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Lyapunov stability analysis of a system coupled to a hyperbolic
PDE with potential ?

Mohammed Safi(1) Alexandre Seuret(1) Lucie Baudouin(1)

Abstract— This work deals with a stability problem
for a system coupling an ordinary differential equation
to a linear vectorial hyperbolic transport equation
with a potential term. Using the Lyapunov method-
ology, a novel approach for stability of the coupled
ODE-PDE system is developed. This methodology
leads to a linear matrix inequality criteria while ex-
ploiting Bessel inequality and Legendre polynomials.
To demonstrate the efficiency of this technique, the
obtained criteria are applied on academic example.

I. Introduction

The analysis and control of infinite dimensional sys-
tems represent an emerging topic in automatic control
that attracts an increasing number of scientific works [1],
[5], [12]. The main reason is related to the fact that many
physical systems are described by PDEs such as traffic
flow control [11], tokamak [18], or temperature control
in intelligent buildings [3] among many others. When
considering stability analysis and control of such models,
one approach consists in working on a finite dimensional
discretized model to avoid some of the difficulties of the
original system. But a system of very large dimension
could be inevitable, leading to some specific difficulties.
In some other situations, such discretized approximations
may not be relevant since the main features of the
infinite dimensional dynamics could be disregarded and,
for instance, spill-over phenomena may occur (i.e. the
designed controller may stabilize the finite dimensional
approximated system but excite the very first neglected
dynamics, a situation that happens in vibration’s control
[8]). As a matter of fact, the stability or control study
of infinite dimensional systems involving partial differ-
ential equations (PDE) represents a challenging area of
research.

A large literature have been published on stability
and control of this class of system, and we will not
try to be exhaustive here. One instance could be given
with [13] where a boundary control is developed for a
first-order hyperbolic PDE using backstepping method.
One can also find the study of a system coupling hy-
perbolic first-order PDEs in [7] which designs a con-
troller requiring a single control input to stabilize the
whole system. Recently, the coupling between PDEs
and ordinary differential equations (ODEs) attracted
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some specific attention regarding stability and control
issues, as in [17] which develops a stability study of a
coupled ODE-PDE system introducing a perturbation
into the hyperbolic PDE, [10] designing a feedback laws
to stabilize a fan-shaped network given by this class
of system and [4] treating a fluidodynamic model for
traffic flow. An alternative approach was presented in
[2], [14], [15], where stability conditions of linear ODE-
PDE systems expressed in terms of expandable Linear
Matrix Inequalities (LMI) results from the application
of the Bessel-Legendre inequality [16].

The present article aims at extending the stability
study of [15] in the situation where the transport equa-
tion is also affected by a linear, space independent po-
tential term. Actually, the introduction of a potential in
the transport PDE yields a more complicated analysis
and requires a dedicated attention and treatment that
we will present here.

The paper is organized as follows. The next section
formulates the problem and provides some preliminaries.
Section 3 presents the main features of the proposed
Lyapunov approach. Afterwards, Section 4 exposes the
main results of the paper on the stability analysis of
the coupled system. Finally, the last section draws some
conclusions and perspectives.

Notations: Rn is the n-dimensional Euclidean space
with vector norm |·|n and N is the set of positive integers.
The set of the diagonal positive matrices of dimension m
is D+

m and the set of real matrices of dimension n × m
is given by Rn×m. In ∈ Rn×n is the identity matrix,
0n,m the null matrix, and [A B

? C ] replaces the symmetric
matrix

[
A B
B> C

]
. We denote Sn ⊂ Rn×n (respectively Sn+)

the set of symmetric (resp. symmetric positive definite)
matrices and diag(A,B) is a bloc diagonal matrix equal
to [A 0

0 B ]. For any square matrix A, we define He(A) =
A + A>. Finally, L2(0, 1;Rn) represents the space of
square integrable functions over the interval ]0, 1[⊂ R
with values in Rn and the partial derivative in time and
space are denoted ∂t and ∂x, while the classical derivative
are Ẋ = d

dtX and L′ = d
dxL.

II. Problem formulation

A. System data

In this work, we consider the following system coupling
the ODE with the finite variable X(t) ∈ Rn, to a PDE
transport equation with the infinite dimension variable



Fig. 1: Illustration of system (1).

z(x, t) ∈ RmẊ(t) = AX(t) +Bz(1, t) t > 0,
∂tz(x, t) + Λ∂xz(x, t) + Fz(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = CX(t) +Dz(1, t), t > 0.

(1)
The vector (X(t), z(x, t)) forms the complete state of
this coupled system and satisfies the initial condition
(X(0), z(., 0)) ∈ Rn × L2(0, 1;Rm). The matrices A, B,
C and D are constant with appropriate dimensions. The
other parameters will be defined in the next paragraph.
In system (1), the ODE is coupled to a transport PDE
of matrix speed Λ = diag(ρiImi

){i=1...p} ∈ Dm+ , where
ρi > 0 is the applied speed to mi components of the
variable z(x, t), and the matrix F ∈ Rm in the potential
term consists to interconnect different PDEs only in the
undifferentiated terms. The total number of components
m is given by the sum m =

∑p
i=1mi.

B. Description and applications
To clarify the considered problem, system (1) can be

illustrated as in Figure 1, where we can note that the
potential term creates many canals between transport
PDEs and allows all components of z(x, t) to act in
different equations.

PDE systems have been widely used in many
important applications in the modeling and control
of physical networks : gas pipe networks [10], road
traffic [4] and hydraulic [5]. In the considered coupled
model of this work, the ODE can be taken as a control
for the perturbation introduced by PDE, and which
is an undesirable effect in the coupled ODE-PDE system.

Remark 1: Since the transport matrix Λ is diagonal,
we can remark that, if the matrix F is diagonal too,
system (1) reduces to a set of independent scalar hy-
perbolic equations (see [14]). We consider the transport
equation in system (1), with the change of variable
y(x, t) = e−ΛFxz(x, t) allows proving this result.
In this problem, we consider that the matrix F in
system (1) can be any matrix in Rm×m. The effect of

the lower order term, Fz(x, t), is to cause growth, decay,
or oscillations in the solution, but it does not alter the
primary feature of the propagation of the solution along
the characteristics.

Remark 2: Note that all velocities ρi of the transport
speed matrix Λ are positive. To treat the negative situ-
ation ρi < 0 for some i < p with the same formulation
of the coupled system (1), we only need to apply the
following change of state spatial variable x′ = 1− x.

C. Solution of the coupled system (1)
The existence of solutions to system (1) can be easily

proven using Theorem A.6 in [1]. Hence, for every z0 ∈
L2(0, 1;Rm) and X0 ∈ Rn, the Cauchy problem (1) has
a unique solution. Moreover, there exist K > 0 and
δ > 0 such that the solution (z(x, t), X(t)) of system (1)
satisfies :

||X(t)||+ ||z(t)||L2(0,1;Rm) ≤ Keδt.

This well-posedness result suggests the choice of the
following total energy of the system E(X(t), z(t)) =
|X(t)|2n + ‖z(t)‖2L2(0,1;Rm). This energy will be expressed
simply by E(t).

To study the stability of this solution, we will follow
the Lyapunov method, which is based on appropriate
selection of a functional, suitable for the coupled sys-
tem (1).

III. Construction of Lyapunov functional for
system (1)

In this paper, we aim at leading a stability study
for system (1) following the same method as in [15].
The Lyapunov functional is usually constructed from the
complete state of the system (1) which is (X(t), z(x, t)).
Our functional contains four terms. A first quadratic
term, generally chosen for the vector X(t) of the ODE
and an integral term for the infinite dimensional variable
z(x, t). The other two terms are dedicated to the cou-
pling between the ODE and the PDE. This Lyapunov
functional is given by

VN (X(t), z(t)) =
[
X(t)
ZN (t)

]> [
P QN
Q>N TN

] [
X(t)
ZN (t)

]
+
∫ 1

0
z>(x, t)(S + (1− x)R)z(x, t)dx, (2)

where
P ∈ Sn+, S,R ∈ Sm+ ,

QN =
[
Q(0) . . . Q(N)

]
∈ Rn,m(N+1),

TN = [T (i, j)]i,j=0..N ∈ Sm(N+1)

and

ZN (t) =



∫ 1

0
z(x, t)L0(x) dx

...∫ 1

0
z(x, t)LN (x) dx

 ∈ Rm(N+1) (3)



is the projection of the m components of the infinite
dimensional state z(x, t) over the N + 1 first shifted
Legendre polynomials (see for instance [6]). The fam-
ily {Lk}k∈N of those polynomials forms an orthogonal
basis of L2(0, 1;R) and ∀j, k ∈ N the scalar product is∫ 1

0 Lj(x)Lk(x) dx = 1
2k+1δjk, where δjk represents Kro-

necker’s coefficient, equal to 1 if j = k and 0 otherwise.
We denote the corresponding norm of this inner scalar
product ‖Lk‖ = 1/

√
2k + 1.

We use Legendre polynomials to take advantage of
their properties presented in his derivative and boundary
values. The boundary values for all k in N are Lk(0) =
(−1)k and Lk(1) = 1, and the space derivative expression
is

L′k(x) =


0, k = 0,
k−1∑
j=0

`kjLj(x), k ≥ 1. (4)

where

`kj =
{

(2j + 1)(1− (−1)k+j), if j ≤ k − 1,
0, if j ≥ k.

(5)

Those properties will simplify our computing here-
after. The Lyapunov functional must satisfy properties of
positivity and differentiability by respecting the following
inequalities

ε1E(t) ≤ VN (X(t), z(t)) ≤ ε2E(t), (6)

V̇N (X(t), z(t)) ≤ −ε3E(t) (7)

for some positive scalars ε1, ε2 and ε3.
We note in (7) that we have to compute the time deriva-
tive of the Lyapunov functional to verify the inequality,
and since the Lyapunov functional defined in (2) is in
function of the projection vector ZN (see (3)), we need to
compute the time derivative of this last. This derivative
is provided in the following lemma.

Property 1: Consider z ∈ C(R+;L2(0, 1;Rm)) satis-
fying the transport equation in system (1). The time
derivative of the projections vector ZN is given by :

ŻN (t) = (LN (Λ)−FN )ZN (t) + (1∗N (Λ)D − 1N )z(1, t)
+1∗N (Λ)CX(t),

where

1N (Λ) =
[
Λ . . . Λ

]> ∈ Rm(N+1),m,

1∗N (Λ) =
[
Λ −Λ . . . (−1)NΛ

]> ∈ Rm(N+1),m,(8)
FN =diag(F, F, ..., F ) ∈ Rm(N+1),m(N+1),

LN (Λ) = [`kjΛ]j,k=0..N ∈ Rm(N+1),m(N+1),

the `kj being defined in (5).
Proof: We can easily compute the time derivative

of ZN (t) using the transport equation in (1), integration

by parts and properties of the Legendre polynomials. We
obtain the following expression:

d

dt

∫ 1

0
z(x, t)Lk(x) dx =

∫ 1

0
∂tz(x, t)Lk(x) dx

= −
∫ 1

0
(Λ∂xz(x, t) + Fz(x, t))Lk(x) dx

= − [Λz(x, t)Lk(x)]10 +
∫ 1

0
Λz(x, t)L′k(x) dx

−F
∫ 1

0
z(x, t)Lk(x) dx

= −Λz(1, t) + (−1)kΛz(0, t)− F (ZN (t))k

+
∑max[0,k−1]
j=0 `kjΛ

∫ 1

0
z(x, t)Lj(x) dx.

= −Λz(1, t) + (−1)kΛz(0, t)− F (ZN (t))k
+
∑max[0,k−1]
j=0 `kjΛ(ZN (t))j dx.

Consequently, using the notations recently introduced,
we have

d

dt
ZN (t) = (LN (Λ)−FN )ZN (t)− 1N (Λ)z(1, t)

+1N (Λ)∗z(0, t).

Injecting the boundary condition z(0, t) = CX(t) +
Dz(1, t) in the previous expression allows to conclude
the proof.
To lead stability analysis for system (1), we will need the
Bessel inequality comparing an L2(0, 1) scalar product
with the corresponding finite dimensional approxima-
tion.

Remark 3: Using Legendre polynomials allows to keep
the interconnection between all components of ŻN (t)
since the matrix LN (Λ) is lower triangular. Thus, we
conserve the hierarchy of this stability study. We can use
other basis of polynomials for this stability study, except
trigonometric functions which lead to a different expres-
sion of ŻN (t) without any links between its components.

A. Bessel inequality
This paragraph recalls the Bessel-Legendre inequality

lemma. This lemma is based on the error between a vec-
tor and its projection. Taking advantage of the positivity
of this error, it allows to limit the vector by a lower or
upper bound.

Lemma 1: Let z ∈ L2(0, 1;Rm) and R ∈ Sm+ . The
following integral inequality holds for all N ∈ N :∫ 1

0
z>(x)Rz(x) dx ≥ Z>NRNZN , (9)

with
RN = diag(R, 3R, . . . , (2N + 1)R), (10)

Proof: The proof is easily led by considering the
difference between the variable z and its projections over
the N + 1 first Legendre polynomials. Indeed, denoting

yN (x) = z(x)−
N∑
k=0

Lk(x)
‖Lk‖2

∫ 1

0
z(ξ)Lk(ξ) dξ,



the orthogonality of the Legendre polynomials and the
Bessel inequality leads to (10) from the positive definite-
ness and the expansion of

∫ 1
0 y
>
N (x)RyN (x)dx, as in e.g.

[15].

IV. Stability analysis

In this section, we address the stability analysis of
system (1) using the Lyapunov functional (III), Prop-
erty 1 and Lemma 1. Before giving the stability theorem
of system (1), we recall that the matrices LN (Λ), 1N (Λ),
FN and 1∗N (Λ) are defined in (8), the matrix RN is
given by (10) and define the following Rm(N+1),m(N+1)

matrices

SN = diag(S, 3S, . . . , (2N + 1)S),
MN = diag(M, 3M, . . . , (2N + 1)M),
IN = diag(Im, 3Im, . . . , (2N + 1)Im).

(11)

Theorem 1: Consider system (1) with a given trans-
port speed matrix Λ � 0. If there exists an integer N > 0
such that there exists
• P ∈ Sn+, QN ∈ Rn,(N+1)m and TN ∈ S(N+1)m,
• M , S and R ∈ Sm+ ,

satisfying the following LMIs

ΦN (Λ) =
[
P QN
Q>N TN + SN

]
� 0, (12)

ΨN (Λ) =

 Ψ11 Ψ12 Ψ13
∗ Ψ22 Ψ23
∗ ∗ Ψ33

 ≺ 0, (13)

Γ1(Λ) = ΛR+ He(F>(S +R)) �M,
Γ2(Λ) = ΛR+ He(F>S) �M,

(14)

where

Ψ11 = He(PA+QN1
∗
N (Λ)C) + CTΛ(S +R)C,

Ψ12 = PB +QN (1∗N (Λ)D − 1N (Λ)) + C>Λ(S +R)D,
Ψ13 = A>QN + C>1∗>N (Λ)TN +QN (LN (Λ)−FN )
Ψ22 = −ΛS +D>Λ(S +R)D,
Ψ23 = B>QN + (1∗N (Λ)D − 1N (Λ))>TN ,
Ψ33 = He(TN (LN (Λ)−FN ))−MN ,

then system (1) is exponentially stable.
Proof: Our objective to prove this stability result

is to show that the Lyapunov functional VN given in (2)
satisfies the inequalities (6) and (7) for positive scalars
ε1, ε2 and ε3. The proof falls then into three steps.

For simplicity, the expression VN (t) = VN (X(t), z(t))
will be used hereafter.

Step 1: Since S � 0 and ΦN � 0, there exists a
sufficiently small ε1 > 0 such that S � ε1Im and

ΦN =
[
P QN
∗ TN + SN

]
� ε1

[
In 0
∗ IN

]
.

Moreover, VN defined by (2) satisfies, for all t ≥ 0,

VN (t) ≥
[
X(t)
ZN (t)

]>
ΦN (Λ)

[
X(t)
ZN (t)

]
−Z>N (t)SNZN (t) +

∫ 1

0
z>(x, t)Sz(x, t)dx.

Then, replacing ΦN by its lower bound and introduc-
ing ε1 in the last term, we have

VN (t) ≥ ε1|X(t)|2n + ε1

∫ 1

0
z>(x, t)z(x, t)dx

−Z>N (t)(SN − ε1IN )ZN (t)

+
∫ 1

0
z>(x, t)(S − ε1Im)z(x, t)dx.

Since S − ε1Im � 0, applying Lemma 1 we obtain that
the sum of the two last terms is positive. we then have
proved that ∃ε1 > 0 such that

VN (t) ≥ ε1

(
|X(t)|2n + ‖z(t)‖2L2(0,1;Rm)

)
≥ ε1E(t).

Step 2: There exists a sufficiently large scalar β > 0 that
allows [

P QN
Q>N TN

]
� β

[
In 0
∗ IN

]
,

such that since S � 0 and R � 0, we get
VN (t) ≤ β|X(t)|2n + βZ>N (t)INZN (t)

+
∫ 1

0
z>(x, t)(S + (1− x)R)z(x, t)dx.

Taking the upper bound of (1− x), we get
VN (t) ≤ β |X(t)|2n + βZ>N (t)INZN (t)

+
∫ 1

0
z>(x, t)(S +R)z(x, t)dx.

Applying Lemma 1 to the second term of the right-hand
side gives
VN (t)≤β|X(t)|2n +

∫ 1

0
z>(x, t)(βIm + S +R)z(x, t)dx

≤β|X(t)|2n + ε2‖z‖2L2(0,1;Rm) ≤ ε2E(t),

where ε2 = β+λmax(S) +λmax(R). Therefore, the proof
of (6) is complete.

Step 3: To simplify the computations and the nota-
tions hereafter, we divide the Lyapunov functional (2)
into two terms:

VN,1(t) =
[
X(t)
ZN (t)

]> [
P QN
Q>N TN

] [
X(t)
ZN (t)

]
,

VN,2(t) =
∫ 1

0
z>(x, t)(S + (1− x)R)z(x, t)dx,

and let us define the finite dimensional augmented state
vector, of size n+ (N + 2)m given by

ξN (t) =
[
X>(t) z>(1, t) Z>N (t)

]>
. (15)

Computing the derivative of Lyapunov functional
VN (t) in order to determine the positive scalar ε3 sat-
isfying equation (7), yields

V̇N,1(t) = ξ>N (t)

ψ1 ψ2 Ψ13
∗ 0 Ψ23
∗ ∗ He(TN (LN (Λ)−FN ))

 ξN (t),



where Ψ13 and Ψ23 are defined in Theorem 1, and

ψ1 = He(PA+QN1
∗
N (Λ)C),

ψ2 = PB +QN (1∗ND − 1N (Λ)).

Now, using the transport equation in (1), we have

V̇N,2(t) =
∫ 1

0
∂t(z>(x, t)(S + (1− x)R)z(x, t))dx

= − 2
∫ 1

0
(Λ∂xz(x, t))>(S + (1− x)R)z(x, t)

+ (Fz(x, t))>(S + (1− x)R)z(x, t) dx

= −
[
z>(x, t)Λ(S + (1− x)R)z(x, t)

]1

0

−
∫ 1

0
z>(x, t)

[
He(F>(S + (1− x)R)) + ΛR

]
z(x, t) dx

Merging the expressions of V̇N,1 and V̇N,2, we obtain

V̇N (t) = ξ>N (t)

ψ1 ψ2 Ψ13
∗ 0 Ψ23
∗ ∗ He(TN (LN (Λ)−FN ))

 ξN (t)

+ z>(0, t)Λ(S +R)z(0, t)− z>(1, t)ΛSz(1, t)

−
∫ 1

0
z>(x, t)

[
He(F>(S + (1− x)R)) + ΛR

]
z(x, t) dx.

To take the upper bound of the integral term, we
consider that their exists a positive matrix M such that

ΛR+ He(F>(S +R)) �M,
ΛR+ He(F>S) �M.

we have thus, by convexity

ΛR+ He(F>(S + (1− x)R)) �M ∀x ∈ [0, 1],

Then, we can write

V̇N (t)≤ ξ>N (t)

ψ1 ψ2 Ψ13
∗ 0 Ψ23
∗ ∗ He(TN (LN (Λ)−FN ))

 ξN (t)

+ z>(0, t)Λ(S +R)z(0, t)− z>(1, t)ΛSz(1, t)

−
∫ 1

0
z>(x, t)Mz(x, t) dx.

From Lemma 1, since M > 0 we have∫ 1

0
z>(x, t)Mz(x, t) dx ≥ Z>N (t)MZN (t).

Injecting the boundary condition z(0, t) = CX(t) +
Dz(1, t) and using the definition of the matrix ΨN (Λ) in
(13), the following estimate of V̇N is obtained:

V̇N (t) ≤ ξ>N (t)ΨN (Λ)ξN (t) (16)

Finally, the LMI (13) ensures that there exists a suffi-
ciently small ε3 > 0 such that

M � ε3Im, ΨN (Λ) ≺ −ε3

 In 0 0
0 0 0
0 0 IN

 .

Hence, using the definition (15) of ξN (t) and these two
LMIs in (16) yields

V̇N (t) ≤ −ε3

(
|X(t)|2n +

∫ 1

0
|z(x, t)|2 dx

)
+Z>N (t)(MN − ε3IN )ZN (t)

−
∫ 1

0
z>(x, t)(M − ε3Im)z(x, t)dx.

Since M − ε3Im � 0, Lemma 1 can be applied and gives

−
∫ 1

0
z>(x, t) (M − ε3Im)z(x, t)dx

≤ − Z>N (t)(MN − ε3IN )ZN (t).
Thus, the Lyapunov functional VN satisfies, for all t > 0

V̇N (t) ≤ −ε3E(t).

We can therefore conclude on the asymptotic stability
of system (1).

V. Numerical Examples
To test our stability results, we consider system (1)

with following matrices

A =
[
−2 0
0 −0.9

]
, B =

[
−1 0 −1 0
−1 −1 −1 −1

]
,

C =


0.05 0

0 0.05
0 0
0 0

 , D =


0 0 0 0
0 0 0 0
19 0 0 0
0 19 0 0

 ,
and the transport speed matrix Λ is given by

Λ =
[
ρ1I2 0

0 ρ2I2

]
.

To observe the effect of the potential term on stability
of the system, we compute the minimum transport speed
value for several values of F . We consider the following
matrix of the potential term F = σ

[
02 I2
I2 02

]
. This form

of the matrix F allows to inject the second half of the
state z(x, t) in the first equation, and the first one in the
second equation.

Taking ρ1 = ρ2 = ρ, Figure 2 gives the minimum
transport speed ρ for which the system remains stable.
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Fig. 2: Minimum transport speed depends on σ for
several values of N

We note in Figure 2 at σ = 0, corresponds to system 1
without the potential term F , that we get the example
studied in [9] and [14]. For N = 4, we get the minimum
transport speed value ρmin = 0.2327 (maximum delay



value h = 4.2973) for which the system remains stable.
This maximum delay gets near the value found in [9] by
increasing the order N of Legendre polynomials.
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Fig. 3: Simulation of X(t) of the coupled system with
ρ1 = ρ2 = 1.

We remark in Figure 3 that the response X(t) of the
coupled system is more oscillating with a determined
potential term in the transport PDE (X(t) =

[
X1(t)
X2(t)

]
with σ = 0.05) than that obtained without potential
(X(t) =

[
X1(t)
X2(t)

]
with σ = 0). Therefore, adding a

potential term to the transport PDE of the coupled
system (1) may introduce more oscillations to the system.

To have more stability result of system (1), we consider
the same example with ρ1 = 2ρ2 = 2ρ. This form
allows us to avoid the result of Remark 1 which consists
in reducing system (1) on a simple coupled ODE-PDE
system without the potential term.

In Figure 4, we observe that the stability conditions
form a hierarchy of LMI, i.e. if the system is stable at
the order N of Legendre polynomials, it remains stable
for all higher orders greater than N .

Fig. 4: Minimum transport speed depends on σ for
several values of N

We also note in Figure 4 that we can expand the inter-
val of stability of this system by choosing an appropriate
value of F (for N = 4, we have ρmin = 0.0976 for
F = 0.001

[
02 I2
I2 02

]
instead of ρmin = 0.1256 for F =

04). Thus, adding the potential term to the transport
equation with an appropriate value may broaden the
interval of stability of the coupled system (1).

VI. Conclusion
This work provides a novel approach for stability of a

system coupling an ODE to a hyperbolic transport PDE

with potential term, using Lyapunov methodology based
on Bessel inequality and Legendre polynomials. Indeed,
it shows how the potential term in the transport PDE
may improve the stability result of the coupled system
depending on its sign. In other words, interconnecting
PDEs each other only in the undifferentiated terms may
expand the stability interval of the coupled ODE-PDE
system. Moreover, the set of stability conditions forms a
hierarchy of LMI indexed by the polynomial degree N,
and increasing this degree may only improve the stability
results. For future research, the potential term of the
coupled ODE-PDE system can depend on time and/or
spatial variable x.
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