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New model transformations for the stability

analysis of time-delay systems ?

Mohammed Safi ∗ Lucie Baudouin ∗ Alexandre Seuret ∗

∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Abstract: This paper deals with the stability analysis of time delay systems based on
continuous-time approach. The originality of the present paper relies on the construction of
several models for a same time-delay systems using the interconnection of an ordinary differential
equation and a transport partial differential equation. The stability analysis is then performed
using a Lyapunov functional. These models are constructed in order to first reduce potentially
the complexity of the resulting stability conditions. Second several models are build in order to
be interpreted as a discretization scheme as the one usually used in the Lyapunov functional.
The proposed result can be seen as a generalized (N − M) discretization which consists in
both a time-discretization of the delay interval into M sub-intervals, and the projection of the
state function within each sub-interval on the Legendre polynomials of degree less than N . The
efficiency of this novel approach is illustrated on an academic example.

Keywords: Time-delay systems, Model transformations, Transport equation, Lyapunov
stability, Integral inequalities, Linear matrix inequalities.

1. INTRODUCTION

Time-delay systems have been widely investigated in many
different areas, as in networked control systems, mechani-
cal transmissions or biological systems. There is indeed a
very large literature in time-delay system and we can refer
to Xu et al. (2006), Mondie et al. (2005) and Gu et al.
(2003) for instance, or the survey from Fridman (2014).
Stability of time-delay systems has a crucial, practical and
theoretical importance since the delay term can be a source
of instability and poor performance of a system. Many
stability studies and results have been proposed, as for
instance in Chen (1995), Gao and Wang (2004) and Xu
et al. (2001) (see also the references therein).

A relevant direction of research that was popular in the
2000’s consists in applying several models transformation
to a time-delay system in order to derive less conservative
results as described for instance in Richard (2003). Among
them the reader may look at Gu and Niculescu (2000) or at
the descriptor representation introduced in Fridman and
Shaked (2002). It is also well-known that these transfor-
mations may include some additional dynamics as clearly
explained in Gu and Niculescu (2000).

Unlike the usual method based on the application of the
Lyapunov-Krasovskii theorem, this paper aims at demon-
strating the benefits of employing a model of time-delay
systems, which is represented as the interconnection of an
ordinary differential equation and a transport equation.
This idea is obviously not new (see for instance Krstic
(2009)). In fact, the transport equation allows to express
the delay term of the time-delay system in a coupled
system. More precisely, consider the following time delay
system
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Fig. 1. Illustration of system (3) equivalent to time-delay
system (1).

Ẋ(t) = AX(t) +AdX(t− h), t ≥ 0
X(θ) = φ(θ), θ ∈ [−h, 0]

(1)

where X(t) ∈ Rn×n is the state of the system and
the matrices A,Ad ∈ Rn×n are constant and where φ
represents the initial conditions of the delay system. It is
easy to show that the delay term X(t− h) of (1) could be
expressed through a transport equation taking the inverse
of the delay 1

h as the transport velocity. Let us indeed
consider the following transport equation over the space
domain (0, 1) :

h∂tz(x, t) + ∂xz(x, t) = 0, x ∈ (0, 1), t > 0, (2)

which can be illustrated by Figure 1. The left boundary in
x = 0 has the state X(t) of the ODE input in z(0, t) of the
transport equation (2), and it takes time before reaching
the output z(1, t) at the right boundary in x = 1. This
amount of time corresponds here to the delay h. Therefore,
we obtain the delayed term X(t−h) at the output z(1, t) of
the tranport equation (2). Thus, system (1) is equivalent
to the following coupled ODE-PDE system Ẋ(t) = AX(t) +Adz(1, t) t > 0,

h∂tz(x, t) + ∂xz(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = X(t), t > 0,

(3)

Control and stability of this specific kind of systems have
been studied in many recent papers in literature in differ-



ent applicative fields. For example, in hydraulic domain,
the paper Coclite et al. (2005) treats a fluidodynamic
model for traffic flow using wave front tracking approach
and Gugat et al. (2011) designs a feedback laws stabilising
a fan-shaped network given by a coupled ODE-PDE sys-
tem. The works presented in Baudouin et al. (2016) and
Safi et al. (2017b) give a hierarchy stability conditions of
the coupled system above using linear matrix inequalities
depending on different parameters of the coupled system.

The purpose of this paper consists in exploiting the stabil-
ity result of Safi et al. (2017b) and applying a discretizetion
scheme on the delayed term of system (1). In other words,
we will divide the delay interval [−h, 0] of system (1)

in M sub-intervals
(
[−h, −(M−1)h

M ], ..., [−2h
M , −hM ], [−hM , 0]

)
,

and we will project the delayed state corresponding to
each sub-interval on the first N + 1 Legendre polynomials.
Applying a M-discretization of the delay interval and N-
sized projection on Legendre polynomials will allow to
compare the efficiency of each method and could lead at
evaluate an optimal value pair (M,N) giving the best
results for a given compromise between calculability and
efficiency.

The document is presented as follows. The next section
introduces briefly the tools used in this work. Section 3
formulates the problem, provides some preliminaries and
exposes the main results of the paper Safi et al. (2017b)
on the stability analysis of (1) using the coupled system
approach. Section 4 itemizes the different models of the
coupled ODE-PDE system allowing to express the time-
delay system (1). Afterwards, Section 5 . These results are
applied on academic example in section 6. Finally, the last
section draws some conclusions and perspectives.

Notations: N is the set of positive integer, Rn is the n-
dimensional Euclidean space with vector norm | · |n. In is
the identity matrix in Rn×n, 0n,m the null matrix ∈ Rn×m,

[A B
? C ] replaces the symmetric matrix

[
A B
B> C

]
. We denote

Sn ⊂ Rn×n (resp. Sn+ = {P ∈ Sn, P � 0}, and Dn+) the
set of symmetric (resp. symmetric positive definite and
diagonal positive definite) matrices and diag(A,B) is a
bloc diagonal matrix. For any square matrix A, we define
He(A) = A+A>. Finally, L2(0, 1;Rm) represents the space
of square integrable functions over the interval [0, 1] ⊂ R
with values in Rm and the partial derivative in time and
space are denoted ∂t and ∂x, while the classical derivative
are Ẋ = d

dtX and L′ = d
dxL. We first define the following

set of matrices commuting with a matrix Λ ∈ Dm+ as follows
Mm

Λ := {M ∈ Sm+ ,MΛ = ΛM}. The notation Xt stands
for Xt(θ) = X(t+θ) for all θ ∈ [−h, 0] where h is a positive
scalar.

2. PRELIMINARIES

2.1 Legendre polynomials

Using a formulation of time-delay system (1) as a coupled
ODE-transport PDE system like (3), one will need to work
in the functional space L2(0, 1). To conduct this stability
study, we choose the shifted Legendre polynomials since
they form an orthogonal base of L2(0, 1) with the canonical
scalar product

< Lj ,Lk >=

∫ 1

0

Lj(x)Lk(x) dx =
1

2k + 1
δjk,

where δjk is the Kronecker’s coefficient, equal to 1 if
j = k and 0 otherwise. Legendre polynomials are denoted
{Lk}k∈N and they are characterised by the boundary
values Lk(0) = (−1)k,Lk(1) = 1 and their differentiation

for all k ≥ 1, L′k(x) =

k−1∑
j=0

`kjLj(x) where

`kj =

{
(2j + 1)(1− (−1)k+j), if j ≤ k − 1,
0, if j ≥ k.

The shifted Legendre polynomials will provide basis of
polynomials that will be used to project the state z of the
transport equation for the purpose of the stability study.

2.2 Bessel-Legendre inequality

The Bessel inequality based on Legendre polynomials is
characterised by the positivity of the error between the
complete norm of an L2(0, 1) vector and its projection on
Legendre polynomials. The result is given by

Lemma 1. Let u ∈ L2(0, 1;Rm) and R ∈ Sm+ . Then the
following inequality holds for all N ∈ N∫ 1

0

u>(x)Ru(x)dx ≥ U>
N

R . . .

(2N + 1)R

UN , (4)

where

UN =


∫ 1

0
u(x)L0(x) dx

...∫ 1

0
u(x)LN (x) dx

 ∈ Rm(N+1).

In our context, this basic lemma will allow to prove that
a computable stability criteria based on linear matrix in-
equalities (LMis) proves actually the exponential stability
of the whole ODE-PDE system under consideration.

2.3 Definition : exponential stability of system (3)

Considering the finite dimensional system in X(t) coupled
to the transport equation in the variable z(x, t), the
expression of E(t) the total energy of this coupled ODE-
transport PDE system is E(t) = |X(t)|2n+||z(t)||2L2(0,1;Rm).

System (3) is exponentially stable if there exist constant
K > 1 and δ > 0, depending on different parameters of
the system, such that E(t) ≤ Ke−δtE(0). Thus, the total
energy E(t) of system (3) admits a decreasing upper bound
and the system’s state converges exponentially. These tools
and their proofs are more detailed in Safi et al. (2017b).

3. PRELIMINARY ON STABILITY OF COUPLED
TRANSPORT ODE-PDE SYSTEMS

Consider now the following more general coupled ODE-
transport PDE system

Ẋ(t) = AX(t) +Bz(1, t) t > 0,
∂tz(x, t) + Λ∂xz(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = CX(t) +Dz(1, t), t > 0,
z(x, 0) = z0(x), x ∈ (0, 1)
X(0) = X0.

(5)

where the state is composed by the finite variable X(t) ∈
Rn of the ODE and the infinite dimensional state z(·, t) ∈
L2(0, 1;Rm) of the transport PDE. The matrices A ∈
Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m are



constant. The transport matrix Λ ∈ Dm+ of the PDE is
constant and diagonal.
In Safi et al. (2017b), sufficient conditions were provided to
guarantee the L2 stability of system (5). This result uses
Lyapunov method based on Bessel-Legendre inequality
and Legendre polynomials {Lk}k=0...N to approximate the
infinite dimensional state z(x, t) of the PDE. This method
provides LMIs guaranteeing stability of the coupled system
led by the choice of an appropriate Lyapunov functional.
This Lyapunov functional is indexed by the order of
approximation N and is given by

VN (t) = VN,1(t) + VN,2(t), (6)

where

VN,1(t) =

[
X(t)
ZN (t)

]> [
P QN
∗ TN

] [
X(t)
ZN (t)

]
and

VN,2(t) =

∫ 1

0

z>(x, t)e−2δxΛ−1

(S + (1− x)R)z(x, t)dx.

The parameter δ > 0 is the decay rate of the energy
E(t) of the coupled system (5) and the vector ZN (t) =[∫ 1

0

z>(x, t)L0(x)dx, . . . ,

∫ 1

0

z>(x, t)LN (x)dx

]>
in Rm(N+1)

contains the projections of the state z(x, t) over the (N +
1) first Legendre polynomials. In Safi et al. (2017b),
the following sufficient exponential stability theorem was
provided based on the Lyapunov functionals in the sense
of Definition 2.3 and is stated below.

Theorem 1. Consider System (5) with matrices A, B, C
and D. If there exists an integer N > 0 such that there
exist δ > 0, P ∈ Sn+, QN ∈ Rn,(N+1)m, TN ∈ S(N+1)m, S
and R ∈Mm

Λ , satisfying the following LMIs

ΦN (Λ, δ) =

[
P QN
∗ TN + SN (Λ)

]
� 0, (7)

ΨN (Λ, δ) =

[
Ψ11 Ψ12 Ψ13

∗ Ψ22 Ψ23

∗ ∗ Ψ33

]
≺ 0, (8)

where

Ψ11 = He(PA+QN1
∗
N (Λ)C) + C>Λ(R+ S)C + 2δP,

Ψ12 = PB +QN (1∗N (Λ)D − 1N (Λ)) + C>Λ(R+ S)D,
Ψ13 = A>QN + C>1∗>N (Λ)TN +QNLN (Λ) + 2δQN ,

Ψ22 = −e−2δΛ−1

ΛS +D>Λ(R+ S)D,
Ψ23 = B>QN + (1∗N (Λ)D − 1N (Λ))>TN ,
Ψ33 = He(TNLN (Λ))−RN (Λ) + 2δTN ,

and where

1N (Λ) = [Λ . . . Λ]
> ∈ R(N+1)m,m,

1∗N (Λ) =
[
Λ −Λ . . . (−1)NΛ

]> ∈ R(N+1)m,m,

LN (Λ) = [`kjΛ]j,k=0..N ∈ R(N+1)m,(N+1)m, (9)

then, system (5) is exponentially stable. Moreover, for
a given transport speed matrix Λ ∈ Dm+ , there exists a
constant K > 0 and a guaranteed decay rate δ∗ > δ such
that the energy of the system verifies, ∀t > 0,

E(t) ≤ Ke−2δ∗t
(
|z0(0)|2m + ‖z0‖2L2(0,1;Rm)

)
. (10)

Proof : The proof of this stability result is fully detailed
in Safi et al. (2017b) and is not recalled in the present
paper. Nevertheless a sketch of the proof is included to
latter illustrate the relationship between this result and
the Lyapunov-Krasovskii stability.

First of all, the proof is based on the proposed Lyapunov
functional (6) and the use of Lemma 1. More precisely, the
objective is to prove that the Lyapunov functional VN is
an equivalent norm of the total energy E(X(t), z(t)) and
decreases exponentially to zero. This is formalized by the
following inequalities

ε1E(t) ≤ VN (t) ≤ ε2E(t),

V̇N (t) + 2δVN (t) ≤ −ε3E(t),
(11)

for some positive scalars ε1, ε2, which are guaranteed by
ΦN (Λ, δ) � 0) and ε3, by the ΨN (Λ, δ) ≺ 0. �

Remark 1. The stability condition of Theorem 1 are valid
of any integer N ; As in Seuret and Gouaisbaut (2015), it
was also proven in Safi et al. (2017b) that these conditions
form a hierarchy. In other words, increasing N can only
reduce the conservatism of the condition.

Remark 2. It is worth to note that there exists a relation
between the delayed version of ODE state X and the
functional state z. Indeed solving the partial differential
equation, one easily obtains that z(x, t) = X(t−hx). This
also means that the Lyapunov functional presented in (6)
can be easily translated as a usual Lyapunov-Krasovskii
functionals.

3.1 L2-norm stability of system (5)

We note that Theorem 1 ensures the L2 stability of the
ODE-PDE system. This stability is weaker the Lyapunov-
Krasovskii stability, which relies on the supremum norm.
However, L2 stability for system (5) implies stability in the
sense of Lyapunov-Krasovskii Theorem. This can be done
by recalling that X(t− θ) = z(t, θ/h) and by noting that

|X(t)|2n ≤ E(t) ≤ η sup
s∈[−h,0]

|X(s)|2n, ∀t > 0,

and the inequalities (11) also imply

ε1|X(t)|2n ≤ VN (X, z) ≤ ε2η sup
s∈[−h,0]

|X(s)|2n,

V̇N (X, z) + 2δVN (X, z) ≤ −ε3|X(t)|2n.
This shows that this formulation does not bring any
restriction with the usual Lyapunov-Krasovskii Theorem.

As presented in the introduction, this paper aims at
presented several ODE-PDE models that are equivalent
to the original time-delay system (1). Then, based on the
stability conditions of Theorem 1, a simple procedure to
design discretized Lyapunov-Krasovskii functionals mixed
with the framework of the Bessel-Legendre inequality.

4. MODEL TRANSFORMATIONS

Let us first recall the model provided in the introduction.
It was mentioned there that the system (1) writes as the
ODE-PDE system (5) with the following matrices, besides
A which is unchanged

B = Ad, C = In, D = 0n.

This is obviously not the only way to model (1) as (5).
Some relevant ones are presented below.

4.1 First modelling

In the situation where matrix Ad is not full rank, it is
possible to reduce the complexity of the resulting stability
conditions by noting that matrix Ad can be rewritten as



(a) Illustration of a reduced model. (b) Illustration of the discretized model
at the order 2.

(c) Illustration of the general discretized
model at order M .

Fig. 2. Three model transformations illustrating the discretization scheme though the ODE-PDE system (5).

Ad = BdCd where Bd and Cd are two matrices in Rn×m
and Rm×n respectively, where m is the rank of Ad. Hence,
In this situation, the ODE-PDE model (5) with

B = Bd, C = Cd, D = 0m.

and again with the same matrix A, is still able to represent
the time-delay system (1). This modification only implies a
light modification in the model as depicted in Figure 2(a).
However, this modification has a relevant impact on the
complexity of Theorem 1 since the dimension of the state
function z reduces from n to m.

4.2 Discretization model

The idea of this paragraph is to propose a discretization
scheme of the Lyapunov functional by a simple transfor-
mation of the ODE-PDE model. To do so, this system (5)
with

Λ =
2

h
I2m, B = [0n,m Bd] , C =

[
Cd

0m,n

]
, D =

[
0m 0m
Im 0m

]
.

In this model, illustrated in Figure 2(b), the matrices B,
C and D have been defined such that BDC = BdCd =
Ad. We note that the dimension of the variable z and
the transport speed have been doubled. The boundary
conditions impose the following constraints[

z1(0, t)
z2(0, t)

]
=

[
CdX(t)
z1(1, t)

]
Moreover, by computing the solution of the transport
equation, we can see that z1(1, t) = CdX(t − h/2) and
z2(1, t) = z1(1, t−h/2) = CdX(t−h). Hence, compared to
the previous model, the formulation introduce a additional
information on the system state z1(1, t) = CdX(t − h/2),
which can be understood as a discretization process of the
delay interval.

Therefore, applying the stability conditions of Theorem 1
on this particular model can be interpreted as a mixture of
the Bessel-Legendre inequality and a discretization process
of the delay interval. Indeed, one may look at the structure
of the associated Lyapunov functional leading to this
stability conditions.

Again, the computation of the solution of the transport
PDE in (5) with Λ = 2

hI2m yields

z(x, t) =

[
CdX(t− h

2x)
CdX(t− h

2 −
h
2x)

]
. (12)

Therefore, re-injecting the expression of z in the definition
of the Lyapunov functional leads to

VN (X(t), z(·, t)) =

[
X(t)
XN (t)

]> [
P QN
∗ TN

] [
X(t)
XN (t)

]
+

∫ 1

0

[
X(t− h

2x)
X(t− h

2−
h
2x)

]>
e−δhx(S + (1−x)R)

[
X(t− h

2x)
X(t− h

2−
h
2x)

]
dx.

where the augmented state XN corresponds to the projec-
tion of the state z given in (12) on the Legendre polyno-
mials of degree less than N . More especially, an expression
of this vector is given, after a change of variable, by

XN =



∫ 1

0

[
CdX(t− h

2x)
CdX(t− h

2 −
h
2x)

]
L0(x) ds

...∫ 1

0

[
CdX(t− h

2x)
CdX(t− h

2 −
h
2x)

]
LN (x) ds


Applying the changes of variable s = t − h

2x and s = t −
h
2 −

h
2x to the previous expression, the augmented vector

XN can be rewritten as follows

XN (t) =
2

h



∫ t
t−h

2
CdX(s)L0(2 t−sh ) ds∫ t−h

2

t−h CdX(s)L0(2 t−sh ) ds
...∫ t

t−h
2
CdX(s)LN (2 t−sh ) ds∫ t−h

2

t−h CdX(s)LN (2 t−sh ) ds


and apply the change of variable s = t − h

2x to the
last integral term of VN , the following expression of the
functional is obtained and is consistent with the definition
of a Lyapunov-Krasovskii functional

VN (Xt) =

[
X(t)
XN (t)

]> [
P QN
∗ TN

] [
X(t)
XN (t)

]
+ 2
h

∫ t

t−h
2

[
X(s)

X(s− h
2 )

]>
e−δhx(S+

2

h
(s−t+h

2
)R)

[
X(s)

X(s− h
2 )

]
ds,

These comments demonstrate the potential of the ODE-
PDE modeling of time-delay delay systems. Indeed, it has
been shown that the simple and understandable modi-
fications have a strong impact on the interpretation of
the stability conditions developed in Theorem (1). A first
aspect deals with the reduction of complexity of the LMI
(due to both a reduction of the size and of the number of



decision vairables) if the delay matrix Ad is not full rank.
Second, It has been showed that if is possible to construct
an augmented model which must verify the constraint
BDC = Ad in order to provide an equivalent formulation
of the time-delay system. It can also be understood that
this decomposition (A,B,C,D,Λ) is not unique and many
other models can be generated. In the next section, a
general formulation of the discretization is provided to
extend the discretization process to any order M ∈ N.

4.3 General discretization process

Here, we define a new parameter M , which corresponds
to the number of subintervals of [0, 1] to be considered.
Following the previous section, let us consider the following
model transformation, which allows to express the time-
delay system (1) as in the ODE-PDE system (5) with the
following matrices .

B =
[
0n,(M−1)m Bd

]
, C =

[
Cd

0(M−1)m,n

]
,

D =

[
0m,(M−1)m 0m
I(M−1)m 0(M−1)m,m

]
, Λ = M

h IMm.

(13)
Again, it can be easily seen that BDC = BdCd = Ad. A
graphical interpretation of this model is given in Figure
2(c). It can be seen there that the boundary conditions
impose the following constraints, that expend the one
provided in the previous model

z1(0, t)
z2(0, t)

...
zM (0, t)

 =


CdX(t)
z1(1, t)

...
zM−1(1, t)


Following the same arguments as in the previous section,
we get that

∀i = 1, . . . ,M − 1, zi+1(0, t) = zi(1, t) = zi(0, t−
h

M
),

where we used the solutions of the transport equation.
Hence, re-injecting these expressions and by injection, we
get that

∀i = 1, . . . ,M, zi(0, t) = CdX(t− (i− 1)h

M
)

and zM (1, t) = CdX(t− h).
Hence, this model transformation on the ODE-PDE sys-
tem allows to include some intermediate values of the state
function Xt. It is also worth noting that the associated
Lyapunov functionals can also be rewritten as a Lyapunov-
Krasovskii functionals as presented in the previous section.
The computation leading to this functional follows exactly
the same procedure and is not therefore not presented here.

A last comment deals with the complexity of the resulting
stability conditions. Increasing both N and M notably
increase the size of the LMI as well as the number of
decision variables. The number of decision variables DV
involved in the discretization with respect to any integer
M at any order N of the Legendre polynomials is given by

DV =
1

2
(n2+n+Mm(3N+5)+(Mm)2((N+1)2+2) (14)

5. NUMERICAL EXAMPLES

Consider the time-delay system (1) with the following
matrices

A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
.

Equivalent representations of the time-delay system above
using the general discretized model of the coupled sys-
tem (5) are

B =
[
02,2(M−1) Ad

]
, C =

[
I2

02(M−1),2

]
,

D =

[
02,2(M−1) 02

I2(M−1) 02(M−1),2

]
, Λ = M

h I2M .

For this system, it has been proved that the maximum
decay rate of the energy is δmax = 4.35 for a delay
h = 1

3.5 (see Safi et al. (2017a)). Using Theorem 1, we
have performed several simulations which are reported in
Table 1. It gives the estimation of δ for several values of
the pair (M,N) and for the delay h = 1

3.5 .

For h = 1
3.5

N = 0 N = 1 N = 2

M = 1 δ = 1.3404 δ = 2.6038 δ = 3.4402

M = 2 δ = 1.3729 δ = 3.1009 δ = 3.9252

M = 3 δ = 1.3841 δ = 3.3478 δ = 4.1134

Table 1. The decay rate δ depending on
(M,N).

One can note in table 1 that increasing the order M of
the time-discretization of the delay, for a given Legendre
polynomial’s degree N , improves slightly the estimation of
the decay rate δ. On the other side, if we keep the same
value of M , we get better results by increasing only the
order N of Legendre polynomials, but it’s still far from
the maximum value. However, using both M-discretization
and N-projections over Legendre polynomials allows to get
better results near to the maximum value δmax = 4.35.
Now, to better evaluate the evolution of the decay rate δ,
we define the δ-efficiency error as follows εδ = 1 − δTh1

δfreq
,

which represents the missing distance to reach the perfect
case δTh1

δfreq
= 1, and compares the decay rate δTh1 found

using Theorem 1 and δfreq given by frequency analysis (see
Breda et al. (2015)) which are more precise. Figure 3.(a)
gives the improvement of εδ according to the number of
decision variables DV which depends on the pair (M,N).

To explain how to read Figure 3.(a), we can give an
example of an appropriate pair (M,N) allowing to achieve
a fixed worst error efficiency εδ.
If we decide for example to set the interval of the efficiency
error to εδ ≤ 10−3, the best compromise between the
efficiency goal and the number of decision variables DV
is clearly (M,N) = (1, 4) (much better than (2, 3)), since
we achieve the objective with less complexity (less number
of DV).

In fact, increasing the pair (M,N) allows to improve re-
sults, but it makes the problem more complex by increas-
ing the number of decision variables DV. Table 2 details
the evolution of the problem’s complexity, expressed by
the number of decision variables DV, which depends on
the pair (M,N).

One can remark in Table 2 that the LMI problem becomes
rapidly more complex by increasing the value M of the dis-
cretization, while it becomes slightly complex by increasing
the order N of Legendre polynomials. For example, if we
consider the pair (M,N) = (1, 2) as a reference, we note
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(a) The efficiency error εδ of the estimation of the
decay rate δTh1 compared to frequency result δfreq
depending on the number of decision variables DV.
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(b) The delay efficiency error εh of the maximal al-
lowed delay hmax(Th1) compared to frequency result
hmax(freq) depending on the number of decision vari-
ables DV.

Fig. 3. The efficiency of Theorem 1 in term of the decay rate δ and the maximal allowed delay hmax.

Number of decision
variables DV N = 0 N = 1 N = 2 N = 3 N = 4

M = 1 16 27 42 61 84

M = 2 41 75 125 191 273

M = 3 78 147 252 393 570

M = 4 127 243 423 667 975

M = 5 188 363 638 1013 1488

Table 2. The number of decision variables DV
depending on (M,N).

that the number of decision variables DV increases only
by 19 variables at the next order of N ((M,N) = (1, 3)),
while it increases by 83 variables at the next order of M
((M,N) = (2, 2)).

Now, to evaluate the efficiency of Theorem 1 in term of the
maximum delay hmax for which the system remains stable,

we define the h-efficiency error εh = 1−hmaxTh1

hmaxfreq
, comparing

the maximum delay hmaxTh1
found by Theorem 1 and

hmaxfreq
given by frequency analysis (see Gu et al. (2003)).

Figure 3.(b) gives the evolution of εh depending on the
number of decision variables DV.
One can note in Figure 3.(b) that the pair (M,N) = (2, 2)
gives the better result of the maximum delay hmaxTh1

for
which the system remains stable, in the interval εh ≤ 10−4

with less number of decision variables DV.

6. CONCLUSION

This paper provides a novel approach for stability of time-
delay system (1) using the coupled ODE-PDE model (5)
and exploiting the stability result obtained in Safi et al.
(2017b) based on Lyapunov method. In addition to the
projection of the state z(x, t) of the PDE on N Legendre
polynomials, the discretization process is also applied
through discretizing the delay interval [−h, 0] on M sub-
intervals. One can conclude from Figure 3 that using
both M-discretization and N-projection over Legendre
polynomials allows to achieve quickly the objective with
less complexity.
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