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Abstract. We describe a formal verification toolchain for AADL, the SAE Ar-
chitecture Analysis and Design Language, enriched with its behavioral annex.
Our approach is based on tools that are integrated in the Topcased environment.
We give a high-level view of the tools involved and illustrate the successive trans-
formations that take place during the verification process.

1 Introduction

Aeronautics and space are sectors that produce and rely on complex, critical, hardware
and software systems. These systems typically have a long life cycle of development
and maintenance, spanning several decades. In this process, design is the main phase of
a project since code, tests and documentations are generated from the models. More-
over, the tools supporting the design process should be reliable and readily available, so
as to avoid obsolescence or technology lock-in.

The Architecture and Analysis Design Language (AADL) [1] is a standard, pro-
moted by the Society of Automotive Engineers (SAE), for the specification and analy-
sis of complex real-time embedded systems. AADL is a textual and graphical language,
designed for model-based engineering, which can be used to describe both the software
and hardware components of a system.

In order to support model-based development, companies from the French Aero-
nautics, Space and Embedded Systems competitivity pole (AESE) have joined their
efforts to develop a common set of methods and tools. The goal is to deliver an in-
dustrial strength system/software development platform for embedded systems. The
Topcased [18] initiative is part of this effort and AADL is among the first languages
supported in this project. Topcased is also the name of a toolkit based on the Eclipse
platform and concepts that provides an open source, model oriented set of tooling and
standard implementations.

Our main objective in this paper is to present a verification toolchain for AADL
specifications that is fully integrated in the Topcased environment. We give a high-
level view of the tools involved and illustrate the successive transformations required by
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our verification process. These tools include a semantic editor of AADL and a model-
checking platform based on Time Petri-Net, Tina [11]. The generation of Tina models
from an AADL description relies on the Fiacre intermediate language. First, the AADL
description is translated in the Fiacre format, which offers a formal intermediate model
to represent both the behavioral and timing aspects of the system. Then, we compile the
Fiacre model into an abstract Timed Transition Systems that can be directly analyzed by
Tina. Therefore, Fiacre is designed both as the target language of model transformation
engines from various models such as SDL, UML, AADL, . . . and as a front end to
targeted verification toolboxes, namely CADP and Tina in the first step.

After a brief review of AADL, we present the Fiacre language and describe the
fundamentals of our translation from AADL to Fiacre. The transformation is illustrated
on a small example. Before concluding, we introduce the Tina verification platform and
give examples of properties that can be verified on the models.

2 AADL

The SAE Architecture and Analysis Design Language is a standard used to describe
both the software and hardware components of a system. Specifications based on an ar-
chitecture description language have the benefit to provide support for an early analysis
of the properties of a system. These properties are supposed to be obtained before the
coding or the actual deployment of the system. Model-based system engineering (MBE)
lets you focus on the analysis of system architecture — and detect problems with avail-
ability, security, and timeliness early on. AADL descriptions pertain to the functional
interfaces of components, such as data inputs and outputs, as well as to non-functional
aspects, such as timing properties. The language can describe how components are com-
bined, such as how data inputs and outputs are connected or how software components
are allocated to hardware components.

Release 1.0 of the AADL standard (SAE AS5506) has been issued in November
2004. Since then, many extensions have been proposed. Some of them, like the Error
Model Annex, have been adopted by the standardization committee. Tools have also
been developed, like the initial OSATE environment, which has been merged with Top-
cased.

AADL includes all the standard concepts of an Architecture Description Language:
components, connectors (used to describe the interface of components), and connec-
tions (used to link components). The set of AADL components can be divided in three
partitions, the software components (process, thread, thread group, subprogram, and
data), the hardware components (processor, bus, memory, device), and system compo-
nents. Components can communicate through ports, synchronous calls, and shared data.
A process represents a virtual address space, or a partition; this address space includes
the program defined by its sub-components.

A process must contain at least one thread or thread group. A thread group is a
logical organization of threads in a process. A thread represents a sequential flow of
execution; it is the only AADL component that can be scheduled. A subprogram repre-
sents a piece of code that can be called by a thread or another program. A data models
a static variable used in the code; threads and processes can share data.



An AADL model can incorporate non-architectural elements: embedded or real-
time characteristics of the components (execution time, memory usage, etc.), behav-
ioral descriptions, etc. Hence it is possible to use AADL as a backbone to describe all
the aspects of a system. To this end, AADL defines the notion of properties that can
be attached to most elements (components, connections, features, etc.). Properties are
attributes that specify constraints or characteristics that apply to the elements of the ar-
chitecture: clock frequency of a processor, execution time of a thread, bandwidth of a
bus, etc. Some standard properties are defined but the definition can be extended with
user-defined properties.

Finally, AADL supports an annex mechanism to extend the description capabili-
ties of the language by introducing a dedicated sub-language. A behavior annex [4] is
currently being defined by the SAE committee.

2.1 The Execution Model

Threads are the only components that have an execution semantics. AADL supports the
classical types of dispatch protocols: a thread can be declared as periodic, aperiodic,
sporadic or background. All the standard properties (WCET, deadline, . . . ) used to de-
scribe a real-time system exist in AADL. Threads have two predeclared event ports :
dispatch and complete. The dispatch port is used for aperiodic or sporadic threads. If
this port is connected all other ports of the thread do not trigger the dispatch. It is a very
common behavior for an aperiodic or a sporadic thread to send an event on completion.
In AADL, we do not specify when an event is sent. The complete event port is used to
send an event at the end of the execution.

All threads have the same life cycle. This cycle can be represented as an automaton
(see Fig. 1). All threads start in the awaiting_dispatch state. The dispatch condition
depends on the thread type. If the thread is periodic it will be dispatched at every period.
At this time, delivery occurs for all its input ports. An aperiodic or a sporadic thread
that does not have its dispatch ports connected is dispatched each time it receives an
event. Delivery occurs only for the port that triggers the dispatch and the data ports.
If its dispatch port is connected, it is dispatched each time it receives an event on this
port, and delivery occurs for all its others ports. The thread in the active state that has
the maximum priority starts or continues its execution. The priority of the thread is
determined by the chosen scheduling policy (RMA, EDF, LLF). This policy is specified
by a property of the model. When a thread is dispatched it can have a higher priority
than the executing thread. In this case, the executing thread is preempted and goes back
to the active state. When a thread ends its execution it goes to the awaiting_dispatch
state until the next dispatch. At this time, all the output data ports of the thread are read
and their content sent to the destination ports.

The scheduling behavior we just described is slightly different if shared resources
are used. When an executing thread tries to access a locked shared resource, it goes
to a special state, labeled awaiting_resource in our automata, where it blocks until the
resource (its lock) is released. The process by which a variable is locked depends on
the kind of implementation used for the AADL specification. In the most general case,
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Fig. 1. Thread automaton with (and without) shared resources.

the basic implementation is to lock a shared resource during the whole execution of the
thread that accesses it.

2.2 A Toy Example

In this section, we illustrate AADL by encoding a simple token ring example (List-
ing 1.1). It is a network of processes (AADL threads), logically organized in a ring
topology, which synchronize their communication by means of a token that circulates
among them, controlling access to the communication channels. The goal is to imple-
ment mutual exclusion among all threads.

We suppose that threads communicate only through ports: each thread is connected
to a successor (resp. predecessor) thread by its port named succ (resp. pred). A thread
enters mutual exclusion once it owns the token. The proposed AADL model consists
in a thread Start that chooses non-deterministically the Node that initially owns the
token (actions start0!, . . . , start2!). Each node communicates with its predecessor
and successor nodes over its ports named prev and succ. Each thread is supposed to be
sporadic with a minimal period of 10ms. The behavior of a node is described through
the behavioral annex. Initially, threads are in the idle state. When it receives the token
(action prev?), it forwards it (action succ!) then it can, non-deterministically, either
remain idle or become waiting. When a waiting thread receives the token, it enters
mutual exclusion (state cs). After a computation, which can elapse between 5 and 10
ms, it leaves mutual exclusion, transfers the token to its neighbour and becomes idle
again.

3 AADL to Fiacre Translation

The modeling language of model checkers must be kept simple enough for the tool to be
efficient. It is therefore preferable to reuse existing model checkers (e.g. Tina [11] and
CADP [12]) to check properties of high-level languages (UML, SysML, AADL), which
leads to the introduction of a transformation phase between the two levels. In order to
simplify the connection of model checkers to those languages, we have introduced the
pivot language Fiacre [13] so that the expression of the run-time semantics of high-level
languages can be factorized and expressed using the pivot. It must be powerful enough



thread Start
features start0 : out event port ; start1 : out event port ;

start2 : out event port ;
properties Dispatch_Protocol => Background ;

end Start ;

thread implementation Start . i
annex behavior_specification {∗∗

states s0 : initial state ; s1 : complete state ;
transitions s0 −[ ]→ s1 { start0 ! ; } ;
transitions s0 −[ ]→ s1 { start1 ! ; } ;
transitions s0 −[ ]→ s1 { start2 ! ; } ;

∗∗} ;
end Start . i ;

thread Node
features prev : in event port ; succ : out event port ;

start : in event port ;
properties Dispatch_Protocol => Sporadic ; Period => 10ms ;

end Node ;

thread implementation Node . i
annex behavior_specification {∗∗

states idle : initial complete state ;
wait : complete state ;
cs : state ;

transitions
idle −[start ?]→ idle { succ ! ; } ;
idle −[prev ?]→ idle { computation (3 ms ) ; succ ! ; } ;
idle −[prev ?]→ wait { computation (3 ms ) ; succ ! ; } ;
wait −[prev ?]→ cs ;
cs −[ ]→ idle { computation (5 ms , 10ms ) ; succ ! ; } ;

∗∗} ;
end Node . i ;

process network
end network ;

process implementation network . i
subcomponents

s : thread Start . i ;
n0 : thread Node . i ; n1 : thread Node . i ; n2 : thread Node . i ;

connections
event port s . start0 −> n0 . start ; event port s . start1 −> n1 . start ;
event port s . start2 −> n2 . start ; event port n0 . succ −> n1 . prev ;
event port n1 . succ −> n2 . prev ; event port n2 . succ −> n0 . prev ;

end network . i ;

system root
end root ;

system implementation root . i
subcomponents
p : process network . i ;

end root . i ;

Listing 1.1. A token ring in AADL



to support the expression of the semantics of real time preemptible systems even if
back-end model checkers do not take into account all the aspects of the model. The
tools are implemented and/or integrated in the Topcased environment.

Topcased offers the metamodel of the high-level modeling languages together with
graphical editors. The abstract syntax of the Fiacre intermediate language is defined
through its metamodel. Transformation languages are used to generate Fiacre models
from modeling languages. At this step, some semantics choice must be performed to
identify relevant subsets of sources languages and reduce the complexity of intermedi-
ate models. Then, source code generators are used to produce the text representation of
the Fiacre model and communicate with the external Fiacre front-end. The Fiacre tool
performs static analysis of its entry and generates Tina and CADP models, which are
analyzed by the corresponding tools.

3.1 The Fiacre Language

Fiacre offers a formal representation of both the behavioral and timing aspects of sys-
tems for formal verification and simulation purposes. The design of the language is
inspired from decades of research on concurrency theory and real-time systems theory.
For instance, its timing primitives are borrowed from Time Petri nets [10], while the
integration of time constraints and priorities into the language can be traced to the BIP
framework [2]. For what concerns the compositionality of the language, Fiacre incorpo-
rates a parallel composition operator and a notion of gate typing which were previously
adopted in E-Lotos and Lotos-NT.

Fiacre programs are stratified in two main notions: processes, which describes the
behavior of sequential components and components, which describes a system as a com-
position of processes, possibly in a hierarchical manner. Listing 1.2 gives an example
of a Fiacre program for the token ring example described in Sect. 2.2.

Fiacre is a strongly typed language, meaning that type annotations are exploited
in order to guarantee the absence of unchecked run-time type errors. A program is a
sequence of declarations. A process is defined by a set of control states and parame-
ters, each associated with a set of complex transitions, which are programs specifying
how parameters are updated and which transitions may fire. For example, the process
declaration:

process T[p : bool, q : none](v : int, &u : array 5 of bool) is ...
expresses that T is a process that may interact over two ports: p, which transmits boolean
values, and q, which can only be used for synchronization. The processT has two pa-
rameters: v, which is an integer, and u, which is a (reference to a) shared variable.

Complex transitions are built from expressions and deterministic constructs avail-
able in classical programming languages (assignments, conditionals, while loops and
sequential compositions), nondeterministic constructs (nondeterministic choice and as-
signments) and communication events on ports. For example, the transition:

from s0 select (p!5 ; to s1) [] (v :=v + 1 ; to s2) end
expresses that, in state s0, the process may choose nondeterministically between two
alternatives. Either send the value true over the port p and move to state s1, or in-



process Start [ start0 : none , start1 : none , start2 : none ] is
states s0 , s1
from s0 select start0 [ ] start1 [ ] start2 end ; to s1

process Node [ prev : none , succ : none , start : in none ] is
states idle , wait , cs , st_1
from idle select start ; to st_1 [ ] prev ; to st_1 end
from st_1 succ ; select to idle [ ] to wait end
from wait prev ; to cs
from cs succ ; to idle

component root is
port s0 : none , s1 : none , s2 : none ,

p0 : none , p1 : none , p2 : none ,
par ∗ in

Start [ s0 , s1 , s2 ]
| | Node [ p0 , p1 , s0 ]
| | Node [ p1 , p2 , s1 ]
| | Node [ p2 , p0 , s2 ]
end

root

Listing 1.2. A token ring in Fiacre

crement the value of the variable v and move to s2. A process definition may declare
several transitions for the same state. Each can equally be fired.

A component is defined as the parallel composition of processes and/or other com-
ponents, expressed with the operator par ... || ... end. While components are the
unit of composition, they are also the unit for process instantiation and for ports and
shared variables creation. The syntax of components allows to restrict the access mode
and visibility of shared variables and ports, to associate timing constraints with com-
munications and to define priority between communication events. For example, in a
component C, the declaration port p : none defines a port called p that is private to
(cannot be used outside of) C. The declaration port p : none in [min,max] defines a
port that can only interact min time units after it has been activated and must be used or
deactivated before max time units (min and max should be float or integer constants).

3.2 Translation Principles

The transformation of AADL code into Fiacre relies on AADL properties and on the be-
havioral annex of AADL that has been developed and integrated to the OSATE AADL
environment within Topcased. We follow a model-driven approach. Alongside a meta-
model of AADL, we have developed a meta-model of the Fiacre language that is in-
tegrated in the Topcased tool-chain. Hence, the transformation from AADL to Fiacre
can be obtained through model transformation. This translation is based on the formal
semantics of the (default) AADL execution model that was previously defined.

In the particular instance studied in this paper we illustrate this framework with the
translation of AADL models to Fiacre.

The transformation is implemented in the Topcased environment using a model to
model transformation approach performed using Kermeta. Kermeta is a model transfor-
mation language that combines features coming from Eiffel, Java and OCL. Moreover,



it offers an Aspect Oriented Programming style that makes easy the access to EMF
model repositories.

Two main features are heavily used in the translation: high-level iterators on lists and
aspect oriented annotations. These annotations allow to specify extensions of existing
classes with new attributes and operations. Attributes are used to memorize the Fiacre
objects resulting from the transformation of the AADL objects and avoid the use of
external data structures such as hash tables.

3.3 Structure of the Generated Code

The code generator has a flatten view of the AADL model as a set of communicating
threads. Thus, it associates a Fiacre process to each AADL thread. They do not com-
municate directly: a glue process manages communication and scheduling protocols.

...

glue

thread 1 thread n

Fig. 2. Threads and the glue

Threads communicate with their environment through the glue process. A thread
receives from the glue the values of its input ports and sends to the glue its output
events or data ports at specific times. In a first approximation, the glue sends a dispatch
message to a thread at its logical dispatch time. It takes as parameters the values of the
thread input data ports and the value of the triggering event (data) port if any. If the
thread is periodic, the value of all the input ports is transmitted. During execution, the
thread sends to the glue events with their potential value. When the execution completes,
the thread sends a complete message to the glue with the values of the output data ports
and of the modified (yet not already sent) event data ports.

GlueThread

Complete!D

Dispatch!...

Event_i

EventData_i

Fig. 3. Communication with the glue

The following code specifies an AADL thread having event, data and event data
input or output ports and a data access feature (see Fig. 4).



thread T
features

idp : in data port Tidp ;
odp : out data port Todp ;
iep : in event port {Queue_Size => Q } ;
oep : out event port ;
iedp : in event data port Tiedp {Queue_Size => Q } ;
oedp : out event data port Toedp ;
m : requires data access Tm ;

end T ;

Fig. 4. Thread interface

The interface of the corresponding Fiacre process depends on the way the thread is
triggered. If it is timed triggered, the contents of all its input ports is transfered while if
it is event triggered, only the contents of the triggering port is transfered:

process T [ dispatch : in . . . ,
complete : out . . . ,
oep_port : out none ,
oedp_port : out Toedp ]

(&tab_Tm : array N of Tm , &m : 0 . . N−1)
. . .

Listing 1.3. Translation of time triggered threads

type T_events is union C_iep of 0 . . Q
| C_iedp of queue Q of Tiedp

end
process T [ dispatch :in T_events # . . . ,

complete : out . . . ,
oep_port : out none ,
oedp_port : out Toedp ]
(&tab_Tm : array N of Tm , &m : 0 . . N−1)

. . .

Listing 1.4. Translation of event triggered threads

The translation of thread scheduling is based on Fiacre temporized ports and port
priorities. Such ports are used to manage periodic dispatch of threads and non deter-
ministic execution times. Since Fiacre does not offer any support for preemption yet,



we only consider a non preemptive fixed priority scheduler. For the Fiacre translation to
remain simple, priorities cannot depend on AADL modes. Only the set of active threads
can be mode dependent.

The scheduler manages periodic, sporadic and background tasks. It must ensure
data access synchronization as described by the AADL execution model. The following
events are managed in our translation.

Dispatch. Dispatch occurs at a multiple of the period (for periodic thread), when a
triggering event arrives (for sporadic threads), or at system startup (for background
threads). On that event, data are transferred to the thread port variables. A thread
can run if all threads that must dispatch at the same time have their data.

Execution. The scheduler allows thread execution. Data received through an immedi-
ate connector are transmitted to the thread and thread priorities are encoded using
priorities between execution ports.

Completion. The thread ends its execution and transmits its output data connected via
immediate connectors and event data not already transmitted.

Deadline. The thread transmits delayed data. Completion must occur before deadline
otherwise a schedule error happens.

We have only presented the interface of the main components. Due to the lack of
space, we do not describe the implementation and the related state machines. An im-
portant aspect of the implementation is the interaction between user threads and AADL
execution model. This will be detailed in a forthcoming paper.

3.4 The Considered Subset

Basic properties are considered when generating a Fiacre model. More particularly,
(1) AADL modes and priorities are taken into account, as well as (2) access to shared
variables.

For the moment, while periods can change, we assume that priorities are fixed. We
take into account that connections are determined by the current mode. On the other
hand, there is currently no support for multiprocessor architecture in our translation
from AADL to Fiacre. As a result, we do not take into account the value of the Ac-
tual_Processor_Binding property. We also do not handle preemption. This last feature
will be added in a forthcoming version of the Fiacre language.

4 Behavioral Verification with Tina

Tina [11], the TIme Petri Net Analyzer, provides a software environment to edit and
analyze Petri Nets and Time Petri Nets. It is particularly well suited to the verification
of systems subject to real time constraints, such as those modeled using AADL.

Beside the usual analysis facilities of similar environments, the essential compo-
nents of the Tina toolbox are state space abstraction methods and model checking tools
that can be used for the behavioral verification of systems. This is in contrast with the
broader notion of functional verification, in that we attempt to use formal techniques
to prove that requirements are met, or that certain undesired behaviors cannot occur —



like for instance deadlocks — without resorting to actual tests on the system. The ap-
proach followed here is that commonly referred to as model-checking, which basically
consists in two abstract steps: (1) the generation of a formal model from a description of
the system, followed by (2) a systematic exploration of the states space of this model.
This involves exploring states and transitions in the model, relying on smart abstrac-
tion techniques to reduce the number and size of these states and therefore reducing the
computing time.

The properties to be verified are often described in temporal logics, such as linear
temporal logic (LTL) or computational tree logic (CTL). We give some examples of
LTL properties related to our running example in Section 4.2.

The result of the verification may lead to an accepting status, meaning that the
model of the system satisfies the requirements, or exhibit an error. In the last case,
it is often possible to extract a counterexample, which is an explanation at the level
of the model (generally an execution trace), which leads to a problematic state. Such
counterexamples could be stored alongside an AADL model.

4.1 The Tina Toolbox

The functional architecture of Tina is shown in Fig. 5. The core of the Tina toolset is
an exploration engine used to generate state space abstractions that are fed to dedicated
model checking and transition system analyzer tools.

The front-ends to the exploration engine convert models into an internal represen-
tation — the abstract Timed Transition Systems (TTS) — that is an extension of Time
Petri nets handling data and priorities. The frac compiler, which converts Fiacre de-
scription into TTS and is part of the Topcased environment, is an example of such
front-end.

Fig. 5. Tina Architecture



State space abstractions are vital when dealing with timed systems, that have in
general infinite state spaces. Tina offers several abstract state space constructions that
preserve specific classes of properties like absence of deadlocks, linear time tempo-
ral properties, or bisimilarity. A variety of properties can be checked on abstract state
spaces: general properties — such as reachability properties, deadlock freeness, live-
ness, . . . — specific properties relying on the linear structure of the concrete space
state — for example linear time temporal logic properties, test equivalence, . . . — or
properties relying on its branching structure – branching time temporal logic properties,
bisimulation, . . .

Tina provides several back-ends to convert abstract state spaces into physical repre-
sentations readable by the proprietary or external model checkers and transition system
analyzers. Tina can present its results in a variety of formats, understood by model
checkers like MEC, a mu-calculus formula checker, or behavior equivalence checkers
like Bcg, part of the CADP toolset. Hence we can apply all these tools to the veri-
fication of systems modeled in AADL. In addition, several model-checkers are being
developed specifically for Tina. The first available, selt, is a model-checker for an en-
riched version of State/Event-LTL, a linear time temporal logic supporting both state
and transition properties. (The logic is rich enough to encode marking invariants.) For
the properties found false, a timed counter example is computed and can be replayed
by the simulator.

4.2 Verification

The Tina toolbox provides a native model checker, selt, which allows to check more
specific properties than the generic properties (boundedness, deadlocks, liveness) that
may directly be checked during state space generation. This tool implements an exten-
sion of linear time temporal logic known as State/Event LTL [15], a logic supporting
both state and transition properties. The modeling framework consists of Kripke transi-
tion systems (corresponding to the state class graph of a Petri net in our case), which are
directed graphs in which states are labelled with atomic propositions and transitions are
labelled with actions. State/Event-LTL formulas are interpreted over the computation
paths of the model and may express a wide range of state and/or transition properties.

Formulas p, q, ... of the logic are expressions built from the classical logical
operators: negation (-p), conjunction (p /\ q), . . . and the basic LTL modalities: [],
<>, () and U. A formula is said to be true if it holds on all computation paths. The
formula p holds (relative to a computation path) if p holds now. That is at the start of
the path. The meaning of the temporal modalities is described below.

() p holds if p holds at the next step (next)
[] p holds if p holds all along the path (always)
<> p holds if p holds in a future step (eventually)
p U q holds if p holds until the first moment that q holds (until)

We can define some examples or formulas to be checked against the
system obtained from our running examples. For instance, the formula
-<>(cs_Node_1 /\ cs_Node_2) states that it is not the case that, eventually,



the first two processes in the token ring are in critical section (state cs) at the same
time. Formula (1), which states that at most one Node process may be in the critical
section at any given moment, offers a more versatile way for expressing mutual
exclusion.

[](cs_Node_1 + cs_Node_2 + cs_Node_3 <= 1) (1)

Likewise, we can express that a node in the token ring cannot wait eternally before
accessing the critical section. For example, Formula (2) states that “it is always the
case that if Node waits then, eventually, it enters state cs.”

[](wait_Node_1 => <> cs_Node_1) (2)

Formulas (1) and (2) can be evaluated (and are true) on the token ring example
of Listing 1.2 and on the Fiacre program obtained from the translation of the AADL
program in Listing 1.1.

Realtime properties, like those expressed in so-called timed temporal logics, are
checked using the standard technique of observers, encoding such properties into reach-
ability properties. The technique is applicable to a large class of realtime properties and
can be used to analyze most of the “timeliness” requirements found in practice.

5 Related Work

A number of studies have explored how to interpret the AADL standard in a formal
setting. A specification of the AADL execution model in the Temporal Logic of Ac-
tions (TLA) is given in [16] that defines one of the earliest formal semantics for AADL.
This encoding takes into account a fixed priority scheduling protocol with preemption,
the management of modes and communication through ports and shared data. Our ap-
proach is based on an interpretation of AADL specifications, including the behavior
annex, in the Fiacre Language, which is one of the input languages of the Tina toolbox.
A direct encoding from AADL to Petri net is studied in [23] that takes into account
a more limited subset of AADL (it restricts the behavior of software components and
omits realtime properties of elements). Other target formalisms have also been studied.
An encoding of AADL in BIP is presented in [3] that focuses on the behavioral annex
as well as on threads, processes and processors. The approach is improved in [14] by
taking into account the management of AADL communication protocols. When com-
pared to BIP, the current version of Fiacre provides less high-level constructs – therefore
encodings are less direct – but offers better compositional and real-time properties. An
interesting study would be to define an intermediate language.

In our work, the behavior of software components can be described using the be-
havior annex [4], which is currently being defined by the SAE committee. In [6], the
authors study the case where behaviors are described in a synchronous language, such as
Scade or Lustre. In this case, they define a direct translation that generate an executable
model of the software behavior, deployed on the architecture, from an AADL speci-
fication. Such a model is usable for early simulation, but also for formal verification,



using tools available for Scade and Lustre. Finally, other works [21,22] have focused on
AADL data communication handling but leave the connection with a formal verification
tool as a perspective. While we focus our attention on the use of the Fiacre intermedi-
ate language and the Tina verification toolset, our work relies also significantly on the
Model-Driven Architecture approach promoted in Topcased. Currently, a metamodel
for AADL is provided by the OSATE [24] tool, which is integrated in Topcased. A
metamodel for Fiacre, build using the Topcased environment, is also available.

6 Conclusion and Future Work

This paper describes a formal verification toolchain for AADL that is currently made
available in the Topcased environment. We give a high-level view of the tools involved
and illustrate the successive transformations required by our verification process.

Work is still ongoing to improve the tools involved in our verification toolchain.
A number of extensions to Tina are being evaluated, concerning new tools, new front-
ends, and new back-ends. For instance, we are experimenting with the addition of sus-
pension/resumption of actions to Time Petri nets, which is of great value for modeling
scheduled real-time systems. Alongside these works on tools, our current efforts are
directed toward three main objectives:

(1) Simplifying the definition of logical properties. End users of verification tools
should not be required to master temporal logic. To improve the usability of our ap-
proach, we are currently investigating the proposition of a kit of predefined AADL re-
quirements. This kit will enable expressing general properties of an AADL component
— absence of deadlock, absence of divergence, . . . — in a straightforward way.

(2) Improving error reporting. We plan to provide a “debugging” procedure, which
should take as input a counter-example produced during the model-checking stage and
convert it to a trace model of the initial AADL description. These traces should be
played back using simulation tools.

(3) Improving the Verification Process. We are currently investigating extensions
to the Fiacre language in order to ease the interpretation of high-level description lan-
guages and to optimize the verification process. One envisioned addition would be to
integrate the notion of modes [17] — which is found in a number of ADL, like Giotto
and AADL — directly in Fiacre. We also plan to address the problem of specifying
scheduling and time-constrained behaviors within Fiacre. These aspects should have a
great impact on the overall performance of the analysis tool.
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