
HAL Id: hal-01790971
https://laas.hal.science/hal-01790971v1

Preprint submitted on 14 May 2018 (v1), last revised 25 May 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Analytical Derivatives of Rigid Body Dynamics
Algorithms
J. Carpentier

To cite this version:

J. Carpentier. Analytical Derivatives of Rigid Body Dynamics Algorithms. 2018. �hal-01790971v1�

https://laas.hal.science/hal-01790971v1
https://hal.archives-ouvertes.fr


Analytical Derivatives
of Rigid Body Dynamics Algorithms

Justin Carpentier
Laboratoire d’Analyse et d’Architecture des Systèmes

Université de Toulouse
7 avenue du Colonel Roche, Toulouse, FRANCE

Email: justin.carpentier@laas.fr

Abstract— Rigid body dynamics is a well-established metho-
dology in robotics. It can be exploited to exhibit the analytic form
of kinematic and dynamic functions of the robot model. Two
major algorithms, namely the recursive Newton-Euler algorithm
(RNEA) and the articulated body algorithm (ABA), have been
proposed so far to compute inverse dynamics and forward
dynamics in a few microseconds. However, computing their
derivatives remains a costly process, either using finite differences
(costly and approximate) or automatic differentiation (difficult
to implement and suboptimal). As computing the derivatives
becomes an important issue (in optimal control, estimation,
co-design or reinforcement learning), we propose in this paper
new algorithms to efficiently compute them using closed-form
formulations. We first explicitly differentiate RNEA, using the
chain rule and adequate algebraic differentiation of spatial
algebra. Then, using properties about the derivative of function
composition, we show that the same algorithm can also be
used to compute the derivatives of the forward dynamics with
marginal additional cost. To this end, we finally introduce a new
algorithm to compute the inverse of the joint-space inertia matrix,
without explicitly computing the matrix itself. The algorithms
have been implemented in our open-source C++ framework
called Pinocchio. The reported benchmarks, based on several
robot models, display computational costs varying between 3
microseconds (for a 7-dof arm) up to 17 microseconds (for a
36-dof humanoid), i.e. outperforms state-of-the-art results.

I. INTRODUCTION

Rigid body dynamics algorithms are now a well-established
framework at the heart of many robotic applications. They are
also gaining in popularity in related domains as biomechanics
and computer animation. This is mostly due to their ability
to compute in a generic and efficient way the kinematic and
dynamic quantities that describe the motion of poly-articulated
systems such as robots, human skeletons or avatars. They
are now essential for the control and the stabilization of
quadrupedal and humanoid robots [11, 16, 18]. At the
same time, optimal control and trajectory optimization are
becoming standard approaches to control complex robotic
systems [27, 17], generate human-like or avatar motions [29,
23], or in the context of simultaneous design and control
of robots [28, 9, 15] for instance. They mostly rely on an
accurate integration of the forward dynamics together with the
differentiation of this same dynamics with respect to the state,
parameters and control variables of the system. Notably, most
of the computation time of these optimal control algorithms
is precisely spent on this very last step.

Evaluating the partial derivatives of the dynamics can be
performed in several manners. The simplest way is to use the
finite differences, i.e. calling several times the input dynamics
while adding a small increment on the input variables. The
main advantage is to systematize the derivation process by
considering the input function as a black box. It comes at the
price of calling n + 1 times the input function (with n the
number of input variables). It is also sensitive to numerical
rounding errors. Yet, this approach has shown to be fast fast
enough to be applied on real system [32, 17] but requires
fine parallelization. Another methodology which have been
proposed by Garofalo et al. [12] is to analytically derive the
Lagrangian equation of motion. Such a derivation gives a
better insight into the structure of the derivatives but it leads to
dense computations and fails to efficiently exploit the sparsity
induced by the kinematic model, in a similar way than rigid
body dynamics algorithms do. A last method is to rely on
automatic differentiation of rigid body dynamics algorithms as
done in Drake [31] and more recently exploited by Giftthaler
et al. [13]. The idea is to overload the scalar type of input
variables and, knowing the derivatives of basic functions like
cos, sin, exp, etc., to obtain the partial derivatives of a given
output with respect to the input variables by applying the
chain rule formula in a systematic way. However, automatic
differentiation may require intermediate computations which
are hard to avoid or to simplify. To overcome this issue,
one solution is to use code generation (to remove redundant
computations) as done in [13].

We rather propose to tackle these issues by analytically
deriving these algorithms in order to speed up the computation
of the derivatives, and also gain a better insight into their
mathematical structure. We are then able to exploit the inherent
structure of spatial algebra (e.g. the cross product operator)
at the root of rigid-body-dynamics algorithms, while the
aforementioned approaches are in fact not able to do. A
similar approach has been proposed in Lee et al. [19], where
the authors derive the Lie theoretic formulation of inverse
dynamics in the context of serial chaines with closed loops.
This paper differs by also considering poly-articulated systems
made of several sub-chains.

This paper is made of two concomitant contributions. In a
first contribution we establish in a concise way the analytical
derivatives of the inverse dynamics through the derivation



Fig. 1: Spatial notations used all along this paper.

of the so-called recursive Newton-Euler algorithm [20, 8].
The second contribution concerns the analytical derivatives of
the forward dynamics: we demonstrate that these derivatives
can be directly deduced from the derivatives of the inverse
dynamics with only a minor additional cost. We provide all
these derivatives inside our C++ framework for rigid-body
systems called Pinocchio [5].

Based on the standard notations of rigid-body dynamics
(recalled in Sec. II), we make explicit in Sec. III the
partial derivatives of the recursive Newton-Euler algorithm
(RNEA). Sec. IV then explains how the derivatives of the
forward dynamics can be computed from RNEA derivatives.
Benchmarks are reported in Sec. V.

II. RIGID BODY DYNAMICS NOTATIONS

Spatial algebra allows to write in a concise manner the
kinematics (velocity, acceleration, etc.) and dynamics (force,
momenta, etc.) quantities that describe the motion of a rigid
body. All over this paper, we use the spatial notations and
conventions which have been introduced and popularized in
robotics by Featherstone [8]. They are now at the root of many
efficient and mature software packages such as HuMAnS [34],
RBDL [10], METAPOD [25], Bullet [6] or MuJoCo [32], just
to name a few.

Hereafter, we recap all these notations that we exploit later
in Sec. III in order to derive the analytical expressions of the
partial derivatives of the recursive Newton-Euler algorithm.

A. Spatial quantities and notations for an isolated rigid body

1) Placement quantity: If we consider an isolated bodyBi
in space endowed with a fixed frame with index i (see Fig. 1),
it is firstly described by its placement quantity, denoted iX0

by Featherstone [8], where the subscript 0 corresponds to the
index of the world frame. iX0 belongs to SE(3), the so-called
special Euclidian group of rigid transformation of dimension 3.

2) Kinematics quantities: The instantaneous time derivative
of the placement quantity iX0 is given by its spatial velocity
vi which belongs to the so-called tangent space of SE(3),
denoted se(3). A spatial velocity is nothing more than the
instantaneous linear and angular velocity of the rigid body.

In a similar way, we can define the spatial acceleration of a
rigid body, denoted by ai as the instantaneous time derivative
of the spatial velocity.

3) Kinetic quantities: If the rigid body is also provided
with a mass distribution, we may define its spatial inertia
Ii characterized by the mass, the center of mass and the

rotational inertia of the body. This spatial inertia enables
us to introduce two additional quantities which quantify the
dynamic properties of the rigid body: (i) the spatial momentum
given by hi

def
= Iivi which stacks the linear and angular

momenta expressed in the body frame; (ii) the spatial force
given by fi

def
= Iiai + vi ×∗ hi which is nothing more than

the time derivative of the spatial momentum quantity. The ×∗

operator is made explicit in the next paragraph.
4) Group actions: Both spatial velocity and acceleration

belong to a specific group, called by Featherstone the group
of motions [8] which elements are generically denoted by
m. This means that they have in common similar operators
to operate on other spatial quantities. In a similar way,
Featherstone encompasses spatial momentum and force into
the group of forces with elements denoted by f. Spatial inertia
can then be seen as an operator which maps from the space
of motions to the space of forces.

Placement object may act on both motion and force
quantities. If we note A and B two Cartesian frames and AXB

their relative placement, these operations are respectively
denoted by [8]:

mA = AXBmB (1a)

fA = AX∗
B fB (1b)

which reads as “AXB acts on the motion mB expressed in
frame B to return another motion mA expressed in frame A”.

Motion object may also operate on both motion and force
objects through the notion of spatial cross product operations,
which are in some sense similar to classic time derivatives:

ṁ = vA ×m (2a)

ḟ = vA ×∗ f (2b)

where ṁ is the time variation of m and both m and f are
spatial quantities which are fixed when they are expressed in
frame A moving at the spatial velocity vA. Following these
notations, the time derivative of an inertia element IA attached
to a frame A is given by:

İA = vA ×∗ IA − IAvA× (3)

Finally, Featherstone has shown in his book [8, p.28] that:

˙AXBm = (vB − vA)× AXBm (4)

which corresponds to the time variation of the action operator
of the placement AXB onto a motion m. This last relation
will be of primal importance in Sec. III.

All these operators have an explicit expression in the book
of Featherstone [8], while further details on the mathematical
structure can be found in Murray et al. [24].

B. Spatial quantities and notations for poly-articulated
systems

A poly-articulated system like a humanoid robot or a robotic
arm is composed of several rigid bodies that are linked together
through articulations called joints (see Fig. 1).



A joint can be seen as a constraint which limits the
relative displacement between two consecutive bodies: the
relative transformation XJ governed by the joint only covers
a subset of SE(3). The relative transformation between the
frame i and the frame of the parent body λ(i) is given by
iXλ(i)

def
= XJXT (i) whereXT (i) is the placement of the joint

with respect to the frame attached to λ(i).
This partial covering of rigid transformation space can

be also observed at the joint motion level. If we note qi
the minimal coordinates representation of the transformation
XJ and q̇i the instantaneous time variations of qi, the
instantaneous joint velocity vJ is given by:

vJ
def
=
∂XJ

∂qi
q̇i = Siq̇i (5)

where Si
def
= ∂XJ

∂qi
is the joint motion subspace matrix whose

columns only covers a subpart of the tangent space se(3) when
evaluated at qi. In the previous equations, we have considered
that the joint subspace motion Si are independent from the
time, which is the case for most of the joints used in robotics.
Yet, this hypothesis is not a limitation as such dependency
can be easily handled by adding a drift term σJ(t, qi) in the
expression of vJ in Eq. (5).

We may again derive vJ with respect to time to get:

aJ = Siq̈i + cJ + vi × vJ (6)

where cJ collects all the drifting terms due to the variations of
Si with respect to qi and q̈i is time derivative of q̇i. In other
terms, we have:

cJ
def
=

(
q̇Ti

∂Si

∂qi

)
q̇i (7)

where ∂Si
∂qi

is a tensor expression often equal to zero for most
of the classic joints. A closed form computation of q̇Ti

∂Si
∂qi

is
given by:

q̇Ti
∂Si
∂qi

=

ni∑
k=1

∂Si
∂qki

q̇ki (8)

with ni the number of degrees of freedom (dof) of joint i and
qki is the k-th component of the configuration vector qi. We
refer again to [8] for further details on these terms.

III. ANALYTICAL DERIVATIVES OF THE RECURSIVE
NEWTON-EULER ALGORITHM

In this section, we derive the analytical expressions of the
partial derivatives of the inverse dynamics (ID) function in
the context of rigid-body systems. Inverse dynamics allows to
compute the generalized torque τ to apply on a rigid-body
system (model) in order to produce a desired generalized
acceleration q̈ giving the current generalized position q and
velocity q̇ of the system together with the stack external forces
f ext:

τ = ID(model, q, q̇, q̈,f ext)

Algorithm 1 - Pseudo code of the recursive Newton-Euler
algorithm as exposed by Featherstone [8, p. 96]

1 Initialization step:

2 v0 = 0
3 a0 = −ag // initialize the world spatial acceleration with

the gravity field value

4 Forward pass:

5 for i = 1 to NB do
6 [XJ,Si,vJ, cJ] = jcalc(jtype(i), qi, q̇i)
7 iXλ(i) =XJXT (i)
8 vi =

iXλ(i)vλ(i) + vJ
9 ai =

iXλ(i)aλ(i) + Siq̈i + cJ + vi × vJ
10 hi = Iivi
11 fi = Iiai + vi ×∗ hi − f ext

i

12 end

13 Backward pass:

14 for i = NB to 1 do
15 τi = S

T
i fi

16 if λ(i) 6= 0 then
17 fλ(i) = fλ(i) +

λ(i)X∗
i fi

18 end
19 end

Using the Lagrangian formalism, the inverse dynamics reads
as:

τ =M(q)q̈ + C(q, q̇)q̇ + g(q)−
∑
i

Ji(q)
Tf ext

i (9)

where M stands for the joint space inertia matrix, C is the
Coriolis matrix, g encompasses the gravity effects and Ji are
the frame Jacobian where external forces are expressed. For
clarity reasons, we remove from these quantities the explicit
dependency on the input model.

Efficient algorithms have been proposed in the literature to
solve the inverse dynamics problem [8]. The most efficient one
still remains the RNEA (see Alg. 1) whose complexity is linear
in the number of bodies composing the rigid-body system. It
was originally proposed by Luh et al. [20] in the 80’s and
generalized by Featherstone [8] to exploit the computational
structure of spatial algebra.

The partial derivatives of the inverse dynamics then
correspond to the variations of the torque output according to
the input variables (q, q̇, q̈). With the Lagrangian notations,
these partial derivatives correspond to:

∂ ID
∂q

=
∂M

∂q
q̈ +

∂C

∂q
q̇ +

∂g

∂q
−
∑
i

∂JTi
∂q

f ext
i (10a)

∂ ID
∂q̇

=
∂C

∂q̇
q̇ + C (10b)

∂ ID
∂q̈

= M (10c)

where we drop the dependency on input variables for better
clarity. At this stage, several observations come:



(i) the quantities ∂M
∂q , ∂C

∂q , ∂JTi
∂q and ∂C

∂q̇ which appear
in (10a) and (10b) are large tensor matrices that are
hard to explicit and they require larger capacity storage
than the three partial derivatives we wish to compute.
Some closed-form expressions of these tensors have
been proposed in [12] using the Lagrangian formalism,
requiring intensive computations.

(ii) the partial derivative of the torque with respect to the
joint acceleration quantity (10c) is simply the joint space
inertia matrix. They already exist efficient algorithms to
compute this last quantity as the composite rigid body
algorithm (CRBA) originally proposed by Walker and
Orin [33].

In the following, we aim at exploiting the simplicity and the
efficiency of the rigid-body dynamics algorithms like RNEA
and CRBA in order to derive the analytical expressions of the
partial derivatives ∂ID

∂q ,
∂ID
∂q̇ ,

∂ID
∂q̈ using spatial notations while

avoiding complex computations as the aforementioned tensor
expressions.

A. The recursive Newton-Euler algorithm

As previously mentioned, RNEA is the most effective
way to solve the inverse dynamics problem by exploiting
the structured sparsity induced by the kinematic model. It
is a two-pass algorithm which propagates the kinematic
quantities in a first forward pass (similar to a forward
kinematics), then collect the torque contribution of the subtrees
in a second backward pass. The Algorithm 1 recaps the
spatial operations performed inside the recursive Newton-Euler
algorithm. Compared to Featherstone [8, p. 96], we assume
here that the external contact forces are already expressed in
the joint frames1.

In the forward pass of RNEA, jcalc is the function which
computes the forward kinematics at the joint level and for a
given joint type jtype(i), according to its current configuration
vector qi and the corresponding velocity vector q̇i. XJ,Si,vJ
and cJ are spatial quantities output by jcalc and they only
depend on the current joint configuration qi and velocity q̇i.
While vi,ai and fi are also dependent to the motions of the
parent bodies by forward recursion.

In the backward pass of RNEA, both fi and τi quantities
are also subject to the dynamics of the subtree rooted at the
joint i through the backward recursion.

B. Generic partial derivatives of the recursive Newton-Euler
algorithm

In what follows, we derive in a generic manner the
computations performed by the RNEA. We will not derive
RNEA with respect to q̈ because we already know Eq. (10c)
that ∂ID

∂q̈ =M , and CRBA is already very efficient to perform
this precise computation.

We denote by u an arbitrary vector which stands either for
q or q̇. And we use the chain rule formula in order to derive

1Most of sensors used in robotics to estimate the action of external forces
(e.g. force-torque sensors or tactile skins) provide measurements already
expressed in a frame attached to the joints themselves.

Algorithm 2 - Partial derivatives of the RNEA forward
pass inner loop.

1:

[
∂XJ

∂u
,
∂Si

∂u
,
∂vJ

∂u
,
∂cJ

∂u

]
= jcalc(jtype(i), qi, q̇i)

2:
∂ iXλ(i)

∂u
=
∂XJ

∂u
XT (i)

3:
∂vi

∂u
=
∂ iXλ(i)

∂u
vλ(i) +

iXλ(i)

∂vλ(i)

∂u
+
∂vJ

∂u

4:
∂hi

∂u
= Ii

∂vi

∂u

5:
∂ai

∂u
=
∂ iXλ(i)

∂u
aλ(i) +

iXλ(i)

∂aλ(i)

∂u
+
∂Si

∂u
q̈i +

∂cJ

∂u
+

∂vi

∂u
× vJ + vi ×

∂vJ

∂u

6:
∂fi

∂u
= Ii

∂ai

∂u
+
∂vi

∂u
×∗ hi + vi ×∗ ∂hi

∂u

Algorithm 3 - Partial derivatives of the RNEA backward
pass inner loop.

1:
∂τi

∂u
=
∂STi
∂u

fi + S
T
i

∂fi

∂u
2: if λ(i) 6= 0 then

3:
∂fλ(i)

∂u
=
∂fλ(i)

∂u
+
∂λ(i)X∗

i

∂u
fi +

λ(i)X∗
i

∂fi

∂u
4: end

the basic spatial operations performed in Algorithm 1. For a
better clarity, we separate the derivations for the forward and
the backward passes.

1) Partial derivatives of the forward pass: Algorithm 2
shows the partial derivatives of the spatial quantities involved
in the forward pass of the RNEA. We deliberately omit the
partial derivative of the joint placement variables XT (i) with
respect to u as it is a fixed quantity independent from the
kinematic variables q and q̇. The same rule applies for the
spatial inertias Ii on line 6.

Due to the forward recursion, and similarly to the
observations made on RNEA in Sec. III-A, we might see on
lines 3 and 5 that both ∂vi

∂u and ∂ai
∂u directly depend on the

partial derivatives of their parent bodies through ∂vλ(i)
∂u and

∂aλ(i)
∂u . The other partial derivatives ∂hi

∂u and ∂fi
∂u directly rely

on the internal partial derivatives of the current joint i and
indirectly to the parent bodies motion via ∂vi

∂u and ∂ai
∂u .

It is also worth to notice that on one side ∂vi
∂u and ∂ai

∂u are
motion-sets, namely collections of motion vectors which have
been stacked inside a matrix. And on the other side, ∂hi∂u and
∂fi
∂u are force-sets, that are collections of force vectors also
stacked inside a matrix.

2) Partial derivatives of the backward pass: Algorithm 3
depicts how the partial derivatives of the joint torque ∂τi

∂u
are affected by the variations of the joint motion subspace



Si and the variation of the force-set supported by joint i.
This backward loop mostly propagates the partial derivatives
computed in the forward pass towards the kinematic tree.

It is important to notice at this stage that the structured
sparsity of RNEA is also preserved by directly applying the
chain rule on it.

C. Simplifying expressions

Depending on the value of u, some partial derivatives
present in Algorithms 2 or 3 may vanish because they
are independent from either q or q̇. We now detail theses
simplifications for each single line of Algorithms 2 and 3 in
order to give in the end, a complete and directly applicable
version of the recursive derivatives. This is certainly the most
technical part of this paper.

1) Algorithm 2, line 1: XJ and Si only depends on the
configuration qi of joint i. It follows that ∂XJ

∂u and ∂Si
∂u are only

non-zero for u = qi. The values of ∂Si
∂qi

depend on the type
of joint (given by jtype(i)) and they are mostly equal to zero
(e.g. revolute, prismatic, free-flyer joints). And as introduced
in Sec. II, ∂XJ

∂qi
is nothing more than the motion subspace Si.

We can deduce from Sec. II that ∂vJ
∂qi

= q̇Ti
∂Si
∂qi

and

∂vJ
∂q̇i

= Si.
∂cJ

∂u
for both qi and q̇i correspond to the evaluation

of complex tensor expressions, often equal to zero, that is why
we omit their analytical expressions for brevity.

2) Algorithm 2, line 2: As shown in the next paragraph,

the result of
∂XJ

∂u
XT (i) is not required and can be skipped.

What it is important to notice here is that ∂
iXλ(i)

∂q̇k
= 0 for any

k because XJ depends only on the joint configuration qi.
3) Algorithm 2, line 3: It is already well-known and

detailed in [8] that ∂vi∂q̇ corresponds to the kinematic Jacobian
of the joint i. Concerning the derivatives with respect to q,
we can observe that iXλ(i)

∂vλ(i)
∂q corresponds to the action of

the relative transformation iXλ(i) onto the columns of the
motion-set ∂vλ(i)

∂q , which can do by exploiting the sparsity
induced by the kinematic tree. And the term ∂vJ

∂u for u = q
has already been detailed.

The most delicate part concerns the first term ∂ iXλ(i)

∂u vλ(i)
with u = qi (otherwise the term is equal to zero). From
Eq. (4), we have:

d iXλ(i)

dt
m = −vJ × iXλ(i)m =

(
iXλ(i)m

)
× Siq̇i (11)

by definition of vJ in Eq. (5). We can also show that:

d iXλ(i)

dt
m =

(
∂ iXλ(i)

∂qi
q̇i

)
m (12)

As these two expressions (11) and (12) are linear with respect
to the components q̇ki of q̇i and they are valid for any motion
m, we may identify the operator expression ∂ iXλ(i)

∂qi
vλ(i) to

be:
∂ iXλ(i)

∂qi
vλ(i) =

(
iXλ(i) vλ(i)

)
× Si (13)

where this operation must be understood as a column-wise
operation of the spatial vector iXλ(i) vλ(i) on the motion-set
Si. A more rigorous demonstration can be done using the
formalism of Lie groups and Lie algebra [24], which would
require the introduction of additional notations that are out of
the scope of this paper.

4) Algorithm 2, line 4: The computations done on this
line are simply the action of the inertia Ii on the motion-sets
∂vi
∂u .

5) Algorithm 2, line 5: The operations done on this line
look very similar to the ones performed on line 3, especially
for the three first terms. We have already seen how to evaluate
∂cJ
∂u in Sec. III-C1. It is worth to notice again that for most of
the joints, ∂vJ

∂qi
= 0 and we have for u = q̇i,

∂vJ
∂q̇i

= Si and
vi×Si = 0, which implies that most of the time, the last term
of line 5 is equal to zero.

6) Algorithm 2, line 6: This line presents basic operations
on motion and force sets. All the same, it is importance to
notice that in ∂vi

∂u ×
∗ hi, the operator m×∗ hi acting on any

motionm, can be interpreted as a linear operator with a spatial
skew matrix representation.

7) Algorithm 3, line 1: For most of the joints, ∂STi
∂qi

= 0.
And it appears that STi

∂fi
∂u is simply a matrix product,

which can be evaluated following the sparsity induced by the
kinematic tree.

8) Algorithm 3, line 3: Following the same reasoning than
in Sec. III-C3, we can show that:

∂λ(i)X∗
i

∂u
fi =

λ(i)X∗
i (Si ×∗ fi) (14)

which has to be again interpreted as a column-wise operator
of the columns of Si on the spatial force fi.

D. Direct outcome of these derivations

Finally, a direct outcome of these computations is the
analytical expressions of the partial derivatives of the forward
kinematics, trough the quantities ∂vi

∂q , ∂vi
∂q̇ and ∂ai

∂q ,
∂ai
∂q̇ .

Indeed, these four last terms refer to the partial derivatives
of the spatial velocity and spatial acceleration of the joint i
with respect to the joint configuration and velocity vectors.
They come for free with the direct derivation of RNEA.

IV. ANALYTICAL DERIVATIVES OF THE FORWARD
DYNAMICS

Forward dynamics (FD) is the reciprocal of inverse
dynamics. In other words, it computes the generalized
acceleration q̈ of the rigid-body system according to the
current generalized position q, velocity q̇, torque input τ and
external forces f ext:

q̈ = FD(model, q, q̇, τ , ,f ext)

Using the Lagrangian notations, the forward dynamics reads:

q̈ =M(q)−1

(
τ − C(q, q̇)q̇ − g(q) +

∑
i

Ji(q)
Tf ext

i

)
(15)



Similarly to inverse dynamics, efficient recursive rigid-body
algorithms have been proposed to solve Eq. (15). One of the
most efficient one is the ABA, introduced by Featherstone in
the 80’s [7]. Similarly to RNEA, the algorithmic complexity
of ABA is linear in the number of bodies composing the
rigid-body system. One of the main feature of ABA is to not
rely on the explicit inverse of the joint space inertia matrix
M , allowing to save computation times.

Yet, ABA is much more complex than RNEA as it is
composed of three main recursions that we briefly summarize
here. In the first recursion, the kinematic quantities are
propagated along the tree structure. The second recursion
corresponds to a backward pass where the spatial forces which
act on bodies are computed from the joint torque input. In
the last recursion, the spatial accelerations of bodies are then
deduced, allowing to compute the joint acceleration vector.

A. Lagrangian expressions of the partial derivatives of
forward dynamics

The partial derivatives of the forward dynamics correspond
to the variations of the joint acceleration q̈ with respect to the
input variables (q, q̇, τ ), which gives:

∂ FD
∂q

=
∂M−1

∂q

(
τ − Cq̇ − g +

∑
i

JTi f
ext
i

)

+M−1

∑
i

∂JTi
∂q

f ext
i −

∂C

∂q
q̇ −

∂g

∂q

 (16a)

∂ FD
∂q̇

= M−1

(
∂C

∂q̇
q̇ + C

)
(16b)

∂ FD
∂τ

= M−1 (16c)

From these expressions, some remarks can be raised:
(i) we already mentioned in Sec. III the difficulties to

explicitly compute the tensors quantities ∂ C
∂q ,

∂ C
∂q̇ and

∂M
∂q . A similar comment holds for ∂M−1

∂q which can also
be deduced from ∂M

∂q through the relation:

∂M−1

∂q
= −M−1 ∂M

∂q
M−1

(ii) from Eq. (10c) and Eq. (16c), we can observe that the
partial derivatives of the inverse and forward dynamics
with respect to their third input argument (q̈ and τ
respectively) are inverse one from each other. This leads
to the following mathematical relation:

∂ FD
∂τ

=M−1 =
∂ ID
∂q̈

−1

(17)

B. Link between analytical derivatives of forward and inverse
dynamics

Due to the three recursions present in ABA, deriving
analytically ABA is much more laborious than in the case
of RNEA, as it involves additional intermediate computations.

Despite that, we show hereafter how the partial derivatives
of the forward dynamics can be obtained from the partial
derivatives of the inverse dynamics, and hence from the ones
of RNEA which have been introduced in Sec. III.

As aforementioned, forward dynamics is the reciprocal of
inverse dynamics, which means that these two functions are
linked by the following identity:

ID ◦ FD = id (18)

where ◦ denotes the composition operator and id corresponds
to the identity function (i.e. for any input x, id(x) = x).
Evaluated at any given entry (q0, q̇0, τ0), Eq. (18) also reads:

ID(model, q0, q̇0,FD(model, q0, q̇0, τ0)) = τ0 (19)

and for convenience in the notations, we set:

q̈0
def
= FD(model, q0, q̇0, τ0) (20)

We omit the here the dependency on external forces f ext for
better readability. Applying the chain rule formula on Eq. (19),
we obtain the following point-wise equality:

∂ ID
∂u

∣∣∣
q0,q̇0,q̈0

+
∂ ID
∂q̈

∣∣∣
q0,q̇0,q̈0

∂ FD
∂u

∣∣∣
q0,q̇0,τ0

=
∂τ0

∂u

∣∣∣
q0,q̇0,q̈0

(21)
where u indistinctly denotes either q or q̇. As τ0 is given and
fixed, we have:

∂τ0

∂u

∣∣∣
q0,q̇0,q̈0

= 0 (22)

for any value of q0, q̇0 and q̈0. And we know from Eq. (10c)
that:

∂ ID
∂q̈

∣∣∣
q0,q̇0,q̈0

=M(q0) (23)

which leads to:

∂ FD
∂u

∣∣∣
q0,q̇0,τ0

= −M−1(q0)
∂ ID
∂u

∣∣∣
q0,q̇0,q̈0

(24)

as the joint space inertia matrix is always invertible.
It follows from Eqs. (17) and (24) that the partial

derivatives of the forward dynamics can be directly deduced
from the derivatives of the inverse dynamics. To the best
of our knowledge, this is the first time that this specific
relation between the partial derivatives of forward and inverse
dynamics is highlighted and exploited in order to simplify the
underlying computations.

To summarize the proposed approach, we have shown that
it is sufficient to compute the inverse of the joint space inertia
matrix and the partial derivatives of inverse dynamics, in order
to get the partial derivatives of forward dynamics. It is also
important to notice at this stage that, if we have a direct
access to the partial derivatives of forward dynamics, it will be
possible to directly compute from these derivatives the partial
derivatives of inverse dynamics. This is made possible through
the inherent relations (18) and (24) that link together inverse
and forward dynamics as well as their partial derivatives.



TABLE I: Summary table of mean computation times for
derivatives of forward and inverse dynamics.

KUKA-LWR HyQ Atlas
ID 1.20 us 2.14 us 5.51 us
analytical derivatives of ID 3.34 us 7.01 us 16.72 us
finite differences of ID 21.26 us 88.52 us 452.46 us
FD 1.78 us 4.28 us 9.81 us
analytical derivatives of FD 5.78 us 14.24 us 45.20 us
finite differences of FD 22.67 us 94.23 us 470.14 us
M−1 dedicated algorithm 1.82 us 4.86 us 12.70 us
M−1 Cholesky factorization 1.88 us 5.82 us 28.29 us

C. Computing the inverse of the joint space inertia matrix

The last difficulty lies in the computation of the inverse
of the joint space inertia matrix denoted M−1. The standard
approach consists in first computing the joint space inertia
matrix M using CRBA and then performing its sparse
Cholesky decomposition by employing a dedicated algorithm
proposed in [8, p. 112]. Such a decomposition can be written
as:

M = LDLT (25)

where L is a lower triangular matrix and D is a diagonal
matrix. It follows from Eq. (25) that the expression of the
inverse of the joint space inertia matrix is given by:

M−1 = L−T D−1 L−1 (26)

Getting the numerical expression of M−1 can be achieved
using for instance a forward substitution on the columns of
the identity matrix.

However, we found out that this approach is not the most
efficient way to compute the inverse of the joint space inertia
matrix. Indeed, it requires the computation of the joint space
inertia matrix itself with its Cholesky decomposition, which
are not required in the calculation of the partial derivatives of
forward dynamics, as shown in Sec. IV-B.

To overcome these limitations, we have developed a
dedicated algorithm to efficiently compute M−1 by exploiting
the sparsity induced by the kinematic tree, and without
requiring the computation of the M itself. This algorithm is
a rewriting of ABA where we have omitted the affine terms
like Coriolis and gravity effects that are normally evaluated
by ABA. We also exploit the fact that M−1 is a symmetric
matrix, which means that it is sufficient to compute and store
its upper or lower triangular part. Due to the space limitation,
we provide all the details of this three-pass algorithm in the
companion report [3]. And without investigating precisely its
operational cost, we have found that computing M−1 with this
algorithm can be in practice up to twice faster than the standard
approach for robots with numerous degrees of freedom, as
shown in Sec. V.

V. RESULTS

In this section, we report the performances of our analytical
derivatives compared to the finite differences approach. We
do these benchmarks for various robots: the 7-dof robotic arm
KUKA-LWR, the 18-dof quadruped robot HyQ and the 36-dof
humanoid robot ATLAS.

All our derivatives have been implemented in C++ and
we use the popular Eigen library [14] (version 3.3.4) for
linear algebra computations. All the benchmarks have been
performed on a 2.2 GHz quad-core Intel Core i7 processor
using LLVM 9.0.0 as C++ compiler. We have done the
computations on a single core of the CPU and we have
disabled the turbo-boost option in order to obtain consistent
timing measurements all along the benchmark process. While
it may be possible to parallelize finite differences, most of the
current robots do have enough computational ressources to do
it. We then decided to implement them on a single core.

A. Benchmark on the partial derivatives

For each robot, we randomly sample generalized
configuration, velocity and acceleration vectors. And we
measure over 105 samples the mean time spent for the basic
algorithms themselves (RNEA or ABA) as well as the mean
times required to evaluate their derivatives analytically and
using finite differences.

Tab. I and Fig. 2 collects all these computation times, that
we comment in what follows.

1) Benchmark of inverse dynamics derivatives: From the
three first rows of Tab. I, it is interesting to notice that running
the analytical derivatives of inverse dynamics lasts at most 3
times the time spent in computations by the inverse dynamics
itself. And we have a ratio from 7 to 26 with respect to finite
differences.

2) Benchmark of forward dynamics derivatives: Similarly
to inverse dynamics, performing analytical derivatives is at
much 4 times slower than a call to the forward dynamics
function. This time, the ratio between analytic derivation and
finite differences goes from 4 up to 10. This difference of
performances between analytical derivatives of forward and
inverse dynamics are mainly due to the additional cost of
computing the M−1.

From Fig. 2, we can observe that the computational
complexity of finite differences grows like 2 times the number
of degrees of freedom, which is expected by the method.
Indeed, we are only evaluating the finite differences with
respect to the joint configuration and velocity vectors, as the
last partial derivative is analytic.

Giftthaler et al. [13] have also reported some computation
times for the HyQ robot, using automatic differencing
and code generation. We obtain similar timings for the
inverse dynamics (5.06 us against 6.92 us2). But our analytical
derivatives of forward dynamics shows better performances
(8.72 us against 20.52 us), again without using code generation
from our side. This difference in performances is certainly due
to the computational cunning on the derivatives of function
composition that we have highlighted in Sec. IV.

3) Benchmark on the joint space inertia matrix inversion:
From Fig. 2c, it appears that our algorithm to directly
compute the inverse of M outperforms the standard Cholesky
decomposition approach for systems having a relatively high

2both obtained without modeling the free-flyers, following benchmarks of
[13]



(a) Benchmark of inverse dynamics (b) Benchmark of forward dynamics (c) Benchmark of joint space inertia matrix
inversion

Fig. 2: Comparison of mean computation times for derivatives of forward and inverse dynamics.

Fig. 3: Sparsity errors while computing the finite differences.

number of dof and remains competitive for robots having few
dof.

B. Numerical precision

It is well-known that methods using finite-differences are
subject to numerical rounding errors. And this phenomena is
amplified when the function to differentiate involves highly
non-linear functions like cos, sin and exp for instance. In what
follows, we want to illustrate this aspect and to show how
analytical derivatives in the context of inverse and forward
dynamics have a larger numerical accuracy than the finite
differences method.

For that purpose, we evaluate the partial derivatives of both
forward and inverse dynamics at a given random configuration
q0, with q̇0 = q̈0 = 0 and we set the gravity vector to be also
equal to zero, while omitting external forces contributions. In
this precise case, the outputs of Eqs. (9) and (15) vanish, and
the partial derivatives of ID and FD with respect to q̇ too. Yet,
as finite differences add a small increment in the input vectors
in order to evaluate derivatives, it appears that the result is not
uniformly equal to zero as depicted by Fig. 3.

C. Source code implementation

All the aforementioned analytical derivatives have been
implemented in our rigid-body dynamics frameworks called
Pinocchio [5]. Pinocchio implements fast forward and inverse
dynamics algorithms and their analytical derivatives, for
poly-articulated systems doted with a free-floating base or not.
It also provides Python bindings for efficient code prototyping.

Pinocchio is now at the hearth of the planing and control
algorithms [21, 4] of the Gepetto team at LAAS-CNRS.

VI. CONCLUSION

The paper proposes the first generalization of the efficient
rigid-body-dynamics algorithms to compute their derivatives.
Our approach leads to a very efficient algorithm, easy to
implement, and able to compute the derivatives of the inverse
and direct dynamics. The complexity is linear in the number
of bodies. Computing the derivative of these two functions has
an algorithm cost about 3-4 times larger than evaluating the
function itself. As a side contribution, we also proposed an
original algorithm to compute the inverse of the mass matrix.

All this theoretical work comes with practical
implementation: we provide a complete open-source
implementation in C++ implementing all these algorithms
and that can be run using a URDF model of the robot. We
used it to benchmark the proposed algorithms on several
robot models. Obviously, by keeping a linear complexity, we
are much faster than finite differences (about 40 times faster
on a humanoid robot). We have also shown that analytical
derivatives is important to properly capture the sparsity of
the resulting matrices, that finite differences fail to properly
achieve. We used the same benchmark (HyQ model) on a
similar CPU than the best implementation proposed yet [13].
While we do not need to rely on code-generation software,
our algorithm is 30% faster for the inverse dynamics (5 us
versus 7 us) and 60% faster for the direct dynamics (8 us
versus 20 us).

The capability to write simple and super-efficient
algorithms [8] to compute inverse and direct dynamics
has an important impact in enabling roboticists to develop
complex model-based methods in many aspects of our
domain. We similarly believe that the extension of these
algorithms, with similar complexity (in implementation
and cost), will have a similar impact. Optimal control
and model-predictive control (MPC) rely on gradient
computations of the robot dynamics to iteratively improve
the robot future trajectory [30]. The most efficient MPC
solvers are yet implemented using finite differences [29, 23].
To prevent the outrageous cost, parallelization has to be
enforced for computing the derivatives, which led to the
use of high-performance computers, often in the cloud,
when implemented in a real-time set up [17]. Based on the



benchmarks that we reported in the paper, it seems feasible
to implement whole-body MPC for a full humanoid with
computation frequency of 100Hz.

Similarly to control, optimal estimation (e.g. maximum
likelihood) is often written as an optimization problem where
the derivatives of the dynamics are important [1, 2, 26].
Differentiating the dynamics is also important in co-design,
where the mechanical design of the robot is optimized (once
more using gradient-based iterations) [28, 15]. We have yet
proposed the derivatives of the dynamics with respect to
the robot state and control variables. The proposed method
directly extends to the derivatives with respect to the model
parameters (masses, lengths, etc). Finally, the derivatives give
also important information about the variability of the robot
behavior and might be useful, if available for cheap, in
reinforcement learning and deep policy optimization [22].

ACKNOWLEDGMENTS

This work is supported by the RoboCom++ FLAG-ERA
JTC 2016 proposal.

REFERENCES

[1] M. Benallegue and F. Lamiraux. Humanoid flexibility
deformation can be efficiently estimated using only
inertial measurement units and contact information. In
IEEE International Conference on Humanoid Robots
(Humanoids), Madrid, Spain, 2014.

[2] Michael Bloesch, Marco Hutter, Mark Hoepflinger,
Stefan Leutenegger, Christian Gehring, C. David Remy,
and Roland Siegwart. State estimation for legged robots
- consistent fusion of leg kinematics and IMU. In
Robotics: Science and Systems, Sydney, Australia, 2012.

[3] Justin Carpentier. Analytical inverse of the joint space
inertia matrix. Technical report, Laboratoire d’Analyse
et d’Architecture des Systèmes, 2018.

[4] Justin Carpentier and Nicolas Mansard. Multi-contact
locomotion of legged robots. Submitted to IEEE
Transaction on Robotics, 2018.

[5] Justin Carpentier, Florian Valenza, Nicolas Mansard,
et al. Pinocchio: fast forward and inverse dynamics
for poly-articulated systems, 2015–2018. URL https:
//stack-of-tasks.github.io/pinocchio.

[6] Erwin Coumans. Bullet Physics Simulation. In ACM
SIGGRAPH 2015 Courses, 2015.

[7] Roy Featherstone. The calculation of robot dynamics
using articulated-body inertias. The International Journal
of Robotics Research, 1983.

[8] Roy Featherstone. Rigid Body Dynamics Algorithms.
Springer, 2008.

[9] Roy Featherstone. Quantitative measures of a robots
physical ability to balance. The International Journal
of Robotics Research, 2016.

[10] Martin L Felis. RBDL: an efficient rigid-body dynamics
library using recursive algorithms. Autonomous Robots,
2017.

[11] Michele Focchi, Andrea Del Prete, Ioannis Havoutis, Roy
Featherstone, Darwin G Caldwell, and Claudio Semini.
High-slope terrain locomotion for torque-controlled
quadruped robots. Autonomous Robots, 2017.

[12] Gianluca Garofalo, Christian Ott, and Alin
Albu-Schaffer. On the closed form computation of
the dynamic matrices and their differentiations. In
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.

[13] Markus Giftthaler, Michael Neunert, Markus Stäuble,
Marco Frigerio, Claudio Semini, and Jonas Buchli.
Automatic differentiation of rigid body dynamics for
optimal control and estimation. Advanced Robotics,
2017.

[14] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3, 2010.
URL http://eigen.tuxfamily.org.

[15] Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung
Kim, and Katsu Yamane. Joint Optimization of
Robot Design and Motion Parameters using the Implicit
Function Theorem. In Robotics: Science and Systems,
Cambridge, Massachusetts, 2017.

[16] Alexander Herzog, Nicholas Rotella, Sean Mason,
Felix Grimminger, Stefan Schaal, and Ludovic Righetti.
Momentum control with hierarchical inverse dynamics
on a torque-controlled humanoid. Autonomous Robots,
2016.

[17] Jonas Koenemann, Andrea Del Prete, Yuval Tassa,
Emanuel Todorov, Olivier Stasse, Maren Bennewitz,
and Nicolas Mansard. Whole-body model-predictive
control applied to the HRP-2 humanoid. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), 2015.

[18] Scott Kuindersma, Frank Permenter, and Russ Tedrake.
An efficiently solvable quadratic program for stabilizing
dynamic locomotion. In IEEE International Conference
on Robotics and Automation (ICRA), 2014.

[19] Sung-Hee Lee, Junggon Kim, Frank Chongwoo Park,
Munsang Kim, and James E Bobrow. Newton-type
algorithms for dynamics-based robot movement
optimization. IEEE Transactions on robotics, 2005.

[20] J Luh, M Walker, and R Paul. Resolved-acceleration
control of mechanical manipulators. IEEE Transactions
on Automatic Control, 1980.

[21] Joseph Mirabel, Steve Tonneau, Pierre Fernbach,
Anna-Kaarina Seppälä, Mylene Campana, Nicolas
Mansard, and Florent Lamiraux. HPP: A new
software for constrained motion planning. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), 2016.

[22] Igor Mordatch and Emo Todorov. Combining the benefits
of function approximation and trajectory optimization.
In Robotics: Science and Systems, Berkeley, USA, July
2014.

[23] Igor Mordatch, Emanuel Todorov, and Zoran
Popović. Discovery of complex behaviors through
contact-invariant optimization. ACM Transactions on

https://stack-of-tasks.github.io/pinocchio
https://stack-of-tasks.github.io/pinocchio
http://eigen.tuxfamily.org


Graphics (TOG), 2012.
[24] Richard M Murray, Zexiang Li, S Shankar Sastry, and

S Shankara Sastry. A mathematical introduction to
robotic manipulation. CRC press, 1994.

[25] Maximilien Naveau, Justin Carpentier, Sébastien
Barthelemy, Olivier Stasse, and Philippe Souères.
METAPOD — Template META-PrOgramming applied
to dynamics: CoP-CoM trajectories filtering. In
IEEE-RAS International Conference on Humanoid
Robots (Humanoids), 2014.

[26] Simona Nobili, Marco Camurri, Victor Barasuol, Michele
Focchi, Darwin Caldwell, Claudio Semini, and Maurice
Fallon. Heterogeneous sensor fusion for accurate state
estimation of dynamic legged robots. In Robotics:
Science and Systems, Cambridge, Massachusetts, July
2017.

[27] Michael Posa, Cecilia Cantu, and Russ Tedrake. A
direct method for trajectory optimization of rigid bodies
through contact. The International Journal of Robotics
Research, 2014.

[28] Guilhem Saurel, Justin Carpentier, Nicolas Mansard,
and Jean-Paul Laumond. A simulation framework
for simultaneous design and control of passivity
based walkers. In IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous

Robots (SIMPAR), 2016.
[29] Gerrit Schultz and Katja Mombaur. Modeling and

optimal control of human-like running. IEEE/ASME
Transactions on mechatronics, 2010.

[30] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis
and stabilization of complex behaviors through online
trajectory optimization. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2012.

[31] Russ Tedrake and the Drake Development Team. Drake:
A planning, control, and analysis toolbox for nonlinear
dynamical systems, 2016. URL http://drake.mit.edu.

[32] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:
A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2012.

[33] Michael W Walker and David E Orin. Efficient dynamic
computer simulation of robotic mechanisms. Journal of
Dynamic Systems, Measurement, and Control, 1982.

[34] Pierre-Brice Wieber, Florence Billet, Laurence
Boissieux, and Roger Pissard-Gibollet. The HuMAnS
toolbox, a homogenous framework for motion capture,
analysis and simulation. In International Symposium on
the 3D Analysis of Human Movement, 2006.

http://drake.mit.edu

	Introduction
	Rigid Body Dynamics Notations
	Spatial quantities and notations for an isolated rigid body
	Placement quantity
	Kinematics quantities
	Kinetic quantities
	Group actions

	Spatial quantities and notations for poly-articulated systems

	Analytical derivatives of the Recursive Newton-Euler Algorithm
	The recursive Newton-Euler algorithm
	Generic partial derivatives of the recursive Newton-Euler algorithm
	Partial derivatives of the forward pass
	Partial derivatives of the backward pass

	Simplifying expressions
	Algorithm 2, line 1
	Algorithm 2, line 2
	Algorithm 2, line 3
	Algorithm 2, line 4
	Algorithm 2, line 5
	Algorithm 2, line 6
	Algorithm 3, line 1
	Algorithm 3, line 3

	Direct outcome of these derivations

	Analytical derivatives of the Forward Dynamics
	Lagrangian expressions of the partial derivatives of forward dynamics
	Link between analytical derivatives of forward and inverse dynamics
	Computing the inverse of the joint space inertia matrix

	Results
	Benchmark on the partial derivatives
	Benchmark of inverse dynamics derivatives
	Benchmark of forward dynamics derivatives
	Benchmark on the joint space inertia matrix inversion

	Numerical precision
	Source code implementation

	Conclusion

