observers are correct (they provide an answer that is sound with respect to the semantics of patterns) and non-intrusive, meaning that observers cannot interfere with the observed system.

Our final contribution is to provide an integrated model-checking tool chain that can be used to check timed requirements. In our tool chain, Fiacre is used to express the model of the system while verification activities ultimately relies on Tina [START_REF] Berthomieu | The tool Tina -construction of abstract state spaces for Petri nets and time Petri nets[END_REF], the TIme Petri Net Analyzer. (Fiacre models have basically the same expressiveness than an extension of Time Petri Nets with data variables and priorities.)

Technical Backgrounds

Fiacre: we consider systems modeled using Fiacre, a formal specification language designed to represent both the behavioral and timing aspects of real-time systems. We give some examples of Fiacre programs in Sect. 4. Fiacre supports two of the most common communication paradigms: communication through shared variable and synchronization through (synchronous) communication ports. In the latter case, it is possible to associate time and priority constraints to communication over ports. Fiacre programs are stratified in two main notions: processes, which models structured activities, and components, which describes a system as a composition of processes, possibly in a hierarchical manner. A process is defined by a set of control states. Each state is associated with a set of transitions (introduced by the keyword from), that declares how variables are updated and which transitions may fire. The language includes deterministic constructs available in classical programming languages (assignments, conditionals, sequential composition, ...); non-deterministic constructs (choice and non-deterministic assignments); communication events on ports; and jump to next state. Timed Traces: patterns are used to express timing and behavioral constraints on the execution of a system. We base the semantics of patterns on the notion of timed traces, which are sequences mixing events and time delays. In our context, the observable events are fired transitions, the state of processes and the value of variables. We use a dense time model, meaning that we consider rational time delays and work both with strict and non-strict time bounds. In this setting, a timed trace σ is a possibly infinite sequence of events A, B, . . . and duration d(δ) with δ ∈ Q + . Given a finite trace σ and a-possibly infinite-trace σ , we denote σσ the concatenation of σ and σ . The semantics of Fiacre can also be defined as a set of timed traces. Given a real-time pattern P , we say that a system T satisfies the requirement P if all the traces of T hold for P .

MTL and FOTT: the semantics of a pattern will be expressed as the set of all timed traces where the pattern holds. A first approach to define set of traces is to use timed extensions of Linear Temporal Logic, for instance MTL [START_REF] Koymans | Specifying real-time properties with metric temporal logic[END_REF]. Nonetheless, this partially defeats one of the original goal of patterns, that is to circumvent the use of temporal logic in the first place. For this reason, we propose an alternative way for defining the semantics of patterns that relies on first-order formulas over traces. For instance, we can define the "scope" σ after A-that defines the part of a trace σ located after the first occurrence of A-as the trace σ 2 such that ∃σ

1 .(σ = σ 1 Aσ 2 ) ∧ (A / ∈ σ 1 )
. We believe that this second approach may ease the work of engineers that are not trained with formal verification techniques.

A Catalog of Real-Time Patterns

We have defined a catalog of patterns, using a hierarchical classification borrowed from Dwyer [START_REF] Dwyer | Online Repository of Specification Patterns[END_REF]. Patterns are built from five categories (existence, absence, universality, response and precedence) or can be composed using logical connectives. In each category, generic patterns may be specialized using scope modifiers-such as before, after, between-that limit the range of the execution trace over which the pattern must hold. Finally, timed patterns are obtained using one of two possible kinds of timing modifiers that limit the possible dates of events referred in the pattern: Within I which is used to constrain the delay between two given events to be in the time interval I and For duration D which is used to constrain the length of time during which a given condition holds (without interruption) to be greater than D.

Due to the somewhat large number of possible alternatives, we restrict this catalog to some examples of presence, absence and response patterns. Patterns that are not described here can be found in a long version of this paper [START_REF] Abid | Real-Time Specification Patterns and tools[END_REF]. For each pattern, we give its denotational interpretation based on First-Order formulas over Timed Traces (denoted FOTT in the following) and a logical definition based on MTL.

Present A after B within I This is an example of existence pattern, that is patterns used to express that, in every trace of the system, some events must occur. The pattern holds for traces such that A occurs t 0 units of time after the first occurrence of B, with t 0 ∈ I. The pattern is also satisfied if B never holds. MTL def.:

(♦B) ⇒ ( (¬A ∧ ¬B) U (A ∧ ¬B ∧ (¬B UI B)) ) FOTT def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B / ∈ σ1) ⇒ ∃σ3, σ4 . σ1 = σ3Aσ4 ∧ A / ∈ σ3 ∧ ∆(σ4) ∈ I Absent A before B for duration D
This is an example of absence pattern, that is patterns used to express that some condition should never occur. The pattern holds if no A occurs less than D u.t. before the first occurrence of B or if B does not occur.

MTL def.: ♦B ⇒ (A ⇒ ( [0,D] ¬B)) U B FOTT def.: ∀σ1, σ2, σ3, ω . (σ = σ1ωσ2Bσ3 ∧ B / ∈ σ1ωσ2 ∧ ∆(σ2) D) ⇒ ¬A(ω)
A leadsto first B within I This is an example of response patterns, that is patterns used to express "cause-effect" relationship. The pattern holds if every occurrence of A is followed by a B within time interval I (considering only the first occurrence of B after A).

MTL def.:

(A ⇒ (¬B) UI B) FOTT def.: ∀σ1, σ2 . (σ = σ1Aσ2) ⇒ ∃σ3, σ4 . σ2 = σ3Bσ4 ∧ ∆(σ3) ∈ I ∧ B / ∈ σ3

Checking the Correctness of Patterns Implementation

We propose to use observers for checking real-time patterns. In our tool chain, an observer is a Fiacre (sub-)program that monitors the behavior of the system and that can signal whether a requirement holds or not. For example the observer can enter in a special "error state". To check a timed pattern P , on a system, T , we graft the observer for P to the Fiacre program-we denote the resulting program (T P )-and test the reachability of error states using an LTL model-checker. Therefore, observers are used to transform the verification of timed patterns on T into the verification of simpler reachability properties on T P . More details about observers are given in [START_REF] Abid | Verification of Real-Time Specification Patterns on Time Transitions Systems[END_REF], where we have defined several observers for each pattern. The idea is not to provide a generic way of generating the observers from a formal definition of the pattern. Rather, we seek, for each pattern, to come up with the best possible candidate in practice.

In this paper, we give an example of observer for the pattern "Present A after B within [d1, d2[" (see Listing 1.1). The process observer monitors a system through two special ports, A and B, of type sync. The process is initially in state idle and moves to state start when event B occurs. When in state start for more than d 1 u.t., the observer moves to state watch (this is the meaning of the wait operator). The select operator is a non-deterministic choice, with unless coding priorities. Hence, in state watch, the observer moves to stop if an A occurs, unless d 2 -d 1 u.t. elapses, in which case it moves to error. As a consequence, the pattern is false whenever process Present can reach state error. This is equivalent to checking the LTL formula : ¬(Present/state error). To prove that the observer is correct, we need to prove that, for every system T , the program (T Present) can reach error if and only if there is a trace σ in T where the pattern does not hold. In [START_REF] Abid | Verification of Real-Time Specification Patterns on Time Transitions Systems[END_REF], we define a theoretical framework to prove exactly this kind of properties. Efforts are also under way to mechanize these proofs using the Coq proof assistant. Nonetheless, formal proofs of correctness can be quite tedious. Therefore, to detect possible problems with an observer early on (that is, before spending a lot of efforts doing a formal proof of correctness) we also propose a "graphical verification method". This is akin to debugging our observers.

Universal Program. In the remainder of this section, we take the example of the observer Present. The idea is to check the observer on a particular Fiacre program, called the universal program, that can generate all possible combinations of delays and events A and B. (This is much simpler than testing the observer with all possible programs.) We give an example of universal program in Listing 1.2. The process Universal has only one state and three possible transitions. Each transition changes the value of a shared integer variable, x. The first and second transitions of Universal can be fired without time constraints. In our context, A will be linked to the event "setting x to 1" and B to "setting x to 2". The third transition reset the value of x to 0 immediately. Graphical Verification. Using our tool chain, we can generate the (finite) state graph for the program (Universal Present). We display the resulting graph in Fig. 1 for the special case where d 1 = 4 and d 2 = 5. The state graph is generated with a "discrete time" abstraction, where special transitions (labeled with i) are used to model the flow of time: a transition i between two states denotes that 1 u.t. has passed. This is obtained using the Tina tool [START_REF] Berthomieu | The tool Tina -construction of abstract state spaces for Petri nets and time Petri nets[END_REF] with the flag -F1, which is used to generate the state graph including dense time models.

To debug the pattern "Present A after B within [4, 5[" we can simply check (visually) that after the first occurrence of a B (in state 2 of Fig. 1), and after 4 units of time (after 4 transitions labeled i), the system reachs a state (numbered 13 in the state graph) such that: (1) if we do not see an A before 1 u.t. pasess then we have an error; and (2) if we see an A then we will never see an error.

process Universal(&x : nat ) is states s0 from s0 select x := 1; to s0 [ ] x := 2; to s0 unless on (x <> 0) ; wait [0 ,0]; x := 0 ; to s0 end component Main is var

x : nat := 0 port A : sync is value (x == 1) , B : sync is value (x == 2) par Universal(&x) | | Present [A, B] end Listing 1.2. Universal program in Fiacre
This graphical verification method has some drawbacks. It relies on a discrete time model and it only works for fixed time intervals (we have to fix the value of d 1 and d 2 ). Nonetheless, it is usually enough to catch some errors in the observer before we try to prove the observer correct formally.

In practice, we do not simply rely on a visual inspection of the state graph. We can use properties expressed in the µ-calculus to check the state graph (the Tina toolset includes a model-checker for the µ-calculus called muse). Informally, we can define the set of traces where Present holds using the union of two regular languages: first the traces where B never occurs (the expression (¬B) * ); then the traces where there is an A 4 u.t. after the first B (the expression (¬B) * • B • ((¬i) * • i) 4 • A • * ). Each expression can be interpreted as a µ-calculus formula. For instance, the absence of B corresponds to the formula µ X.( ¬B ∨ X), which is true for the states 0 and 1 in the state graph. Likewise, using a maximal fix-point formula, we can define the "errored states", that is the states where an error has been signaled or is inevitable. Finally, it is enough to check that all valid traces cannot lead to an errored state and that all invalid traces (the complement language) inevitably lead to an errored state.

Related Work and Contributions

We base our approach on the original catalog of specification patterns defined by Dwyer [START_REF] Dwyer | Patterns in property specifications for finitestate verification[END_REF]. Their patterns language is still supported, with several tools, an online repository of examples [START_REF] Dwyer | Online Repository of Specification Patterns[END_REF] and the definition of the Bandera Specification Language [START_REF] Corbett | A language framework for expressing checkable properties of dynamic software[END_REF] that provides a structured-English language front-end. A recent study by Bianculli et al. [START_REF] Bianculli | Specification Patterns from Research to Industry: a Case Study in Service-based Applications[END_REF] show the relevance of this pattern-based approach in an industrial context. Some works consider the extension of patterns with hard real-time constraints. Konrad et al. [START_REF] Konrad | Real-time specification patterns[END_REF] extend the patterns language with time constraints and give a mapping from timed pattern to TCTL and MTL. Nonetheless, they do not consider the complexity of the verification problem (they do not study the implementability of their approach). Another related work is [START_REF] Gruhn | Patterns for timed property specifications[END_REF], where the authors define observers based on Timed Automata for each pattern. However, they consider a less expressive set of patterns (without the "for duration" modifier) and they have not integrated their language inside a tool chain or proved the correctness of their observers. By contrast, we have defined a framework that has been used to prove the correctness of some of our observers [START_REF] Abid | Verification of Real-Time Specification Patterns on Time Transitions Systems[END_REF].

We can also compare our approach with works concerned with observer-based techniques for the verification of real-time systems. Consider for example the work of Aceto et al. [START_REF] Aceto | Model checking via reachability testing for timed automata[END_REF] based on the use of test automata to check properties on timed automata. In this framework, verification is limited to safety and bounded liveness properties since the authors focus on properties that can be reduced to reachability checking. In the context of Time Petri Net, Toussaint et al. [START_REF] Toussaint | Time constraints verification methods based on time Petri nets[END_REF] propose a verification technique similar to ours, but only consider four specific kinds of time constraints.

Compared to these related works, we make several contributions. We extend the specification patterns language of Dwyer et al. with two modifiers for real-time constraints. For each pattern, we give a precise definition based on different formalisms. We also address the problem of checking the validity of a pattern on a real-time system using model-based techniques: our verification approach is based on a set of observers. Using this approach, we reduce the problem of checking real-time properties to the problem of checking simpler LTL properties on the composition of the system with an observer. We have defined a set of observers and compare them in order to obtain the most efficient one in practice. Another contribution is the definition of a framework to prove that observers are correct and non-intrusive, meaning that they do not affect the system under observation. Finally, concerning tooling, our work is integrated in a complete verification tool chain for the Fiacre modelling language and can therefore be used in conjunction with Topcased [START_REF] Farail | The TOPCASED project: a Toolkit in Open source for Critical Aeronautic Sys-tEms Design[END_REF], an Eclipse based toolkit for system engineering.

We define a complete framework including the definition of a set of high-level specification patterns for expressing requirements on systems with hard real-time constraints, a verification method and a framework to verify the correctness of the verification method. Our approach eliminates the need to rely on model-checking algorithms for timed extensions of temporal logics that-when decidable-are very complex and timeconsuming. In the future, we plan to define a compositional patterns inspired by the "denotational interpretation" used in the definition of patterns. The idea is to define a lower-level pattern language, with more operators, that is amenable to an automatic translation into observers (and therefore can dispose with the need to manually prove the correctness of our interpretation).

  MTL def.: (¬B) W (B ∧ True UI A) FOTT def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B / ∈ σ1) ⇒ ∃σ3, σ4 . σ2 = σ3Aσ4 ∧ ∆(σ3) ∈ I Present first A before B within I (This is an example of the before scope modifier.) If B occurs then the first occurrence of A holds t 0 u.t. before the first occurrence of B with t 0 ∈ I. (The difference with Present B after A within I is that B should not occur before the first A.)

Fig. 1 .

 1 Fig. 1. State graph for the (Universal Present)