
HAL Id: hal-01795218
https://laas.hal.science/hal-01795218

Submitted on 18 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First insights into testing autonomous robot in virtual
worlds

Clément Robert

To cite this version:
Clément Robert. First insights into testing autonomous robot in virtual worlds. 28th Interna-
tional Symposium on Software Reliability Engineering (ISSRE), Oct 2017, Toulouse, France. 4p.,
�10.1109/ISSREW.2017.59�. �hal-01795218�

https://laas.hal.science/hal-01795218
https://hal.archives-ouvertes.fr

First insights into testing autonomous robot in
virtual worlds

Clément Robert
LAAS-CNRS, Toulouse, France

Email: crobert@laas.fr

Abstract—The capability of decisional autonomous systems
has expended significantly in recent years. The failure of such
a system can result in a catastrophic event. The variety of
their tasks implies expensive and laborious test campaign. Along
with actual computing power, simulation software seems mature
enough to carry out test. Nevertheless, there is a no current
method to select test. This work aims to provide a first step
toward systematic testing of autonomous robot by exploring a
test environment generation method and the oracle problem

Index Terms—simulation-based testing; autonomous systems;
safety; domain specific defects.

I. INTRODUCTION

The development of decisional autonomous systems now
makes it possible to perform tasks without human supervision
for extremely varied environments. However, the failures of
these systems can have unacceptable consequences for the
mission, performance or reliability. When developing these
systems, a major challenge is defining and carrying out tests.
Indeed, uncertainties related to the environment and percep-
tion algorithms, combined with the possibilities of execution
context, lead to an infinite field of test inputs (e.g., terrain,
visibility conditions, obstacles, etc.). In most cases, robots are
tested by deploying them in the real world under very limited
experimental conditions. In order to explore more operational
situations, and for obvious reasons of safety and cost, there
is the possibility of carrying out these tests in simulation in
virtual worlds. The MORSE infrastructure developed at LAAS
[1], as well as other platforms such as GAZEBO [2], are
designed to enable such simulations in robotics. However,
there is not yet a systematic approach to select the worlds and
situations to be tested, and to implement them automatically on
simulation platforms. The aim of this work is to propose such
a testing approach in the context of decisional autonomous
systems. More precisely, the thesis will focus on testing the
basic services of an autonomous system, taking the example
of the navigation service of a mobile robot. The test input
domain is then a world space in which the system is likely to
evolve, and a set of mission configurations.

The structure of this paper is as follows. After a brief
overview of related work (Section II), we introduce our
approach in Section III. Then, we present the preliminary
work in Section IV. Finally, we describe future direction in
Section V.

II. RELATED WORK

The testing of autonomous systems has started to spark
interest from the testing community. Test selection strategies
have been investigated, based on an abstract model of test
situations, that describes the involved entities, their relation-
ships and some interaction patterns. The authors of [3] use
UML (Unified Modeling Language) to specify a metamodel
of entities and a set of interaction scenarios. The approach is
applied to a vacuum cleaner robot, using meta-heuristic search
techniques to generate abstract test data from the models.
The work of [4] defines several types of mid-air collision
situations, and uses them to guide the evolutionary testing
of a drone collision avoidance algorithm. The same authors
extend their work to find challenging situations with a Genetic-
Algorithm-based approach for a UAV collision avoidance
system [5].

All these approaches have a very simplified view of the sim-
ulated environment and do not call for sophisticated simulation
means. To the best of our knowledge, the work of [6] is the
only one to consider complete virtual world environments, in
the framework of 2D simulations. An interesting contribution
of this work is to establish a connection with world content
generation techniques used in the domain of video games [7],
which we believe is a promising direction of research. Work
along these lines has recently started at LAAS.

The authors of [8] investigate the possibility of using test
campaigns in simulation to find bugs. They analyzed bugs
in an academic software for outdoor robot navigation and
seek what triggers them. Among the 33 bugs found during
the in depth analysis of code commits, only 1 requires a
high fidelity level to be replicated. The bug they did not
replicate was related to mechanical vibration during rotation
which is a complex physical event that does not occur in the
simulation. Their work shows that most of the bugs are indeed
replicable in low fidelity simulation. An important result is
that some bugs required very specific configurations of the
environment, mission and robot status to be triggered. The
study also highlights the difficulty of defining an oracle due
to the diversity of misbehavior patterns. They introduce a
classification of properties that could provide a method to
define an oracle.

The same authors work on the definition of the difficulty
level of a generated test environment in [9]. They experimen-

Fig. 1. Conceptual view of the testing loop

tally study the difficulty evolution as they change the test envi-
ronment generation parameters. The simulated world consists
in a bumpy terrain with 2 different obstacle sizes referenced as
trees or buildings. The world is procedurally generated from
two abstract parameters: smoothness and obstruction rate. The
robot task is to reach the opposite corner of the square map.
The difficulty levels are defined a posteriori by a clustering
algorithm on some relevant information about the run such as
the success rate or the mission time. Their results show that
it is possible to coarsely control the difficulty level from the
generation parameters. They also analyzed the evolution of the
indeterminism as the difficulty level increases, and found out
that there is no clear relation between the difficulty level and
the indeterminism ”intensity”.

III. PROPOSED APPROACH

To be able to consider a large sample of test situations,
it is proposed to implement techniques derived from the
procedural generation of worlds as in [7], used especially
in the creation of scenes for video games, but also to add
uncertainties on the environmental perception by the robot, or
stressful conditions (e.g., moving obstacles, slippery ground).
A first work was carried out at LAAS, and allowed to better
identify the technological and methodological difficulties in
getting such an approach. However, exploration has been
restricted to a subset of world generation attributes, and the
link between test criteria and the world synthesis has not
been deepened. The contribution of this doctoral thesis will
address the issues of modeling the space of worlds, including
stressful characteristics for the service under test, and the use
of test criteria to guide the synthesis and selection of worlds
and missions. The design of the testing framework will also
include identification of data to be collected during simulations
to establish measures such as code coverage, or non-regression
against previous versions of the system. The approach will be
demonstrated on a real robotic software case. To do so, the
real robot software is used, the sensors and the actuators are
simulated to interface with the simulation environment.

Our approach consists in a loop to generate testing environ-
ment with a better potential of triggering bugs (Figure 1). We
can see the world generator parameters as the dimensions of
the possible test environment space. From that standpoint, we
can now transform our problem in an optimization problem
in which we try to maximize the potential of the testing
environment. This method faces the following challenges:

• Define the input domain.
• Generate world and missions within the input domain.
• Automatically analyze the tests results.

A. Input domain definition

The input control parameters are the information needed to
generate a world and a mission in this world. The definition
of the parameters is fundamental because they should describe
the key characteristics of the generated worlds and missions.
Selecting the right parameters is a crucial challenge in our
work. If the parameters are insufficient, it could result in a
failure to trigger some bugs, and in the impossibility to detect
the related effects. On the other hand, the more parameters
we specify the more complex the world generator will be. A
large number of parameters allows a better control in the world
generation by adding details or generation rules. But, as we
increase the number of parameters, the possible world space
dimensions grow, making impossible a wide exploration of the
possible world space. In the Naı̈o case study (Section III-D)
we have up to 31 different parameters.

It is also interesting to work on the modeling of dynamic
elements such as mobile objects or special events triggered
by a specific situation (for instance: more noise on the sensor
in one part of the world). This will be a future direction to
extend our work.

B. Test generation

Autonomous systems are as various as the tasks they are
made for (space exploration robot, driverless cars, human in-
teractive robot). All of them are exposed to the same validation
issues. The companies that use simulation to prototype their
product generally run a set of empirically chosen test cases.
The lack of automated methods for simulation based testing
is a real hurdle to the validation process. One of the goals of
this research is to synthesize test cases from the input domain
definition and a set of test criteria.

The test criteria can be the coverage of code, of inputs sub-
domains and situations of interest. The main problem is the
coverage control from high level generation parameters. Our
solutions are generate-and-test approaches involving random-
ness. The search space is infinite therefore it is impossible to
undertake a brute force method. We propose to use an iterative
approach using metaheuristics. A metaheuristic approach by
definition does not guarantee that an optimal solution can
be found but can be practically effective. Furthermore, we
consider stochastic optimization so the solution depends on
the randomly generated variables. This approach raises an
open question: Is it possible to converge towards a solution
regarding the complexity of the search space? For example, if

Fig. 2. Mana from LAAS (left) and Oz from Naı̈o Technologies (right)

we use GAs, which mutation or cross-over operators should
we apply on the generation parameters?

Last but not least, indeterminism and experimentation time
(up to 5 minutes for one run) are big constraints. We may have
to run the same test more than once to evaluate the fitness,
which implies a limitation on the number of iterations.

C. Oracle

The diversity of misbehaviour patterns makes the oracle
problem very challenging. [9] advise trying to devise as many
error detectors as possible, each focusing on a simple property.
Their property classification is as follow:

• requirements attached to mission phases
• thresholds related to robot movement
• catastrophic events
• requirements attached to error reports
• perception requirements
This classification, derived from the analysis of an exem-

plary robot navigation software, will need to be validated on
other case studies. The set of checkers can be enhanced as
more experience is gained on the target system. Nevertheless
it may be impossible to have a complete error coverage,
especially for performance related issues (not caught by the
detectors). Our future work will explore whether the concept
of difficulty levels in ([9] can offer a partial solution, in the
framework of regression testing.

D. Case Studies

To validate our approach we must confront it to case studies
as diverse as possible. Two case studies are available for this
work (Figure 2):

• The first case study is the Mana robot (a Segway RMP
400 platform) navigation service used in in [8] and [9].
The navigation software is part of the OpenRobots soft-
ware repository, which includes software mostly devel-
oped at LAAS for the study and design of various kinds
of robotic platforms. The offered path planning service
is an academic implementation of NASA’s GESTALT
algorithm for Mars exploration rovers [10]. This software
was used for all outdoor field experiments conducted
by LAAS researchers in various collaborative projects
between 2005 and 2015. The test platform is available
on the MORSE simulator.

• The RAST (Risk Analysis and Simulation Testing for
agricultural Robots) experiment from the CPSE Labs
project (Cyber-Physical Systems Engineering) consists in
a study of safety and validation issues on an agricultural
robot from Naı̈o Technologies. Naı̈o Technologies is a
company that sells agricultural robots designed to weed,
hoe and assist during harvesting. The Oz robot is an
autonomous weeding robot. With some parameters such
as the crop width, the robot finds its way between crop
rows and performs its task. The simulation uses the ROS
robotic middleware and Gazebo simulator.

The complementarity of those 2 case studies allows us
to experiment our approach on both academic and industrial
robots, compare MORSE and GAZEBO for testing purposes
and to confront our approach to 2 different navigation missions
(generic missions to reach a destination point versus specific
missions along crop rows).

IV. PRELIMINARY WORK

The different parts of the testing loop (Figure 1) raise
numerous implementation problems. This section gives an
overview of our solution for the Naı̈o case study.

The inputs are defined by all the parameters needed to
procedurally generate a world and a mission. Procedural
generation is a content creation method mainly used in video
games to reduce file size or to create unique contents. Such a
method allows us to algorithmically generate large data with
respect to some initial rules. The rules constrain the definition
domain of every test environment variable and the invariant
patterns. For instance, an algorithm to procedurally produce
a tree has the size of the tree and the number of leaves as
variables and has the general shape of a tree as the invariant
pattern. The randomness of such a method is fundamental to
explore the possible test environments defined by the rules and
get a wide range of test cases.

We choose to generate and store the inputs using a formal
grammar. This method allows us to easily generate world
descriptors that respect the rules that we define. In addition, a
lot of work already exists on grammar-based testing, which
can be used to iterate in the loop. Figure 3 and 4 shows
how inputs are generated using the formal grammar. We first
define a hierarchical view of world elements to produce, which
gives us the non-terminals and terminals of the grammar. For
example, a world contains a field, which in turn contains rows
of vegetables.

The limited number of rules do not require tools as yacc
or Bison to generate the parser. We decide to implement the
world as a class structure (Figure 3). We distribute the parser,
the generation function and the checker in their corresponding
classes in such a way that a call to any world class function re-
cursively call every component. The implementation is highly
expandable (it was effortless to add new static world elements
during the design stage).

We define a few mutation operators on the world descriptor
that allow us to generate new worlds and missions from
previous ones. Our first test criterion is the collision situation

Fig. 3. UML diagram of the world

Fig. 4. Grammar example (BNF)

coverage (the robot collides with crops). Hence, the fitness
is the robots smallest distance to a crop during a run. So
far, we are running experiments to evaluate the feasibility of
our approach. Those preparatory experiments aim to assess
indeterminism effect on the fitness by doing multiple runs
in a same world and by generating multiple worlds from the
same descriptor. In the Oz case study, a few runs seem to be
enough to erase the indeterminism effect. On the other hand,
the indeterminism has a bigger impact on the Mana case study
as the mission involves more decision from the robot. The last
preliminary experiment is the evaluation of the fitness shape
in the world space by doing small mutations. A chaotic shape
would make an iterative search inefficient and would reveal a
wrong choice of fitness and/or mutation operators. In the Oz
case study, the fitness appears to evolve in a coherent shape
in the simple test configurations and chaotically in the harder
ones.

V. FUTURE DIRECTION

As presented, the research work is still at an early stage.
The first contribution of this thesis will be to extend the
testing loop of Figure 1 and to work on the feedback
processing (trying various method to generate new inputs
from the result of the previous one).

Year 1: (starting the 1st of October 2017)
• Study of different metaheuristic approaches (random

search, hill climbing, genetic algorithms) in order to find
specific configurations that trigger collision faults.

• Evaluation of the oracle performance on Naı̈o’s case
study (based on the oracle properties in Section III-C).

• Work on the modeling of situations and on its incorpo-
ration to the grammar.

Year 2:
• Further research on metaheuristic approach with other

objectives than collision.
• Formal definition of selection criteria based on situation

and world coverage.
• Development of the testing tools required for the new cri-

teria (new observation data, new generation parameters,
new metaheuristic operators, dynamic elements activated
while a mission is running).

Year 3:
• Experimental comparison of the various test criterion

(derived from the second year work) and some code
coverage criteria.

• Finalization of the testing tools.
• Opening on regression testing.
• Conclusion on the test approach.

ACKNOWLEDGEMENT

This work was supported in part by the EU CPSE Labs
project funded by the H2020 program under grant agreement
No 644400. We thank Hélène Waeselynck for her suggestions
and advice during the preparation of this paper.

REFERENCES

[1] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: Morse,” in IEEE International Confer-
ence on Robotics and Automation ICRA, pp. 46–51, 2011.

[2] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in International Conference on
Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154, 2004.

[3] Z. Micskei, Z. Szatmári, J. Oláh, and I. Majzik, “A concept for testing
robustness and safety of the context-aware behaviour of autonomous
systems,” in Agent and Multi-Agent Systems. Technologies and Applica-
tions, pp. 504–513, Springer, 2012.

[4] X. Zou, R. Alexander, and J. McDermid, “Safety validation of sense and
avoid algorithms using simulation and evolutionary search,” in Computer
Safety, Reliability, and Security, pp. 33–48, Springer, 2014.

[5] X. Zou, R. Alexander, and J. McDermid, “On the validation of a
uav collision avoidance system developed by model-based optimization:
Challenges and a tentative partial solution,” in IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshop,
pp. 192–199, 2016.

[6] J. Arnold and R. Alexander, “Testing autonomous robot control software
using procedural content generation,” in Computer Safety, Reliability,
and Security, pp. 33–44, Springer, 2013.

[7] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[8] T. Sotiropoulos, H. Waeselynck, J. Guiochet, and F. Ingrand, “Can robot
navigation bugs be found in simulation? an exploratory study,” in IEEE
International Conference on Software Quality, Reliability and Security
(QRS), 2017.

[9] T. Sotiropoulos, J. Guiochet, F. Ingrand, and H. Weaselynck, “Virtual
worlds for testing robot navigation: a study on the difficulty level,”
in IEEE 12th European on Dependable Computing Conference EDCC,
pp. 153–160, 2016.

[10] J. J. Biesiadecki and M. W. Maimone, “The mars exploration rover
surface mobility flight software driving ambition,” in IEEE Aerospace
Conference, pp. 15–pp, 2006.

