N

N

Coarse-Grained Locking Scheme for Parallel State Space
Construction
Silvano Dal Zilio, Rodrigo Tacla Saad, Bernard Berthomieu

» To cite this version:

Silvano Dal Zilio, Rodrigo Tacla Saad, Bernard Berthomieu. Coarse-Grained Locking Scheme for
Parallel State Space Construction. Rapport LAAS n° 13048. 2013. hal-01790224

HAL Id: hal-01790224
https://laas.hal.science/hal-01790224

Submitted on 11 May 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://laas.hal.science/hal-01790224
https://hal.archives-ouvertes.fr

Coarse-Grained Locking Scheme for Parallel
State Space Construction

Rodrigo T. Saad!, Silvano Dal Zilio? and Bernard Berthomieu?
rsaad@das.ufsc.br, {dalzilio, bernard}@laas.fr

! DAS-CTC-UFSC; Bairro Trindade, 88040-970
Florianopolis, Brazil
2 CNRS; LAAS; 7 ave. Colonel Roche, F-31077
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

Abstract. We propose a new parallel algorithm for state space construc-
tion that is well-suited for modern, multiprocessor architectures with
non-uniform memory access times. Our algorithm uses a network of dis-
tributed hash tables to store the states locally—we use one hash table
per processor (or thread)—and a shared entity, suggestively called the
dispatcher, to control the distribution of data among all these tables.
Conflicts in accessing the same shared memory location simultaneously
are resolved by a traditional CREW strategy; we use one lock per hash
table to grant write accesses but read accesses are allowed to occur con-
currently. With this approach, we combine the simplicity and ease of
implementation of distributed hash tables with the dynamic data dis-
tribution of concurrent data structures. We evaluate the performance of
our algorithm on different benchmarks.

1 Introduction

Model Checking, much like other formal verification techniques, is a very resource-
intensive process. This may explain why the implementation of model-checking
tools has often followed advances in hardware. In this paper, we propose an algo-
rithm for parallel state space construction that is well-suited for multiprocessor
and multicore servers with shared-memory architectures. This algorithm relies
on a new coarse-grain locking scheme to reduce synchronization overheads and
favors data locality in order to be efficient on NUMA architectures (that is, such
that memory access times are non-uniform.)

Our algorithm is based on a previous work on parallel state space genera-
tion [5] where we used a “modified” Bloom filter, together with a set of dis-
tributed hash tables, to store the states. In this context, the distribution of
states among processors is done dynamically and the location of each state is
tracked by a shared data structure called a Localization Table, or LT for short.
Although we obtained some very good results when compared to other parallel
algorithms, one drawback is that we need a rough estimate of the state space
size to dimension the LT. Indeed, the performance of the algorithm degrades
severely if the initial table is not large enough to fit all the states. The problem

stems from the fact that the LT cannot be resized without blocking the state
space exploration (on the opposite, local hash tables may be resized at any time).
An acceptable choice is to use a bound on maximal number of states that can
be processed by the computer, for example by dividing the amount of available
memory by an estimate of the size of one state. Nonetheless, this may lead to a
waste of memory space. (On typical models, the LT occupies almost 5% of the
total memory used during state space exploration.)

In this work, we improve on the algorithm of [5] and solve the problems
related to the size and the parametrization of the LT. Our new solution is based
on the observation that a uniform distribution of states among processors (both
in time and space) helps reduce the probability of a collision: two states assigned
with the same key at the same time. Our algorithm uses a network of distributed
hash tables, one on each processor, but replaces the shared LT by an entity called
the dispatcher, that is in charge of controlling the distribution of data among
all the tables. The dispatcher maps every generated state to one of the hash
tables. Conflicts in accessing the same hash table simultaneously are resolved by
a traditional Concurrent Read Exclusive Write (CREW) strategy; we use one
lock per hash table to grant write accesses but read accesses are not constrained.
Our main goal is to provide an algorithm with similar performances but without
the need for parametrization and with a lower memory footprint.

Related Work: the use of distributed hash tables with static partition of states
is the most widespread solution for parallel state space exploration; an example
is the version of DiVinE [1] for multicore machines where each process owns a
private EREW hash table. In contrast, Spin [2], LTSmin [4] and PMC [3] use
a concurrent data structure with a dynamic distribution of data. Spin uses the
stack-slicing strategy to share work in combination with a shared hash table
protected by a fine-grained locking scheme. This approach has been extended
in [4] with a lockless shared hash table based on atomic primitives (Compare
& Swap). Finally, we can cite the work of Inggs and Barringer [3], that use
an unsafe shared hash table together with a work stealing strategy to provide
dynamic load balancing.

Contributions: we define a new algorithm that combines the simplicity and ease
of implementation of distributed hash tables with the dynamic data distribution
of concurrent data structures. In addition to a light usage of locks, our algorithm
enables the individual resizing of local hash tables without blocking the entire
state space exploration. (The dispatcher does not require any setup and its
dimension does not depend on the number of elements to be inserted.) Compared
to fine-grained locking schemes, our algorithm requires less memory (at most 65
KB) to ensure data consistency. For comparison, the algorithm in [4] stores a
spare tuple with a memoization value and a write status bit for each state.

Outline: we detail our algorithm in Sect. 2 and propose two implementations for
the dispatcher. Before concluding, we give some preliminary results obtained on
a set of typical benchmarks.

2 Coarse-Grained Locking Scheme

We start by presenting our original algorithm of [5] before giving the details of
our coarse-grained locking scheme. Our original algorithm is based on the use of a
set of hash tables, one table on each processor, to store the states. Coordination
between the processors is based on a shared data structure, the Localization
Table (LT), that tests whether a state has already been found and, if so, keeps
track of its location. (When a new state is computed, it is preferably located on
the processor that found it.)

The work performed by each processor
is pretty simple: compute the successor of a ge‘—“““ate’
state, say s, and check in the LT where it frocess 1D
could have potentially been assigned. If s is a
newly discovered state, it will be assigned to
the processor who generated it. Otherwise, the
LT will return the location where the state s
is assigned, say LT{(s).

The architecture of our new algorithm is quite similar (see Fig. 1), except that
we replace the LT with a new data structure, suggestively called the dispatcher.
We say that we use a coarse-grained locking scheme because we need only one lock
per hash table to guarantee exclusive write access. Like the LT, the dispatcher
returns a processor id for each new state. However, the dispatcher distributes
data between hash tables, not between processors like the LT. As a consequence,
the dispatcher will always assign the same key to a given state regardless of
whether it is a newly discovered state or not, just like with a static hash function.
Processors are then allowed to write on a different hash table than the one they
house. We present our algorithm in more details in the following sections.

Fig. 1. Algorithm overview.

Algorithm Operation and Pseudocode: our algorithm follows an “homogeneous”
parallelization approach, where all processors execute the same program simul-
taneously. We use a work-stealing strategy (see [5]) to balance the work-load
among all processors during the exploration; for instance, whenever a thread
has no more states to explore, it tries to “steal” non-explored states from other
Processors.

The dispatcher is implemented as a shared object that supports the Dis-
patcher.get_id operation. It receives as input a state s and returns a processor
id (a value in 1...N). Each processor manages a private work stack of unex-
plored states and a local hash table to store the states. The shared memory
space consists of: one bitvector of size N to store the state of the processors
(idle or busy), used to detect termination; N shared work stacks—one for each
processor—for the work sharing technique; and finally N forward stacks used to
prevent processors from blocking when they are not granted with the lock for
exclusive write access.

We give the pseudo-code of our algorithm in Listing 1.1. The state space
exploration proceeds until all stacks are empty. Given a state s, a processor,
say my_id, will check over the dispatcher for the owner of s. This information is

OO~ Uk WN -

returned by a call to the function Dispatcher.get_id(s). From the id returned by
the dispatcher, the process my_id performs a look-up operation over the local
table of processor id to check if the state is really there. If the state is not found,
it tries to insert the state itself on the local hash table of processor id. If process
my_id is not able to lock the given hash table for exclusive write, we tag it as a
forward state and add it to the forward stack of processor id. Forward states are
specifically tagged since they bypass the dispatcher test and are directly inserted
in the local table, forcing the processor to wait until the lock is granted (see line
16). When the private work stack is empty, work is transferred from shared work
and forward stacks; if they are also empty, the processor may “steal” work from
others. The private stack holds all states that should be worked upon and the
shared stack for states that can be borrowed by idle processors.

while (one process still busy)
while (Proc[my_id]. private_stack not empty)
do s ¢« remove state from Proc[my_id]. private_stack;
write_lock_granted <+ false
if s not tagged as forward
then status < TRY;
id <« Dispatcher.get_id(s);
else status < INSERT; // Forward State
id + my-id;

endif
if s not in Proc[id].local_table
then if status = TRY //Try to get the lock
then if try lock of Proc[id].local_table
then write_lock_granted < true;
endif
else //Wait for the lock (status = INSERT)
wait and get lock of Proc[id].local_table
write_lock_granted <+ true;
endif
if write_lock_granted
then add s to Proc[my.id].local_table
release lock of Proc[id].local_table
generate the successors from s
and put some in Proc[my-id]. private_stack;
else tag s as forward;
add s to Proc[id].forward_stack;
endif
endif
endwhile

transfer work from Proc[my_id].forward_stack
and Proc[my_id].shared_work_stack to Proc[my.id]. private_stack;

endwhile

Listing 1.1. Algorithm pseudo-code

Versions: we tested three variants of our algorithm, they are:

Non-blocking Static: on its simplest form, the dispatcher can be implemented
as a hash function h, with image in 1...|N|, that maps states to one of the
processors identifiers.

Non-blocking Vector: in this version, the dispatcher is essentially a small
“table” that associates a processor id to range of keys in the table. The
idea is to build incrementally an approximation of the “best” distribution
function by exploring the first states. The table will behave as a static hash

function once it is filled. We can implement the table using an integer vector
V of size n and, for computing the key of a state, an independent hash
function, h. (The best results were achieved using a vector of n = 65536
slots, which is the 64 KB level 2 cache memory size of the processors used.)

Blocking Vector: this is the same implementation than previously but without
the “forward” stacks. From Listing 1.1, we replace the “try lock” for the “wait
lock” operation at line 13, forcing the processor to wait until the write lock
is granted. Lines 16 to 18 and 26 to 28 are no longer needed because all locks
are resolved and no state is forwarded.

3 Results

We implemented our algorithm using the C language with POSIX threads and
atomic primitives. Our experimental results have been obtained using a Sun Fire
server with eight dual-core Opteron processors and 208 GB of RAM. We used
classical, finite-state problems (Dining Philosophers; Kanban; ...) and puzzles
(Peg-Solitaire; Sokoban; ...) for the benchmarks®. We only selected medium
size models, with number of states varying from a few millions (Sokoban) to a
half-billion states (Frogs).

We give the average relative speedup for the three versions of the dispatcher in
Fig. 2. In this figure, NB_STATIC stands for Non-Blocking Static, NB_VECTOR
for Non-Blocking Vector and B_-VECTOR for Blocking Vector. Figure 3 gives
the ratio of missed to acquired locks by the number of states inserted per second
for a set of 8 experiments using 16 processors (or threads). The number of in-
serted states per second ranges from 4.10° (Hanoi) to 2.10° (Frog). These results
support our initial assumption that there is a relation between the “uniformity”
of the state distribution and the probability of write conflicts; in the worst case,
the percentage of missed locks is smaller than 12% of the locks acquired.

Figures 5 and 4 compare the previous version of our algorithm [5] with the
new one. Figure 5 shows the average mean-standard deviation (MEAN-STD) of
states among all processors and Figure 4 gives the ratio of read to write accesses.
We see that, on average, our algorithm is able to match the performance obtained
using the LT. The smaller number of memory accesses made by the LT version
can be explained by its “more localized” distribution of states. We can also
mention the extra read accesses performed by our coarse-grained scheme due to
the missed locks. Finally, we see that we can outperform our original algorithm
using the NB_STATIC version of the dispatcher and also have a better physical
distribution of data.

4 Conclusion

We presented a new coarse-grained locking scheme for parallel, enumerative state
space exploration. Our preliminary results are promising. In particular, we ob-
tained performances similar to the one observed with our previous approach [5],

3 All data collected from our experiments are available at http://goo.gl/e7C2I

Sp=Ts/Tn

Read/Write Access Ratio

°
_ g o2
12 B .__‘&;‘.- E PA
_— - ““\“ll 8
10 > .‘--‘-'Q = 008 A
o s // " E + AN 4
6) g 004 % 4
o Ideal Speedup < y
4 = 2 B_VECTOR = 3 o
oL NB_VECTOR -3 _| 2
t,ﬂ“ NB_STATIC -t s 02 04 06 08 1 '.1.2 14 16 18 2
0 L L L L > Inserted states (Millions) per second
2 4 6 8 10 12 14 16
Number of Processors NB_VECTOR A NB_STATIC o
Fig. 2. Speedup Analysis. Fig. 3. Lock Misses Analysis.
8.4 . 03
. A A a A
no02
76 E
0.1
7.2 S
68 Q No A
112 113 114 115 116 117 118 119 12 112 113 114 115 116 117 118 119 12
Inserted states (Millions) per second Inserted states (Millions) per second
LT (O BWECTOR A LT (O BWECTOR A
NB_VECTOR NB_STATIC A NB_VECTOR NB_STATIC A
Fig. 4. Read/Write accesses Analysis. Fig. 5. Standard Deviation Analysis.

but with a smaller memory footprint and without the need to parametrize an
auxiliary data structure. This result is encouraging since, in [5], we observed
performances close to those obtained using an algorithm based on lockless hash
tables (that may be unsafe) and that outperformed an implementation based on
the concurrent, unordered map provided in the Intel Threading Building Blocks,
an industrial strength lockless hash table. In future works, we intend to perform
a broader comparison with state of the art tools. (We already obtained favorable
comparison against Spin and LTSmin using our LT-based algorithm.)

References

1. J. Barnat, L. Brim, and P. Roc¢kai. Scalable multi-core 1t] model-checking. In Model

2.

Checking Software, volume 4595 of LNCS, pages 187-203. Springer, 2007.

G.J. Holzmann. A stack-slicing algorithm for multi-core model checking. Electronic
Notes in Theoretical Computer Science, 198(1):3-16, 2008.

Cornelia P. Inggs and Howard Barringer. Effective state exploration for model
checking on a shared memory architecture. In Parallel and Dist. Model Checking,
volume 68(4) of ENTCS, 2002.

. A. W. Laarman, J. C. van de Pol, and M. Weber. Boosting multi-core reachability

performance with shared hash tables. In Proc. of the 10th Int. Conf. on Formal
Methods in Computer-Aided Design. IEEE Computer Society, 2010.

. Rodrigo T. Saad, Silvano Dal Zilio, and Bernard Berthomieu. Mixed Shared-

Distributed hash tables approaches for parallel state space construction. In In-
ternational Symposium on Parallel and Distributed Computing (ISPDC 2011), page
8p., Cluj-Napoca, Romania, July 2011. Rapport LAAS 11460.

