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Chapter 1
Lyapunov stability of a coupled ordinary
differential system and a string equation with
polytopic uncertainties.

Matthieu Barreau, Alexandre Seuret and Frédéric Gouaisbaut

Abstract This chapter deals about the robust stability analysis of a coupled system
made up of an uncertain ordinary differential system and a string equation. The main
result states the robust exponential stability of this interconnected system subject to
polytopic uncertainties. The Lyapunov theory transforms the stability analysis into
the resolution of a set of linear matrix inequalities. They are obtained using projec-
tions of the infinite dimensional state onto the orthogonal basis of Legendre poly-
nomials. The special structure of these inequalities is used to derive robust stability
results. An example synthesizes the two main contributions of this chapter: an ex-
tended stability result and a robustness analysis. The example shows the efficiency
of the proposed method.

1.1 Introduction

Infinite dimensional systems are natural systems which arise when a delay or a par-
tial differential equation appears unavoidably in the modeling phase. In particular,
vibrations of structure [9], torsion [8, 11] or heat propagation [3, 21] are examples
of phenomena giving rise to infinite dimensional systems. The infinite dimension
behavior is characterized by an infinite dimension state, belonging to a functional
space. This consideration seems rather far from a natural modeling and its utility
can be questioned.

That is why, as a first step, the infinite dimensional system can be approximated
as a high but finite dimension model. Then, applying classical tools leads to the de-
sign of controllers. Nevertheless, it has been shown in [4, 18], that this truncation
brings instability because of the well-known spill-over effect. Indeed, high frequen-
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cies can be exited by the controller and as they are not regulated, they can provoke
a divergence of the solution.

Then, Distributed Parameters Systems (DPS) can be the most appropriated model
for some physical systems and a truncation is not always possible. To overcome
this problem, special tools have been developed for DPS systems. Without being
exhaustive, we can note the work of Krstic and al. (see for instance [5, 14, 15])
using the backstepping methodology or the use of the semi-group theory [17, 22].
Considering a physical modeling, uncertainties of the parameters have to be taken
into account to design efficient and robust control laws.

The work conducted here aims at using the second methodology to prove the
robust exponential stability of an ordinary differential system coupled with a string
equation. One of the main challenge in using semi-group theory consists in finding
a scalar product for which the system is dissipative. In [1], we proposed a Lyapunov
functional which encompasses the traditional notion of energy as it results from
an optimization and is problem-oriented. This framework enabled us to transform
the dissipativity proof for the coupled system into the feasibility of Linear Matrix
Inequalities (LMI). We propose here to enlarge this study by considering less re-
strictive LMIs and to the case of uncertainties on the ordinary differential part of
the interconnected system. This last part is the main contribution as it is commonly
the first extension proposed when using a Lyapunov functional and as it requires a
transformation of the LMI to get the robust stability result.

Section 2 is the problem statement, describing the coupled system, its main char-
acteristics and the slight changes in the framework to deal with polytopic uncertain-
ties. Then, after a brief reminder of some useful lemmas in Section 3,an extended
exponential stability result is provided in Section 4. The last subsection of Section 3
is dedicated to the robustness analysis by taking advantage of the convexity of the
LMIs with respect to the system’s matrices. Finally, in Section 5, an example with
stability pockets is studied.

Notations: In this paper, Ω is the closed set [0,1] and R+ = [0,+∞). Then,
(x, t) 7→ u(x, t) is a multi-variable function from Ω×R+ to R. The notation ut stands
for ∂u

∂ t . We also use the notations L2 = L2(Ω ;R) and for the Sobolov spaces: H n =

{z∈ L2;∀m 6 n, ∂ mz
∂xm ∈ L2}. The dot product in L2 is defined for f ,g∈ L2 as 〈 f ,g〉=∫

Ω
f (x)g(x)dx. Then the norm associated to this scalar product is ‖ f‖2 = 〈 f , f 〉 =∫

Ω
| f (x)|2dx.

For any square matrices A and B, the operations ’He’ and ’diag’ are defined as
follow: He(A)=A+A> and diag(A,B)=

[
A 0
0 B

]
. A positive definite matrix P∈Rn×n

belongs to the set Sn
+ or more simply P� 0.

1.2 Problem statement

The coupled ODE/PDE system under consideration is the following one:
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Ẋ(t) = AX(t)+Bu(1, t), t > 0, (1.1a)

utt(x, t) = c2uxx(x, t), x ∈Ω , t > 0, (1.1b)
u(0, t) = KX(t), t > 0, (1.1c)

ux(1, t) =−c0ut(1, t), t > 0, (1.1d)

u(x,0) = u0(x), ut(x,0) = v0(x), x ∈Ω , (1.1e)

X(0) = X0, (1.1f)

where equation (1.1a) is an Ordinary Differential Equation (ODE), X ∈ Rn with
n > 1, A and B are not necessary known matrices of appropriate dimensions. Equa-
tion (1.1b) is a Partial Derivative Equation (PDE), and more specifically, a string
equation which is a one dimensional wave equation with a speed c > 0. x is the spa-
tial variable and belongs to Ω and t is the time. Equations (1.1c) and (1.1d) are the
boundary conditions at x = 0 and x = 1 respectively. The first boundary condition
is of Dirichlet kind, so acting on u(0, t), contrary to the second one, which is of
Neumann type (i.e. acting on ux(1, t)) and describes a boundary damping condition.
This means that, for c0 > 0, the string equation is damped (see [16] for instance).
Equations (1.1e) and (1.1f) represent the initial conditions of the system, which are
said to be compatible with the boundary conditions if they satisfy equations (1.1c)
and (1.1d).

Remark 1. To ease the reading the variable t will be omitted when it is not needed.

Fig. 1.1: Scheme of system (1.1).

This kind of systems are approximations of what arises when it comes to deal
with vibrations in structure [9] or torsion in a drilling pipe for example (see [5, 8,
19]). The ODE (1.1a) is then the finite dimension controller acting on the top of the
pipe. The measure of the angle at the bottom is the input of the ODE. That makes
the schematic in Figure 1.1.
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This system can be viewed in different manners. First, as it can be noticed in
Figure 1.1, the PDE can be seen as a communication channel modeled by a string
equation. Then, the signal u is the conveyed KX at x = 0 there is the input signal
while at x = 1, this is the output. The communication channel is then stable (c0 > 0)
and the ODE is regulated thanks to the string equation. This is the interconnection
between a stable PDE plant (i.e. c0 > 0) and a possibly unstable ODE. Then, three
scenari come out:

1. If A is Hurwitz, this communication channel is a perturbation and the stabil-
ity analysis of the coupled ODE/PDE system is nothing more than a robustness
analysis subject to this communication channel;

2. If A is not Hurwitz but A+BK is, then the string equation is needed to stabilize
the system and is not a perturbation anymore, it helps stabilizing;

3. Finally, if neither A nor A+BK are Hurwitz, the stability of the coupled system
relies mostly on the intrasec properties of the string equation.

This system under the three cases discussed previously has already been studied
in [1] and a stability criteria has been derived in terms of LMIs. Several conclu-
sions have been drawn and particularly, c0 must be positive to get some results us-
ing this methodology. This means that the communication channel must be stable.
Moreover, the obtained conditions are dependent on a perfect knowledge of all the
parameters A,B,K,c and c0.

To enlarge the result obtained in Theorem 2 of [1], a robustness analysis on the
parameters A and B is proposed. The main assumption is that A and B are subject to
polytopic uncertainties, that means the following holds:

[ A B ] ∈ Coi=1,...m {[ Ai Bi ]} , (1.2)

where m ∈ N, and the matrices Ai and Bi for i = 1, . . . ,m are known and constant.
The notation “Co” means that the matrix [ A B ] belongs to a convex set defined by
the vertices [ Ai Bi ]. In other words, there exist weighting scalar functions λi, for
i = 1, . . . ,m that maps R+ to [0, 1], and such that for all t > 0, ∑

m
i=1 λi(t) = 1 and

[ A B ] =
m

∑
i=1

λi(t) [ Ai Bi ] . (1.3)

This kind of uncertainty is commonly used in the LMI formulation because
thanks to a convexity argument the robust problem can be easily reformulated in
terms of higher complexity LMI. The number of edges to define the polytope is di-
rectly related to the complexity of the new LMIs and can then dramatically increase
the computational burden.

As the method presented in [1] can also be computationally demanding, after a
brief summary of the main lemmas used here, an extension is proposed to decrease
the conservatism, keeping the same number of decision variables.
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1.3 Preliminaries

In this preliminary part, we recall two main results used in the sequel.

1.3.1 Legendre polynomials and Bessel-Legendre inequality

To transform integral terms into an LMI formulation, we need to use integral in-
equalities. Based on the work in [20], the Bessel-Legendre inequality is reminded
below:

Lemma 1 (Bessel-Legendre Inequality). For any orthogonal family (ek)k∈N of L2

with respect to the scalar product 〈·, ·〉 and any function f ∈ L2, the following in-
equality holds for N ∈ N:

‖ f‖2 >
N

∑
k=0
〈 f ,ek〉‖ek‖−2.

This inequality becomes an equality when N goes to infinity. This last property
makes us think that as N increases, the conservatism induced by this inequality can
be reduced as much as desired.
We choose to apply this result to the orthogonal family of Legendre polynomials
(Lk)k∈N for several reasons. First, because it is a polynomial and consequently, its
derivative can be expressed in strictly lower order polynomials. Secondly, because
the boundary conditions are simple and make calculations easier. The definition of
Legendre polynomials is reminded below:

∀k ∈ N, ∀x ∈ [0,1], Lk(x) = (−1)k
k

∑
l=0

(−1)l ( k
l

)(
k+l

l

)
xl ,

with
(

k
l

)
= k!

l!(k−l)! . For more properties about this polynomials, the reader can refer
to [1, 10, 20].

1.3.2 Convexity Lemma

This second lemma is useful when it comes to convexify an LMI. This is particularly
useful to derive a robustness criterion. This lemma is taken from [6, 7].

Lemma 2. For some given matrices M = M>,Y = Y > and Z of appropriate
dimensions, the following statements are equivalent:

1. The matrix inequality M −Z >Y Z ≺ 0 holds.
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2. There exists a matrix X and a scalar µ > 0 such that the following matrix in-
equality holds

M +He(X >Z )+X >(µI +Y )−1X +µZ >Z ≺ 0,

together with µI +Y � 0.

1.4 From stability to robust stability analysis

The desired stability property here is the well-known exponential stability for (1.1)
with A,B,K and c known. To define it correctly, we first need to know in which space
the solutions of system (1.1) belong to. This is related to the well-posedness of this
system. These results are quite technical and the proof has already been presented
in Proposition 1 of [1] but it is reminded here.

Proposition 1. Let H m =Rn×Hm×Hm−1 for m > 0.
If there exists a norm on H = H 1 for which the linear operator associated to sys-
tem (1.1) is dissipative with A+BK non singular, then there exists a unique solution
(X ,u,ut) of system (1.1) with initial conditions (X0,u0,v0) ∈H 2 assumed to be
compatible with the boundary conditions. Moreover, the solution has the following
regularity property: (X ,u,ut) ∈C(0,+∞,H ).

The solutions belong to space H and consequently, one can introduce the fol-
lowing natural norm on this space:

∀(X ,u,v) ∈H , ‖(X ,u,v)‖2
H = |X |2n +‖u‖2 + c2‖ux‖2 +‖v‖2,

where | · |n is the classical euclidian norm of Rn and ‖·‖ refers to the L2 norm. From
this definition, the definition of exponential stability comes to be as follow:

Definition 1. A solution of system (1.1) belonging to H with the compatible initial
conditions (X0,u0,v0) ∈H 2 is exponentially stable if the following exponential
estimate holds for γ > 1,δ > 0 and t > 0:

‖(X(t),u(t),ut(t))‖2
H 6 γe−δ t‖(X0,u0,v0)‖2

H . (1.4)

To prove the existence and uniqueness of the solution along with its exponential
stability, the idea is to use a Lyapunov functional. This Lyapunov functional must
be equivalent to ‖ · ‖H and with a strictly negative derivative along the trajectories
of the system. This last property ensures the dissipativity of system (1.1). These two
properties are met if a LMI is satisfied. The following subsection gives modified
versions of the originally LMI condition proposed in [1].
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1.4.1 First result

An extension of Theorem 2 of [1] to reduce the conservatism is proposed as follows.

Theorem 1 Consider system (1.1) with a given speed c > 0, a viscous damping
c0 > 0 and initial conditions (X0,u0,v0) ∈ H 2 compatible with the boundary
conditions. Assume that, for a given integer N ∈N, there exist PN ∈ S

n+2(N+1)
+ and

S,R ∈ S2
+ such that inequalities

ΨN(A,B) = He
(

Z>N (A,B)PNFN

)
− cR̃N

+ c
(

H>N (A,B)(S+R)HN(A,B)−G>N (A,B)SGN(A,B)
)
≺ 0, (1.5)

ΦN = PN +diag(0n,S,3S, . . . ,(2N +1)S)� 0, (1.6)

hold, where

FN =
[
In+2N+2 0n+2N+2,2

]
, NN(A,B) =

[
A+BK B̃ 0n,2(N+1)

]
,

R̃N = diag(0n,R,3R, · · · ,(2N +1)R,02) , B̃ = 1
2c B
[
1 −1

]
,

ZN(A,B) =
[
N >

N (A,B) cZ >
N (A,B)

]>
,

ZN(A,B) = 1NHN(A,B)− 1̄NGN(A,B)−
[
02N+2,n LN 02N+2,2

]
,

LN =

 `0,0I2 ··· 02

...
. . .

...
`N,0I2 ··· `N,N I2

 , 1N =

[ I2
...
I2

]
, 1̄N =

[ I2
...

(−1)N I2

]
,

GN(A,B) =
[
02,n+2N+2 g

]
+
[

K
01,n

]
NN(A,B), g =

[ 0 1
1+cc0 0

]
,

HN(A,B) =
[
02,n+2N+2 h

]
+
[

01,n
K

]
NN(A,B), h =

[
1−cc0 0

0 −1

]
.

(1.7)
Then, there exists a unique solution to the coupled infinite dimensional system

(1.1) and it is exponentially stable in the sense of norm ‖ · ‖H , i.e. there exist γ > 1
and δ > 0 such that energy estimate (1.4) holds.

Remark 2. It is worth mentioning that this theorem introduces a hierarchy in the
stability conditions, that means all the systems stable using the previous theorem at
an order N0 are also stable for all higher orders N > N0.

This theorem comes from the following Lyapunov functional at a given order
N > 0:

VN(XN ,u) = X>N PNXN +
∫ 1

0
χ
>(x)(S+ xR)χ(x)dx, (1.8)

where χ(x) =
[

ut (x)+cux(x)
ut (1−x)−cux(1−x)

]
is a modified Riemann invariant for system (1.1)

and XN is an extended state made up of the ODE state X and projections of the
infinite dimension state χ on a basis of shifted Legendre polynomials on Ω . We
denote this projections as follows:
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Xk := 〈χ,Lk〉=
∫ 1

0
χ(x)Lk(x)dx,

where Lk is the kth Legendre polynomials. Introducing an extended state, we get:

XN =
[
X> X>0 · · · X>N

]
.

Proof. This part is inspired by [13, 20] and aims at reducing the conservatism in-
troduced by the positivity condition obtained in [1]. The desired property on the
Lyapunov functional is as follow:

ε1‖(X ,u,ut)‖2
H 6VN(XN ,u)6 ε2‖(X ,u,ut)‖2

H ,

V̇N(XN ,u)6 −ε3‖(X ,u,ut)‖2
H ,

The existence of ε2 and ε3 strictly follows the same lines than in [1]. The difference
between Theorem 2 of [1] and this one lies in the existence of ε1 because of the
relaxed condition ΦN � 0 compared to PN � 0.

As S,R ∈ S2
+ and ΦN � 0, there exists ε1 > 0 such that the following inequality

holds :
ΦN � ε1

(
diag

(
In,02(N+1)

)
+ 2+c2

2c2 diag
(
0n, I2(N+1)

))
,

∀x ∈ [0,1], S+ xR � S � ε1
2+c2

2c2 I2.

Then, these inequalities and equation (1.8) leads to:

VN(XN ,u)> X>N ΦNXN + ε1

(
|X |2n +

2+ c2

2c2 ‖χ‖
2
)

+
∫ 1

0
χ
>(x)(S−δ )χ(x)dx−

N

∑
k=0

(2k+1)X>k (S−δ )Xk,

with the shorthand notation δ = ε1
2+c2

2c2 I2. Using Lemma 1 together with the norm
equality ‖χ‖2 = 2

(
‖ut‖2 + c2‖ux‖2

)
implies:

VN(XN ,u)> ε1
(
|X |2n +‖ut‖2 +(2+ c2)‖ux‖2) .

Finally, using Lemma 1 of [1] brings the conclusion: VN,α(XN ,u)> ε1‖(X ,u,ut)‖2
H .

Remark 3. Theorem 1 is less restrictive than Theorem 2 of [1] because the condition
PN ∈ S

n+2(N+1)
+ is included in ΦN � 0.
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1.4.2 An equivalent formulation

The previous theorem is not affine in A and B and consequently, it cannot be easily
extended into a robust formulation. Before stating the robust corollary, the following
equivalent formulation is proposed.

Corollary 1. Consider system (1.1) with a given speed c > 0, a viscous damping
c0 > 0, A and B given and known with initial conditions (X0,u0,v0) ∈H 2 compat-
ible with the boundary conditions.
Assume that, for a given integer N ∈N, there exist PN ∈ Rn+2(N+1)×n+2(N+1),S,R∈
S2
+,YN ∈R2×(n+2N+6) and µ > 0 such that the following LMIs are satisfied:ΦN = PN +diag(0n,S,3S, . . . ,(2N +1)S)� 0,

ΘN(A,B)≺ 0,
(1.9)

with

ΘN(A,B) =


MN(A,B)+He(Y>N WN(A,B)) Y>N µW >

N (A,B)

? −µI2− cS 02

? ? −µI2

 ,
MN(A,B) =

He
(
Z>N (A,B)PNFN

)
− cR̃N H>N (A,B)(S+R)

(S+R)HN(A,B) − 1
c (S+R)

 ,
WN(A,B) =

[
GN(A,B) 02

]
,

where ? denotes the symmetric.
Then, there exists a unique solution to the coupled infinite dimensional system (1.1)
and it is exponentially stable in the sense of norm ‖ · ‖H , i.e. there exist γ > 1 and
δ > 0 such that energy estimate (1.4) holds.

Proof. A similar strategy than the one developed in [7] is used here. Starting from
Theorem 1, system (1.1) is exponentially stable if ΦN � 0 and ΨN(A,B) ≺ 0. ΨN
is not affine in A and B and it is apparently not possible to conclude whether or
not it is even convex with respect to A and B. But, applying Schur complement, an
equivalent formulation for ΨN(A,B)≺ 0 is:He

(
Z>N (A,B)PNFN

)
− cR̃N H>N (A,B)(S+R)

(S+R)HN(A,B) − 1
c (S+R)

− cW >
N (A,B)SWN(A,B)≺ 0.

MN(A,B) is affine in A and B but it remains to treat the quadratic term WN(A,B)
which is till not affine in A and B. Using Lemma 2, the previous statement is equiv-
alent to the existence of µ > 0 and YN ∈R2×(n+2N+6) such that the following hold:

MN(A,B)+He(Y>N WN(A,B))+Y>N (µI2 + cS)−1YN +µW >
N (A,B)WN(A,B)≺ 0.
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The second condition to get the equivalence is µI2 + cS � 0 which is always guar-
anteed as µ > 0 and S� 0.
Using two Schur complements on the first equation, the following equivalence is
obtained for a given pair (A,B):

ΨN(A,B)≺ 0 ⇔ ΘN(A,B)≺ 0. (1.10)

Remark 4. Corollary 1 is equivalent to Theorem 1. The two main differences are first
in terms of complexity because there are two new variables YN and µ and secondly
because it is affine in A and B.

1.4.3 Robustness analysis

Using the new LMI conditions obtain previously, we can extend Theorem 1 to get
the robust exponential stability of uncertain system (1.1). One of the benefits of
using a Lyapunov functional approach relies indeed on the possibility of extending
the previous analysis to robustness analysis. The uncertainties on matrices A and B
are assumed to be of polytopic type, as described in equation (1.3). That leads to the
following result.

Corollary 2. Consider uncertain system (1.1) with a given speed c > 0, a viscous
damping c0 > 0 and initial conditions (X0,u0,v0)∈H 2 compatible with the bound-
ary conditions. The uncertain couple [A B] satisfies equation (1.3).
Assume that, for a given integer N ∈N, there exist PN ∈ Rn+2(N+1)×n+2(N+1),S,R∈
S2
+,YN ∈R2×(n+2N+6) and µ > 0 such that the following LMIs are satisfied:ΦN = PN +diag(0n,S,3S, . . . ,(2N +1)S)� 0,

ΘN(Ai,Bi)≺ 0 for all i ∈ [1,m],
(1.11)

with the notation of Corollary 1.
Then, there exists a unique solution to the coupled uncertain infinite dimensional
system (1.1) and it is exponentially stable in the sense of norm ‖ ·‖H , i.e. there exist
γ > 1 and δ > 0 such that energy estimate (1.4) holds.

Proof. The main advantage now is that ΘN is affine in A and B if PN ,R,S,YN and
µ are fixed. And consequently, it is convex with respect to A and B at a price of
an increased complexity. As it is convex in A and B, if ΘN(Ai,Bi) ≺ 0 for all i =
1, . . . ,m, then ΘN(A,B)≺ 0. Indeed, if equation (1.3) holds, then we get:

ZN(A,B) = ∑
m
i=1 λiZN(Ai,Bi), HN(A,B) = ∑

m
i=1 λiHN(Ai,Bi),

GN(A,B) = ∑
m
i=1 λiGN(Ai,Bi), and consequently,

MN(A,B) = ∑
m
i=1 λiMN(Ai,Bi), WN(A,B) = ∑

m
i=1 λiWN(Ai,Bi).
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The previous considerations lead to ΘN(A,B) = ∑
m
i=1 λiΘN(Ai,Bi). As for i ∈ [1,m],

ΘN(Ai,Bi) ≺ 0 then ΘN(A,B) ≺ 0. Corollary 1 can be applied, ensuring the expo-
nential stability for all [A B] in Coi=1,...m {[Ai Bi]} and that ends the proof.

Remark 5. Conditions (1.11) must hold for all i ∈ [1,m]. That means PN ,R,S,XN
and µ are independent of i, making the condition highly conservative for large m or
very different A and B matrices.

Corollary 2 is a robust corollary as A and B may vary inside an uncertainty set
but the system keeps its exponential stability behavior. This result can also apply for
some bounded time-varying A and B. The following section will give an example
about the robustness property.

1.5 Examples

For the example section, we will study the following example taken from [13, 23].
This example is a regenerative chatter if the wave is a pure delay (for cc0 = 1). The
system is given as follows:

A(k) =


0 0 1 0

0 0 0 1

−10− k 10 0 0

5 −15 0 0.25

 ,B(k) =


0

0

k

0

 and K =


1

0

0

0



>

. (1.12)

For k = 1 and different values of c > 0 and c0 > 0, Corollary 1 gives Figure 1.2.
The stability regions are in gray scale. The hatched areas are the exact unstable
areas, they are obtained using the methodology described in [2]. As the order in-
creases, more stability pockets are detected. Theorem 1 seems an effective tool for
the stability analysis of coupled systems. The chart is different than in [1] because
it gives a better illustration of the stability behavior as c ad c0 vary. Indeed, it dis-
plays stability pockets which are known to be of difficult access for Lyapunov-like
techniques [12]. Moreover, it is easier to compare with the results obtained with
time-delay systems as τ is the delay and for cc0 = 1, system (1.1) is a time-delay
system (see [2] for more information).

For the robust stability analysis, we can use an interval for the k parameter. For
instance, if k ∈ (1,2), we get the following vertices: [A(1) B(1)] and [A(2) B(2)].
We tested the two scenari k ∈ (1,2) and k ∈ (0.1,1.5) for some values of c and c0.
The results are displayed in Figure 1.3. The black area is stable for Corollary 2 with
the desired uncertainties. The white area is unknown and the hashed area is an inner
approximation of the unstable area. One can see that there exist areas for which the
system is robustly stable to variation of k. To the best of our knowledge, there does
not exist an exact robust stability criterion so we cannot compare with the exact
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Fig. 1.2: Stability analysis using Theorem 1 with example (1.12) for k = 1. The
hatched area is the exact unstable area. The scale of gray is the stable area using
Corollary 1 for N = 0 to 5. The white area is the stable area, undetected by the
corollary up to the order 5.

unstable area. This inner approximation is obtained as a summation of unstable area
for some values of k.
Corollary 2 is able to detect stability pockets and seems to perform with a good
accuracy because the stable area is very close to the hashed one. For c1 = cc0 = 1, an
exact robust stability criteria can be achieved using the Control Toolbox of Matlab R©
together with the allmargin command as said in [20]. The results are displayed
below and the stable intervals are written in terms of τ:

Scenario k ∈ (1,2) k ∈ (0.1,1.5)

allmargin (0,0.859)∪ (1.117,1.264)∪ (2.75,3.5) (0,1.328)∪ (2.718,3.5)

Cor. 2 (N = 7) (0,764)∪ (2.869,3.254) (0,764)∪ (2.746,3.37)

These two results are very close even if it misses one stability pocket for the first
case. So we can say that polytopic uncertainties on A and B are well-addressed using
Corollary 2.

1.6 Conclusion

As a conclusion, the present chapter addressed the problem of robust stability of an
interconnected ODE/String system. The robust stability result is obtained consider-
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Fig. 1.3: Stability areas for system (1.1) with matrices defined in (1.12) with c ∈
(0.28,100) and cc0 ∈ (0.6,1.7). The black area is robustly stable in the considered
interval while the white area is unknown at an order N = 7. The hashed area is
an inner-approximation of the unstable area for the system. For (a), the hatched
area corresponds to the exact unstable area for k ∈ {1,1.2,1.5,2} obtained using a
pole location argument. For (b), this areas is related to the unstable areas for k ∈
{0.1,0.5,0.8,1}.

ing polytopic uncertainties on the ODE part, i.e. on matrices A and B. The extended
theorem proposes to enlarge the stability result by considering a relaxed positivity
condition and the robust result takes advantage of the convex form of the LMIs. This
corollary has been tested on a well-known example: a regenerative chatter. Compar-
ing with exact stability results, the proposed methodology is indeed very accurate.
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11. E. Fridman, S Mondié, and B. Saldivar. (2010) Bounds on the response of a drilling pipe

model. IMA Journal of Mathematical Control and Information, 27(4), 513-526.
12. E. Fridman. (2014) Introduction to time-delay systems: Analysis and control. Springer.
13. K. Gu, J. Chen and V. L. Kharitonov. (2003) Stability of time-delay systems, Springer.
14. M. Krstic and A. Smyshlyaev. (2008) Boundary Control of PDEs: A Course on Backstepping

Designs. Voume 16 of Advances in Design and Control, SIAM.
15. M. Krstic. (2009) Delay compensation for nonlinear, adaptive, and PDE systems. Springer.
16. J. Lagnese. (2017) Decay of solutions of wave equations in a bounded region with boundary

dissipation. Journal of Differential equations, 50(2):163182.
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