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Abstract—We define a graphical language for expressing timed
requirements on concurrent systems. This formal language, called
Timed Graphical Interval Logic (TGIL), is inspired by realtime
extensions of Dillon’s et al Graphical Interval Logic and can be
used as an alternative to timed extensions of temporal logic. We
define the semantics of TGIL as a set of timed traces—using a
dense time semantics—and illustrate its use in formal verification
by describing a method for generating an observer from a TGIL
specification.

I. INTRODUCTION

An issue limiting the adoption of model-checking tech-
nologies by the industry is the ability, for non-experts, to
express their requirements using the low-level languages used
by model-checkers. In this paper, we define a Timed Graphical
Interval Logic (TGIL), that is a formal graphical notation for
expressing the timing constraints and behavioral properties of
a reactive system.

Engineers frequently use diagrams to explain the behavior
of a system or to describe desired scenarios. Nonetheless,
such drawings usually suffer from the same drawbacks than
requirements described using natural language: they can be
ambiguous or misleading; they are not precise enough (do
not cover all the cases); they are not amenable to automated
transformation; . . . In this work, we take our inspiration from
an existing graphical notation, the Graphical Interval Logic
(GIL) of Dillon et al [4], and extends it with two operators
for expressing timing constraints. We show, with a simple
example, that TGIL is more expressive than another realtime
extension of GIL [6] that was already proposed.

Together with the definition of a formal semantics for TGIL,
the main contribution of this work is to describe a method for
generating “an observer” from a TGIL specification. These
observers can be used in conjunction with a model-checking
tool to check that the specification is valid on a given system.

Our main motivation in the design of TGIL was to define
the semantics of a set of realtime specification patterns [2]
using a graphical notation. This set of patterns extends the
specification language of Dwyer et al. [5] with the ability
to express hard, realtime constraints commonly found in the
analysis of real-time systems. For example, the timed pattern
“Present A after B within [d1, d2)” express the requirement that
event A must occur within d1 units of time (u.t.) of the first
occurrence of B, if any, but not later than d2. The semantics
of patterns has already been defined using Metric Temporal
Logic (MTL), a timed extension of linear temporal logic [7].

The idea is to provide an alternative formal definition based
on TGIL.

We believe that this new approach may ease the work
of engineers that are not trained with formal verification
techniques. Moreover, our experience shows that being able
to confront different definitions for the same pattern, using
contrasting approaches, is useful for teaching patterns.

The remainder of the paper is as follows. Next, we describe
the graphical notation for TGIL and define an equivalent
textual syntax. In Section III, we define the semantics of
TGIL using a satisfaction relation over timed traces. Before
concluding, we study the expressiveness of our logic and
describe a method for using TGIL as the property specification
language in a model-checking problem.

II. TIMED GRAPHICAL INTERVAL LOGIC

We consider the problem of expressing behavioral properties
and timing constraints on the execution of a reactive system.
We assume that the execution of the system can be described
using a combination of events and time delays. (We use letters
A,B, . . . to denote a predicate on events.) Events should be
understood as instantaneous actions involved in the evolution
of the system: it can be an observable transition in the system;
a process that changes its state; etc.

TGIL can be viewed as a real-time extension of the Graph-
ical Interval Logic (GIL) of Dillon et al. [4]. An example of
GIL diagram—that is also in TGIL—is given below.

|A

|B

φ

A TGIL specification, or formula, is a diagram that should be
read from top to bottom and from left to right. Our example
depicts three main notions used in TGIL. For each notion,
we briefly describe its graphical notation and propose an
equivalent textual syntax.

1) Execution Context: every formula is expressed with
respect to an execution context, displayed with a straight line

, that represents a portion of an execution trace—a time
interval—where the property is evaluated. The initial, top-most
context symbolizes the whole execution trace, that is the time
interval [0,+∞[.

In this short abstract we only consider contexts that are
“closed at their beginning and open at their end." This



convention, that is also followed in GIL, simplify the
presentation and may help avoid problematic examples, such
as Zeno behaviors. Nonetheless, our notation can be extended
to handle unrestricted types of contexts.

2) Search: formulas and sub-contexts are built from
searches, that define instants matching a given constraint in
the current context; searches are displayed with a dashed arrow

and are decorated with (a predicate on) events. In our
example, the first search starts from the beginning of the initial
context (thus at time 0) and define the first time instant in
the context where an event A occurs (say tA). The second
execution context is defined by the result of this search; it
starts at time tA.

A search can be combined with a context in order to define
a sub-context: from a context and a search point, say S, we can
define the context located after S (as we do in our example)
or the context located before it (as shown with the diagram
below). We use the notation [→A|φ〉 for describing the first
kind of context and the notation 〈φ|→A] for the other kind,
where φ is a TGIL specification.

|A

There are two kind of searches in our graphical notation: a
weak search ( ) and a strong search ( ) version. With
a strong search, [�A|φ〉, the formula is false if we fail to
find an event matching A in the current context (if the search
fails). At the opposite, with a weak search, the formula is true
if the search fails. We show how to define the weak search
version as a derived operator in our logic.

3) Formulas: a TGIL specification associates properties to
contexts and search points in the diagram. For instance, the
last (bottom) element in our example states that the formula φ
should be true somewhere/sometimes in the context [tA, tB [,
where tA and tB are the dates associated to the pair of events
(A,B) matched in the previous searches. In our case, φ can
be a formula—expressed using another TGIL diagram—or
simply a predicate on events. (The instant where φ is true
is materialized by the diamond, like in a search.)

As a consequence, our running example can be interpreted
as follows: look for the first occurrence of an event A. If
there is any then find the following occurrence of B. If no
such occurrence exists the property is false. Finally, find an
event, “in-between”, where φ holds. For concision, we omit
intermediate contexts when they can be inferred from the
diagram. Thus, our example can be equivalently drawn:

A
|

B

φ

The textual equivalent of this requirement could be written
[→A| 〈(♦φ)|�B]〉.

TGIL also provides a construction for expressing “punctual
properties”—depicted using a triangle under a search point—
that is a property relevant at this given instant in a context.
For example, the first (boxed) part of the TGIL diagram below
states that, at the instant A is false, then B is true (since it is a
strong search, it also states that B must eventually happens).
The textual equivalent of this formula is [�(¬A)|B〉.

|
(¬A)

B

⇒ |
(C ∨ ¬A)

C

As we show in the previous diagram, TGIL formulas can
be combined using boolean connectives and grouping—the
graphical equivalent of parentheses—drawn using a boxed
rectangle.

4) Timing Constraints: finally, TGIL provides two opera-
tors for adding timing constraints on formulas: an operator
that bounds the delay between two instants; and an operator
that restrict a context to a given time interval.

In the following, we use the symbol I as a shorthand for
the time interval [d1, d2).

The first operator, called time length, uses a “curly braces”
notation, illustrated below. It states that the delay between the
two instants materialized by the end of the brace is in I .

B
|

A

∈ I

We can use this operator to constrain the length (time duration)
of a context. In particular, when the two instants are the
boundaries of the same search—as it is the case in our
example—we use the textual notation [→IA| . . .〉 to state that
the length of the search →A is in I . This restricted operator,
denoted Len(I) in [6], is the only timing operator that was
considered in a previous timed extension of GIL.

The second operator, time restriction, limits an execution
context to a given time interval I (relatively to the starting
point of the context). This operator is drawn using a combi-
nation of dotted and solid line. We give, as an example, the
specification for the Present pattern described in Sect. I.

B

I

|A
This formula can be interpreted as follows: assume that IC
is the time interval corresponding to the current execution
context. If tA is the instant of the first occurrence of A
in IC then search the first occurrence of B in the context
IC ∩ [tA + d1, tA + d2). If IC is bounded, its time restriction
may be empty, in which case all posterior searches will fail.

To the best of our knowledge, the time restriction operator is
totally new in the context of GIL. This operator is necessary to
define the pattern Present A after B within I that we described in



the introduction. Indeed, equipped with the Len operator alone,
we can only detect if the first A following a B is within I .

III. FORMAL SEMANTICS

The semantics of a TGIL formula, φ, is defined as the set
of timed traces that holds for φ. A timed trace σ is a (possibly
infinite) sequence of events and duration d(δ) with δ ∈ Q+.
In the following, we use ε to denote the empty trace and,
given a finite trace σ and a—possibly infinite—trace σ′, we
denote σσ′ the concatenation of σ and σ′. This operation is
associative.

The duration of a finite trace σ, denoted ∆(σ), is the sum of
all its time delays. We extend this definition to infinite traces
by defining ∆(σ) as the limit of ∆(σi) where σi are growing
prefixes of σ.

A TGIL specification can only be satisfied by execution
traces that are either finite or that cannot block the passing
of time: we say that a trace σ is well-formed if and only
if dom(σ) is finite or ∆(σ) = ∞. With this restriction, we
avoid problematic behaviors, such that an infinite number
of events can occur in finite time, without forbidding time
divergence. More generally, we consider execution traces up-
to “time equivalence”, ≡, that is the largest congruence such
that the traces d(δ1 + δ2) and d(δ1)d(δ2) are equivalent. This
relation preserves duration and guarantees that a well-formed
trace is only equivalent to other well-formed traces.

We consider a finite set of propositional variables, A,B, . . . ,
that denote “atomic properties” of events ω ∈ Ω. We use the
expression ω ∈ A to denote that the proposition A is true for
ω. (By extension, we should also use A to denote a predicate
over propositional variables.)

We define the semantics of TGIL using our textual syntax.
Besides the propositional fragment, the main operators are
the punctual formula (A), the left and right searches; the
sometimes modality (♦) and time restriction (\I ).

φ ::=¬φ φ1 ∨ φ2 A
[�IA|φ〉 〈φ|�IA] (♦φ) (\I φ)

We use the satisfaction relation σ |= φ to denote that the
formula φ holds for σ. In this definition, we use σI to denote
the sub-trace of σ restricted to the time interval I and the
notation σ ≡ Aσ as a shorthand for the condition (σ ≡ ωσ′)∧
(ω ∈ A).

σ |= ¬φ iff not σ |= φ
σ |= φ1 ∨ φ2 iff

(
σ |= φ1

)
∨
(
σ |= φ2

)
σ |= A iff σ ≡ Aσ′

σ |= [�IA|φ〉 iff σ ≡ σ1Aσ2 ∧A /∈ σ1
∧∆(σ1) ∈ I ∧ σ2 |= φ

σ |= 〈φ|�IA] iff σ ≡ σ1Aσ2 ∧A /∈ σ1
∧∆(σ1) ∈ I ∧ σ1 |= φ

σ |= (♦φ) iff ∃σ1, σ2 . σ ≡ σ1σ2 ∧ σ2 |= φ
σ |= (\I φ) iff σI |= φ

This definition is quite similar to the satisfaction relation
for Linear Temporal Logic (LTL). In particular, TGIL is an
instance of a linear time logic, in the sense that it cannot be
used to reason on “several possible timelines” simultaneously.

IV. DERIVED OPERATORS AND SYNTHESIS OF OBSERVERS

We can define additional logical operators that are useful for
defining properties. The “true” formula, >, can be encoded by
any tautology, such as A ∨ ¬A. Another example of derived
formula is (\I (♦φ)), which defines a property that is satisfied
if φ holds sometimes in I . We use the notation (♦I φ), for this
derived operator, to stress the direct relationship with MTL.
The dual of the sometimes operator, (@I φ)

def
= ¬(♦I (¬φ)),

holds for the traces such that φ is always true in I .
It is possible to derive the weak search operator from the

strong search version. Indeed, the formula [→IA|φ〉 is true
if and only if [�IA|φ〉 is true or the search for A fails in
the context \I . Put another way, if we can find A in \I then
[�IA|φ〉 should be true: [→IA|φ〉

def
= (♦I A)⇒ [�IA|φ〉.

We already showed how to use TGIL for defining the
semantics of the Present pattern (see [2] for a complete catalog
of timed patterns). We now look at an example of response
pattern, used to express “cause–effect” relationship, such as
the fact that a triggering event must be followed by a response
in a bounded time. The pattern A leadsto B within I holds
for all timed traces where every occurrence of A is followed
by an occurrence of B within I (we only consider the first
occurrence of B after A). Alternatively, we can define the
semantics of the leadsto pattern with the diagram:

A
|B

∈ I

that is with the formula: (@ [→A| [�IB| >〉〉). Using our
satisfaction relation “as a substitute” for a proof system,
we can show that this definition is equivalent to the
following, optimized formula, that uses one less search:
(@ (¬A ∨ [�IB| >〉)).

Next, we describe a method for using TGIL as the prop-
erty specification language for model-checking. We follow
an observer-based approach, meaning that the relationship
between a model and its specification is interpreted as the
composition of the model with an observer of its behavior.
More precisely, we consider systems defined using Time
Transition Systems (TTS), an extension of Time Petri Nets
with data variables and priorities. (See e.g. [1] for the se-
mantics of TTS.) TTS models can be checked using selt, an
SE-LTL model-checker provided in the Tina toolbox (http:
//projects.laas.fr/tina/).

The idea is to synthesize a TTS model (an observer) from a
TGIL specification; to generate the state space of the system
composed with its observer; and to test the satisfaction of a
simple reachability property. Due to space limitation, we only
show the result of applying our method on a specific example,
the Present pattern: [→B| (\I [�A| >〉)〉. The model-checking
problem for TGIL, in its entirety, is undecidable. Nonetheless,
the method that we describe here could be applied to any
“positive” formulas, that is formulas without negation.



act: foundB := true

B SI

pre: foundB

act: startI := true

[d1, d1]

act: foundA := true

pre: foundB ∧ startI ∧ ¬endI

A EI

pre: foundB

act: endI := true

[d2, d2]

Figure 1. TTS observer for the pattern Present A after B within [d1, d2)

We define some conventions used when defining the ob-
servers for the formula

[
→B| (\[d1,d2) [�A| >〉)

〉
. The ob-

server will be a Time Petri Net without places, see Fig.1
(this net is composed with transitions in the observed system,
that may have associated places). The observer uses boolean
variables to encode the “state” of every operator in the
formula: foundB is true after the search for B succeeds (the
top operator is [→B| . . .〉); startI is true after the beginning of
the time restriction (\I ) (d1 u.t. after foundB is true) while
endI is true after d2 u.t.; foundA is true after the search for A
succeeds.

In our encoding, each variable is set by a distinct transition.
Transitions have a precondition, pre, that is a predicate over
variables. The precondition should be true for the transition to
be enabled. Symmetrically, each transition has an action, act,
that is evaluated when the transition is fired. In the observer
of Fig. 1, SI and EI are transitions that belong to the observer,
whereas A and B are transitions that will be composed with
the “events” A and B in the observed system. We also make
use of priorities (dashed arrows between transitions) in order
to give the precedence to transitions belonging to the observer.

The property holds if the search for B fails or if we find an
A while the predicate (foundB∧startI∧¬endI) is true. Therefore,
to check if the pattern holds for the system, it is enough to
check the reachability property (we express the property in
LTL):

(
♦ foundB

)
⇒

(
♦ foundA

)
.

V. RELATED WORK AND CONTRIBUTIONS

We have defined the semantics—as well as both graphical
and textual notations—for TGIL, an extension of the Graphical
Interval Logic (GIL) of Dill et al [4]. Another real-time
extension of the Graphical Interval Logic, called RTGIL, has
been proposed by Dillon et al. [6]. RTGIL extends GIL by
adding the equivalent of our “time length” search operator,
[→IA|φ〉. In comparison, TGIL is more expressive since it
provides an operator for time constrained search, (\I φ), that
is not derivable in RTGIL. For example, the timed pattern
present A after B within I can be expressed in TGIL, but not
in RTGIL.

Other works propose graphical notations for expressing
behavioral properties. Most of these proposals are based on
informal diagrammatic notations, such as UML, or are not
concerned with verification.

Apart from the work on GIL, that we mentioned extensively,
Alfonso et al. [3] define Visual Timed event Scenarios (VTS),
a graphical language to define complex requirements using
annotations on a partial order of event. It is possible to express
timing constraints using VTS but some simple requirements
cannot be expressed, such as the fact that a given event,

say A, should be true for a duration of d. This requirement
corresponds to the formula (♦[0,+∞) (@[0,d)A)) in TGIL.
Concerning tooling, another reference is the TimeEdit tool [9],
that is based on timeline diagrams. TimeEdit specifications can
be compiled into Büchi automata—just like LTL—and used
with the Spin model-checker. Nonetheless, timeline diagrams
do not directly support the definition of timing constraints.

The usefulness of TGIL goes beyond the definition of timed
patterns. It is also a good candidate to replace timed extensions
of temporal logic and study their decidable fragments. For
example, the timed search operator of TGIL is reminiscent of
the BI operators defined in the State Clock Logic (SCL) of
Raskin and Schobbens [8], a decidable, realtime extension of
PTL.

In this short abstract, we have defined a timed extension of
Dillon’s et al Graphical Interval Logic (TGIL) that is more
expressive than previous proposals. The semantics of TGIL
can be easily defined using an equivalent “textual notation”
that may facilitate (such as e.g. proving the consistency of
partial proof systems) We show how to apply TGIL for the
definition of a realtime specification language and give an
example of the synthesis of an observer. A limitation of this
approach is that TGIL is essentially a linear time logic (it
expresses constraints on traces), whereas some properties may
require a branching time extension. In future work, we plan to
enrich the logic with more expressive timing constraints and to
study their interaction with a branching time variant of TGIL.
We also plan to extend our compilation of diagrams into TTS
observers to a larger subset of TGIL.
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