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Abstract. An issue limiting the adoption of model-checking technologies by the
industry is the ability, for non-experts, to express their requirements using the
property languages supported by verification tools. This has motivated the def-
inition of dedicated assertion languages for expressing temporal properties at a
higher level. However, only a limited number of these formalisms support the
definition of timing constraints and even fewer of them take into account the
complexity of checking properties on a system. In this paper, we propose a com-
plete framework that includes: the definition of timed patterns; a tool chain for
checking timed properties; and methods to prove the correctness of our verifica-
tion approach.

1 Introduction

An issue limiting the adoption of model-checking technologies by the industry is the
difficulty, for non-experts, to express their requirements using the specification lan-
guages supported by the verification tools. Indeed, there is often a significant gap be-
tween the boilerplates used in requirements statements and the low-level formalisms
used by model-checking tools; the latter usually relying on temporal logic. This limita-
tion has motivated the definition of dedicated assertion languages for expressing prop-
erties at a higher level. However, only a limited number of assertion languages support
the definition of timing constraints and even fewer are associated to an automatic ver-
ification tool, such as a model-checker. Moreover, few works consider the problem of
checking the correctness of the verification approach. Who check the model-checkers!

In this paper, we propose a complete framework that includes: the definition of
timed patterns; an approach for checking timed properties; and methods for proving
the correctness of our verification approach. We have integrated our framework in a
toolchain for Fiacre [5], a formal modelling language for real-time, reactive systems.
Our first contribution is the definition of a set of patterns that extends the specifica-
tion language of Dwyer [8] with hard, real-time constraints. For example, we define a
pattern “Present A after B within [0, 4]” to express that event A must occur within 4
units of time (u.t.) of the first occurrence of B, if any. Our main objective is to propose
an alternative to timed extensions of temporal logic during model-checking. Our pat-
terns are designed to express general timing constraints commonly found in the analysis
of real-time systems (such as compliance to deadlines; event duration; bounds on the
worst-case traversal time; etc.). They are also designed to be simple in terms of both



clarity and computational complexity. In particular, each pattern should correspond to
a decidable model-checking problem.

Our second contribution is the definition of a verification approach based on model-
checking. Our approach is based on the use of observers in order to transform the veri-
fication of timed patterns into the verification of simpler LTL formulas. We define a set
of observers for each pattern and compare them in order to choose the best one in prac-
tice. Our goal is to provide the most efficient observer in terms of verification time and
system size growth. While the use of observers for model-checking is quite common,
our contribution is original in several ways. The most novel aspect is that we formally
check that our observers are correct (they provide an answer that is sound with respect
to the semantics of patterns) and non-intrusive, meaning that observers cannot interfere
with the observed system.

Our final contribution is to provide an integrated model-checking tool chain that
can be used to check timed requirements. In our tool chain, Fiacre is used to express
the model of the system while verification activities ultimately relies on Tina [4], the
TIme Petri Net Analyzer. (Fiacre models have basically the same expressiveness than
an extension of Time Petri Nets with data variables and priorities.)

2 Technical Backgrounds

Fiacre: we consider systems modeled using Fiacre, a formal specification language de-
signed to represent both the behavioral and timing aspects of real-time systems. We give
some examples of Fiacre programs in Sect. 4. Fiacre supports two of the most common
communication paradigms: communication through shared variable and synchroniza-
tion through (synchronous) communication ports. In the latter case, it is possible to
associate time and priority constraints to communication over ports. Fiacre programs
are stratified in two main notions: processes, which models structured activities, and
components, which describes a system as a composition of processes, possibly in a
hierarchical manner. A process is defined by a set of control states. Each state is as-
sociated with a set of transitions (introduced by the keyword from), that declares how
variables are updated and which transitions may fire. The language includes determinis-
tic constructs available in classical programming languages (assignments, conditionals,
sequential composition, ...); non-deterministic constructs (choice and non-deterministic
assignments); communication events on ports; and jump to next state.

Timed Traces: patterns are used to express timing and behavioral constraints on the
execution of a system. We base the semantics of patterns on the notion of timed traces,
which are sequences mixing events and time delays. In our context, the observable
events are fired transitions, the state of processes and the value of variables. We use a
dense time model, meaning that we consider rational time delays and work both with
strict and non-strict time bounds. In this setting, a timed trace σ is a possibly infinite
sequence of events A,B, . . . and duration d(δ) with δ ∈ Q+. Given a finite trace σ
and a—possibly infinite—trace σ′, we denote σσ′ the concatenation of σ and σ′. The
semantics of Fiacre can also be defined as a set of timed traces. Given a real-time pattern
P , we say that a system T satisfies the requirement P if all the traces of T hold for P .



MTL and FOTT: the semantics of a pattern will be expressed as the set of all timed
traces where the pattern holds. A first approach to define set of traces is to use timed
extensions of Linear Temporal Logic, for instance MTL [13]. Nonetheless, this partially
defeats one of the original goal of patterns, that is to circumvent the use of temporal
logic in the first place. For this reason, we propose an alternative way for defining the
semantics of patterns that relies on first-order formulas over traces. For instance, we
can define the “scope” σ after A–that defines the part of a trace σ located after the
first occurrence of A–as the trace σ2 such that ∃σ1.(σ = σ1Aσ2) ∧ (A /∈ σ1). We
believe that this second approach may ease the work of engineers that are not trained
with formal verification techniques.

3 A Catalog of Real-Time Patterns

We have defined a catalog of patterns, using a hierarchical classification borrowed from
Dwyer [9]. Patterns are built from five categories (existence, absence, universality, re-
sponse and precedence) or can be composed using logical connectives. In each cate-
gory, generic patterns may be specialized using scope modifiers—such as before, after,
between—that limit the range of the execution trace over which the pattern must hold.
Finally, timed patterns are obtained using one of two possible kinds of timing modifiers
that limit the possible dates of events referred in the pattern: Within I which is used to
constrain the delay between two given events to be in the time interval I and For du-
ration D which is used to constrain the length of time during which a given condition
holds (without interruption) to be greater than D.

Due to the somewhat large number of possible alternatives, we restrict this catalog
to some examples of presence, absence and response patterns. Patterns that are not
described here can be found in a long version of this paper [1]. For each pattern, we
give its denotational interpretation based on First-Order formulas over Timed Traces
(denoted FOTT in the following) and a logical definition based on MTL.

Present A after B within I

This is an example of existence pattern, that is patterns used to express that, in every
trace of the system, some events must occur. The pattern holds for traces such that A
occurs t0 units of time after the first occurrence of B, with t0 ∈ I . The pattern is also
satisfied if B never holds.

MTL def.: (¬B) W (B ∧ True UI A)
FOTT def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧B /∈ σ1)⇒ ∃σ3, σ4 . σ2 = σ3Aσ4 ∧∆(σ3) ∈ I

Present first A before B within I

(This is an example of the before scope modifier.) If B occurs then the first occurrence
of A holds t0 u.t. before the first occurrence of B with t0 ∈ I . (The difference with
Present B after A within I is that B should not occur before the first A.)



MTL def.: (♦B)⇒ ( (¬A ∧ ¬B) U (A ∧ ¬B ∧ (¬B UI B)) )
FOTT def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B /∈ σ1) ⇒ ∃σ3, σ4 . σ1 = σ3Aσ4 ∧ A /∈ σ3 ∧

∆(σ4) ∈ I

Absent A before B for duration D

This is an example of absence pattern, that is patterns used to express that some con-
dition should never occur. The pattern holds if no A occurs less than D u.t. before the
first occurrence of B or if B does not occur.

MTL def.: ♦B ⇒ (A⇒ (@[0,D]¬B)) U B

FOTT def.: ∀σ1, σ2, σ3, ω . (σ = σ1ωσ2Bσ3 ∧B /∈ σ1ωσ2 ∧∆(σ2) 6 D)⇒ ¬A(ω)

A leadsto first B within I

This is an example of response patterns, that is patterns used to express “cause–effect”
relationship. The pattern holds if every occurrence of A is followed by a B within time
interval I (considering only the first occurrence of B after A).

MTL def.: @(A⇒ (¬B) UI B)
FOTT def.: ∀σ1, σ2 . (σ = σ1Aσ2)⇒ ∃σ3, σ4 . σ2 = σ3Bσ4 ∧∆(σ3) ∈ I ∧B /∈ σ3

4 Checking the Correctness of Patterns Implementation

We propose to use observers for checking real-time patterns. In our tool chain, an ob-
server is a Fiacre (sub-)program that monitors the behavior of the system and that can
signal whether a requirement holds or not. For example the observer can enter in a spe-
cial “error state”. To check a timed pattern P , on a system, T , we graft the observer
for P to the Fiacre program—we denote the resulting program (T ‖ P )—and test the
reachability of error states using an LTL model-checker. Therefore, observers are used
to transform the verification of timed patterns on T into the verification of simpler
reachability properties on T ‖ P .

More details about observers are given in [2], where we have defined several ob-
servers for each pattern. The idea is not to provide a generic way of generating the
observers from a formal definition of the pattern. Rather, we seek, for each pattern, to
come up with the best possible candidate in practice.

In this paper, we give an example of observer for the pattern “Present A after B
within [d1, d2[” (see Listing 1.1). The process observer monitors a system through two
special ports, A and B, of type sync. The process is initially in state idle and moves to
state start when event B occurs. When in state start for more than d1 u.t., the observer
moves to state watch (this is the meaning of the wait operator). The select operator
is a non-deterministic choice, with unless coding priorities. Hence, in state watch, the
observer moves to stop if an A occurs, unless d2−d1 u.t. elapses, in which case it moves



to error. As a consequence, the pattern is false whenever process Present can reach state
error. This is equivalent to checking the LTL formula : @¬(Present/state error).

process Present [A, B : sync] is
states idle , start , watch, error , stop
init to idle
from idle B ; to start
from start wait [d1, . . . [ ; to watch
from watch select

A ; to stop
unless

wait [d2−d1, . . . [ ; to error
end

Listing 1.1. Observer for Present A after B within [d1, d2]

To prove that the observer is correct, we need to prove that, for every system T , the
program (T ‖ Present) can reach error if and only if there is a trace σ in T where the
pattern does not hold. In [2], we define a theoretical framework to prove exactly this
kind of properties. Efforts are also under way to mechanize these proofs using the Coq
proof assistant. Nonetheless, formal proofs of correctness can be quite tedious. There-
fore, to detect possible problems with an observer early on (that is, before spending a lot
of efforts doing a formal proof of correctness) we also propose a “graphical verification
method”. This is akin to debugging our observers.

Universal Program. In the remainder of this section, we take the example of the ob-
server Present. The idea is to check the observer on a particular Fiacre program, called
the universal program, that can generate all possible combinations of delays and events
A and B. (This is much simpler than testing the observer with all possible programs.)
We give an example of universal program in Listing 1.2. The process Universal has only
one state and three possible transitions. Each transition changes the value of a shared
integer variable, x. The first and second transitions of Universal can be fired without
time constraints. In our context, A will be linked to the event “setting x to 1” and B to
“setting x to 2”. The third transition reset the value of x to 0 immediately.

Graphical Verification. Using our tool chain, we can generate the (finite) state graph
for the program (Universal ‖ Present). We display the resulting graph in Fig. 1 for the
special case where d1 = 4 and d2 = 5. The state graph is generated with a “discrete
time” abstraction, where special transitions (labeled with i) are used to model the flow
of time: a transition i between two states denotes that 1 u.t. has passed. This is obtained
using the Tina tool [4] with the flag -F1, which is used to generate the state graph
including dense time models.

To debug the pattern “Present A after B within [4, 5[” we can simply check (visu-
ally) that after the first occurrence of a B (in state 2 of Fig. 1), and after 4 units of time
(after 4 transitions labeled i), the system reachs a state (numbered 13 in the state graph)
such that: (1) if we do not see an A before 1 u.t. pasess then we have an error; and (2)
if we see an A then we will never see an error.



process Universal(&x : nat) is
states s0
from s0

select
x := 1; to s0

[ ] x := 2; to s0
unless

on (x <> 0) ; wait [0 ,0]; x := 0 ; to s0
end

component Main is
var x : nat := 0
port A : sync is value (x == 1) ,

B : sync is value (x == 2)
par Universal(&x) | | Present [A, B] end

Listing 1.2. Universal program in Fiacre

This graphical verification method has some drawbacks. It relies on a discrete time
model and it only works for fixed time intervals (we have to fix the value of d1 and d2).
Nonetheless, it is usually enough to catch some errors in the observer before we try to
prove the observer correct more formally.

In practice, we do not simply rely on a visual inspection of the state graph. We can
use properties expressed in the µ-calculus to check the state graph (the Tina toolset
includes a model-checker for the µ-calculus called muse). Informally, we can define
the set of traces where Present holds using the union of two regular languages: first the
traces where B never occurs (the expression (¬B)∗); then the traces where there is an
A 4 u.t. after the first B (the expression (¬B)∗ ·B ·((¬i)∗ · i)4 ·A ·>∗). Each expression
can be interpreted as a µ-calculus formula. For instance, the absence of B corresponds
to the formula µ X.(〈¬B〉 ∨X), which is true for the states 0 and 1 in the state graph.
Likewise, using a maximal fix-point formula, we can define the “errored states”, that
is the states where an error has been signaled or is inevitable. Finally, it is enough to
check that all valid traces cannot lead to an errored state and that all invalid traces (the
complement language) inevitably lead to an errored state.

5 Related Work and Contributions

We base our approach on the original catalog of specification patterns defined by
Dwyer [8]. Their patterns language is still supported, with several tools, an online repos-
itory of examples [9] and the definition of the Bandera Specification Language [7] that
provides a structured-English language front-end. A recent study by Bianculli et al. [6]
show the relevance of this pattern-based approach in an industrial context.

Some works consider the extension of patterns with hard real-time constraints. Kon-
rad et al. [12] extend the patterns language with time constraints and give a mapping
from timed pattern to TCTL and MTL. Nonetheless, they do not consider the com-
plexity of the verification problem (they do not study the implementability of their ap-
proach). Another related work is [11], where the authors define observers based on
Timed Automata for each pattern. However, they consider a less expressive set of pat-
terns (without the “for duration” modifier) and they have not integrated their language
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Fig. 1. State graph for the (Universal ‖ Present)

inside a tool chain or proved the correctness of their observers. By contrast, we have
defined a framework that has been used to prove the correctness of some of our ob-
servers [2].

We can also compare our approach with works concerned with observer-based tech-
niques for the verification of real-time systems. Consider for example the work of Aceto
et al. [3] based on the use of test automata to check properties on timed automata. In this
framework, verification is limited to safety and bounded liveness properties since the
authors focus on properties that can be reduced to reachability checking. In the context
of Time Petri Net, Toussaint et al. [14] propose a verification technique similar to ours,
but only consider four specific kinds of time constraints.

Compared to these related works, we make several contributions. We extend the
specification patterns language of Dwyer et al. with two modifiers for real-time con-
straints. For each pattern, we give a precise definition based on different formalisms.
We also address the problem of checking the validity of a pattern on a real-time system
using model-based techniques: our verification approach is based on a set of observers.
Using this approach, we reduce the problem of checking real-time properties to the
problem of checking simpler LTL properties on the composition of the system with an
observer. We have defined a set of observers and compare them in order to obtain the
most efficient one in practice. Another contribution is the definition of a framework to
prove that observers are correct and non-intrusive, meaning that they do not affect the
system under observation. Finally, concerning tooling, our work is integrated in a com-
plete verification tool chain for the Fiacre modelling language and can therefore be used
in conjunction with Topcased [10], an Eclipse based toolkit for system engineering.



6 Conclusion and Perspectives

We define a complete framework including the definition of a set of high-level specifi-
cation patterns for expressing requirements on systems with hard real-time constraints,
a verification method and a framework to verify the correctness of the verification
method. Our approach eliminates the need to rely on model-checking algorithms for
timed extensions of temporal logics that—when decidable—are very complex and time-
consuming. In the future, we plan to define a compositional patterns inspired by the
“denotational interpretation” used in the definition of patterns. The idea is to define a
lower-level pattern language, with more composition operators, that is amenable to an
automatic translation into observers (and therefore can dispose with the need to manu-
ally prove the correctness of our interpretation).
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