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1 Université de Toulouse, UPS, IRIT {decroix, pinquier, ferrane}@irit.fr
2 CNRS, LAAS, lerasle@laas.fr 3 Université de Toulouse, UPS, LAAS

Abstract
In intelligent environments, activity detection is a nec-
essary pre-processing step for adaptive energy man-
agement and interaction with humans. To character-
ize the interactions between individuals or between an
individual and the infrastructure of a building, a re-
identification process is required and using multimodal
models improves its robustness. In this paper, we pro-
pose a method for audiovisual fusion, which introduces
a novel confidence index of audio-video salience zones,
for training an audiovisual signature of a person within
a sparse network of cameras and microphones.

1 Introduction
Person re-identification is defined as the process of
matching new observations of a person detected by a
sensor or a network of sensors with previous observa-
tions of the same person. Unlike person identification
task, no prior information is required and this task
can be proceeded online, since no label are intended
to be put on the detections. To discriminate a person
among others, a signature is required.
With the flourishing expansion of ambient sensors in
professional as well as in private lives, it can serve
many applications in surveillance [15], multimedia in-
formation retrieval and activity detection. To ben-
efit from the complementarity of the sensors per-
cepts, multimodal approaches combine RGB images
with depth and thermal features [17] or with RFID
data [10], improving robustness of a person signature,
since visual appearance is not always discriminative.
Nevertheless mixing audio-based and video-based in-
formation remains challenging due of the dissemblance
of these two modalities. Mimicking human activity
and interaction, which are inherently multimodal, au-
diovisual fusion has been opening its area of appli-
cations from human computer interface to intelligent
vehicles [26] or smart homes [4].
In this paper, we present a new strategy of audiovi-
sual fusion to build a bimodal signature of a person in
a context of indoor activity detection in small rooms
where installed sensors have partially joined fields to
limit the instrumentation of the place. A novel con-

fidence index in joint audiovisual domain is described
to build an audiovisual signature of a person, and is
validated on our own audiovisual database.

The remainder of the paper is organized as follows.
Both audio and visual signatures are discussed in sec-
tion 2. Our approach for audiovisual fusion of the
signatures is described in section 3. Experimental re-
sults and conclusion are given in sections 4 and 5 re-
spectively.

2 Audio and Visual Signatures

The whole architecture of our system is shown in Fig-
ure 1. The sub-synoptic in blue is explained in this
section. The two other parts, circled in green and red
respectively, are detailled in section 3.

Visual appearance and voice tone are two uncorrelated
modalities: one cannot be predicted by observing the
other. Information of gender or age is exploitable
in particular cases, but they are not discriminative
enough for re-identification in uncontrolled environ-
ments. Thus, audio and visual signatures are sepa-
rately learned and are then matched in a late fusion
step depending on the person vs. sensor network lo-
calization (see section 3).

2.1 Audio Signature

Voice activity detection can be performed through mul-
tiple features, a review of them is described in [11]. To
distinguish a speech segment from segments contain-
ing only noise, we exploit the temporal structure of
speech, dominated by a characteristic energy modu-
lation peak at about 4 Hz as detailed in [24]. Audio
flux is then split into one-second-frames (whith over-
lapping) and filtered by a [2Hz-16Hz] bandpass. The
segments with an energy modulation higher than a
trained threshold are classified as speech, and the oth-
ers as noise.

To construct text-independent speaker representation,
we use Gaussian Mixture Models (GMMs), the most
widely used approach, which has shown to perform
well on numerous speech databases [19]. A GMM is
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Figure 1: Synoptic of our multi-sensor platform

described as:

p(x|λaud) =

M∑
i=1

wig(xi|µi,Σi) (1)

where x is our feature vector and wi is the weight of the
Gaussian density component g(xi|µi,Σi) with mean µi

and covariance matrix Σi. Our audio signature for a
speaker will be defined as:

λaud = {wi, µi,Σi} i = 1, ...,M. (2)

The features in vector x are based on a linear filter-
bank of 19 filters derived cepstra, using perceptive
MEL scale. Following the parametrization described
in [3], each feature vector is composed of 50 coeffi-
cients, namely 19 static, 19 delta and 11 delta-delta
and the delta energy.
Instead of computing the model from scratch, which
requires a large amount of training data, we rather
chose to train an Universal Background Model (UBM),
using the BREF corpus [13] of 90 (50 females and 40
males) different speakers, for a total of 167,359 sen-
tences, giving a prior, general representation of the av-
erage speaker. This model is estimated via the Expectation-
Maximization (EM) algorithm [6] and adapted via a
Maximum A Posteriori (MAP) estimation to obtain
the desired speaker model with limited training data [20],
usually 2-3 minutes per speaker are sufficient.
Considering a feature vector y of an observed speech
segment Y , the similarity score is then computed as
the log-likelihood ratio (LLR) between the hypothesis
of Y spoken by our trained speaker vs. Y spoken by
another one, closer to the UBM:

LLR(y) = log(p(y|λGMMx
))− log(p(y|λUBM )) (3)

2.2 Visual Signature

Visual person re-identification has been a popular area
of research in the past few years, involved in appli-
cations such as robotics, multimedia and in partic-
ular video surveillance from which many approaches
emerged [1]. It raises several challenges, especially
in Non-Overlapping Field Of View (NOFOV) cam-
era network cases, such as partial occlusions, illumina-
tion changes, pose and viewpoint variations, changes
in color response or unconstrained scenarii.

In our approach, the background subtraction, consist-
ing in segmenting the regions belonging to the moving
subject in a scene, is carried out by an online GMM
clustering of the background [27].

For people detection, we use histograms of oriented
gradient [5]. The person’s shape is characterized by
the distribution of local intensity gradients or edge di-
rections. A linear SVM is then fed for person/non-
person classification.

Once the mask of the foreground is applied on the
detection, features are extracted to build discrimina-
tive descriptors of the person. Feature design has
been widely explored and a recent review can be found
in [22]. The majority of them follows a part-based
model. In our case, the Symmetry-Driven Accumu-
lation of Local Features (SDALF) introduced in [8],
the silhouette is subdivided into head, torso and legs
by looking for horizontal axis separating regions with
strongly different appearance and similar area.

The SDALF descriptor achieves excellent state-of-the-
art performances [8] by its robustness against very low
resolution, occlusions and pose, viewpoint and illumi-
nation changes. It is then computed as a combination
of the 3 following features extracted from the body



parts:

• HSV histograms, more robust to illumination changes
than in RGB space by separating color and inten-
sity and weighted by a gaussian kernel centered
on their vertical axis of symmetry to emphasize
central pixels, since the information they carry is
more relevant.

• Maximally Stable Color Region (MSCR): this de-
scriptor introduced in [9] computes color distances
between pixels to find homogeneous areas and
models them by elliptic blobs. The blobs are
then represented by their area, centroid second
moment matrix and color.

• Recurrent High-Structured Patches (RHSP), in-
troduced in [8] also to characterize texture in high-
entropy regions by analysing invariance of ran-
domly extracted patches.

Figure 2 shows the Cumulative Match Curves (CMC)
for the 3 features on 3 subsets of the ETHZ dataset [25]
including a total of 8580 frames. All three features
carry complementary information, yet HSV histograms
perform satisfactorily by themselves in general cases,
with a far lower computational cost than RHSP in par-
ticular. In the context of our application, a low CPU
cost and a compact descriptor are required. Subse-
quently, MSCR and RHSP will then no more be con-
sidered.
To compute a storable and transportable visual sig-
nature, a k-means clustering is applied on a set of
descriptors of a single person, then the k closest to
each centroid are concatenated to form the signature,
containing great variations of views and poses:

λvid = {histoi} i = 1, ..., k. (4)

This task discards redundant images, gaining compac-
ity. The more different views from cameras the signa-
ture is confronted to, the higher value for k is required.
In a single-camera case, with an inclination α = 25◦ ,
k = 6 clusters provide satisfactory description of the
appearance variabilities.
For the matching step, histograms similarities are com-
puted by the Bhattacharyya distance [2].

3 Towards an Audiovisual
Signature

As mentioned in the preamble, we merge the audio
and video models in a late fusion step. Therefore, we
look for environmental overlapping zones where the
sensors are functional, thereby partitionning the space
into zones of audio and/or video detection considering
the relative positioning of the ambient cameras and
microphones.

3.1 Audio Localization

Sound source localization in robotics is usually per-
formed by exploiting binaural cues such as the Inter-
aural Level Difference (ILD) and the Interaural Time
Difference (ITD). As for human perception [18] these
cues provide horizontal azimuth estimation, while el-
evation can be inferred through the filtering amount
due to reflections in the pinna [23].
In our single-microphone context, however, such cues
are impossible to use but acoustic features for close
distance-to-listener estimation can be extracted. Be-
side naive descriptors such as sound intensity (there
is a 6-dB loss in sound pressure per doubling the dis-
tance in free spaces), distance appears to be correlated
to the Direct-to-Reverberant energy Ratio (DRR) [16].
A recent survey of cues for auditory distance percep-
tion in humans can be found in [12]. For synthetic
audio signals, with known spectrum and temporal en-
velope, this ratio can be estimated through interaural
cross-correlation, spectral variance, spectral envelope
or buildup and decay analysis [14]. These cues fail for
speech signals because of their non-stationary natures,
therefore, we used a measure of intelligibility described
in [7] as the Speech to Reverberation Modulation en-
ergy Ratio (SRMR).
The modulation spectrum of a dry speech signal (spec-
trum of its temporal envelope) has components dis-
tributed around 2-16Hz, with peaks at 4Hz, the com-
mon syllabic rate. Adding reverberation whitens the
modulation spectrum and components in higher mod-
ulation frequency bands appear as shown in Figure 3.

Figure 3: Modulation spectrum of the same frame for
clean speech (a) and reverberated speech (b)

The yellow part on the modulation spectrum pictures
its highest values. For clean signal in (a), one can



Figure 2: CMC curves of HSV histograms in blue, MSCR in red and RHSP in green for 3 subsets of ETHZ

observe that this modulation energy is restrained in
the first 4 modulation frequency bands while it extends
on the 8 modulation frequency bands for reverberated
speech (see Table 1 for index/modulation frequencies
band correspondence).
The input speech signal is first filtered by a 23-channel
gammatone filter bank, then SRMR is defined as the
ratio between the energy in low modulation frequency
bands and the energy in high modulation frequency
bands:

SRMR =

4∑
k=1

εk

K∗∑
k=5

εk

(5)

with εk the average modulation energy in band k.

Table 1: Modulation Filter Center Frequencies (fc)
and Bandwiths (BW ) Expressed in Hz

Modulation Frequency Band Index

1 2 3 4 5 6 7 8

fc 4.0 6.5 10.7 17.6 28.9 47.5 78.1 128.0

BW 1.9 3.4 5.9 9.8 15.9 26.4 43.2 70.8

An updated version of the metric is described in [21]
where text independence and pitch robustness are im-
proved. It is observed that this metric is correlated to
the distance as in Figure 4. The SRMR is displayed
in blue and is computed every second from distances
whose inverse values are display in red. The closer to
the microphone (the peak at 50 seconds in our exam-
ple), the higher the intelligibility is. SRMR will then
be interpreted as a proximity confidence index.

3.2 Video Localization

Unlike audio percepts, the positions on the ground
plane of the visual detections can be easily inferred
from a camera view. We calibrate beforehand the
ground plane relatively to the camera by using grids
placed on the ground plane as shown in Figure 5.

Figure 4: SRMR of 11 iterations of a speech segment
from different distances and a frame length of 1s

3.3 Audiovisual Fusion

As introduced before, audiovisual fusion issue is tack-
led as a search of both modality salient areas at each
instant. The room is equipped with several cameras
C and microphones M in a way that a subset of mi-
crophones {MK} is in the field of view of at least one
camera.
For a camera and a microphone Mk, let us consider
paud(t,Mk) and pvid(t,Mk) the models of the audio
and video percepts respectively, at instant t. Their
components are:

• the best match λaud,i given by the speaker veri-
fication and the SRMR as the associated Audio
Confidence Index (ACI);

• the best match λvid,j given by the visual re-
identification and the inverse of the euclidean dis-
tance to the microphone Mk as the associated Vi-
sual Confidence Index (VCI).

paud(t,Mk) =

{
λaud,i
ACIt,Mk

= SRMRt,Mk

(6)



Figure 5: Extrinsic parameters estimation

pvid(t,Mk) =

{
λvid,j
V CIt,Mk

= 1√
(x−xMk)2+(y−yMk)2

(7)

Our joint measure for audiovisual saliency map is then
defined as the following AudioVisual Confidence In-
dex:

AV CIt,Mk
= ACIt,Mk

∗ V CIt,Mk
(8)

For values of AV CIt,Mk
greater than a threshold th,

depending on how much confidence is permitted, audio
and visual signatures are fused to define the detected
person as the couple (λaud,i, λvid,j).

In multiple detection cases, each potential couple (i, j)
at instant t is estimated by the probability:

p(λav,ij , t1) =
1

N(t1)
(9)

with N(t1) the number of potential couples at instant
t1. For each potential couple (i, j) observed again at
instant t2, this probability is then updated:

p(λav,ij , t1 + t2) = p(λav,ij , t1) + p(λav,ij , t2)

− p(λav,ij , t1) ∗ p(λav,ij , t2) (10)

Spatiotemporal analysis enables association ambiguity
resolving and the most likely couples are then formed
at the end of the training stage.

4 Experiments and Evaluations

4.1 Implementation

To the best of our knowledge, there is no public database
matching the context of our problematic, therefore, we
acquired audio and video data for our own evaluations.

In a typical meeting room, of size 6m by 6m, 2 sen-
sors are placed, a camera in one corner of the room, at

height hcam = 2.5m and inclination α = 25◦ approx-
imatively. An USB-microphone MXL-AC 404, gener-
ally used in video conferences, placed in the center of
the room (in the field of vision).

The dataset is composed of 3 participants covering ev-
ery location in the room while broadcasting 81 itera-
tions of a clean speech segment from BREF, a large
read-speech corpus in French [13] through a Bluetooth
speaker. The data are then split into a training set of
486 speech segments with 544 visual frames with which
the audiovisual locking zone is learned and a testing
set of 243 speech segments with 222 visual farmes. The
total duration of the dataset is 1 hour and 34 minutes.

To compute our audio signature, we used ALIZE, an
open-source platform for speaker recognition [3] and
its high level LIA RAL toolkit. The audio features
are computed using the open source SPro toolkit. The
UBM model size is composed of 512 Gaussian compo-
nents (with diagonal covariance matrices). The HOG
person detector, as well as the background substrac-
tion and the features extraction are computed using
OpenCV library into a MATLAB environment.

Visual detections suffer from numerous false alarms,
we add a post-processing filtering step. False detec-
tions induced by the background are recurrently ob-
served. Nevertheless, they exhibit null foreground masks.
Let us consider a subset of visual detections. Out of
302 detections, 182 are false alarms. Then, we filter
them considering that the mask must include a mini-
mum percentage p of pixels associated to detected mo-
bile zones, discarding the others. Using another subset
of annotated detections, we then trained a 1-D linear
SVM on the sum of the foreground pixels to find the
minimum percentage p = 16%. 175 false detections
are thus removed, the remaining 7 contain partial de-
tections (torso or legs) with a great proportion of fore-
ground pixels.

Figure 6 depicts the distribution of foreground pixels
on samples of detection masks. Two clusters stand out
pointedly, one for the false positives, circled in red and
one another for the true positives, circled in green.

Figure 6: Histograms of mask pixels, in red false
alarms, in green true positives



4.2 Evaluations and discussion

Audiovisual learning. For both visual and audio
percepts, signatures of the 3 subjects are accurately
trained, all the detections are correctly brought to-
gether among 3 distinct models. The representations
are designed to be robust to far more challenging con-
ditions than the ones of our protocol, hence their ef-
ficiency. Indeed, it contains a limited number of rel-
atively dissimilar subjects, flagrant on Figure 7. This
figure displays the thumbnails corresponding to the
histograms composing the video signatures of the three
participants, where inner variabilities of pose and illu-
minations are well described by the k-means cluster-
ing.

Figure 7: Thumbnails used for signature computation
for the 3 participants.

AVCI values are computed from the audio and video
percepts of the training data for the 3 participants.
In blind spots of the camera, the Visual Confidence
Index is set to zero and the AVCI is not computed
at the location of the microphone (center), since the
speaker and the microphone cannot stand on the same
spot.
The audiovisual fusion zone is delimited by AVCI val-
ues greater than a predefined threshold th.
To tune this value, we fed a gaussian Kernel SVM
with AVCI values of the training dataset and evaluated
the classification error rate, function of th, shown in
Figure 8.
The threshold is fixed at : th = 0.4, for which the
classification error rate is lower than 10% for the 3
participants and the contour of the audiovisual fusion
zone displayed in Figure 9 d).

Verification per both zone and ID. The audio-
visual fusion zone is then confronted to our testing
data. From the AVCI values computed on them and
the learned threshold th, binary maps are extracted
and shown in Figure 9 a), b) and c). The results of
the joint ID/zone classification are shown in Table 2.

Figure 8: Classification Error Rate

Figure 9: a), b) and c) : Binary maps of the AVCI for
the 3 participants, d) fusion zone (blue)

The errors describe both false audiovisual associations
and false zone estimations.

Locations Blind Spots Classification Error Rate

P1 81 23 0.051

P2 81 23 0.069

P3 81 23 0.103

Table 2: Classification Results

5 Conclusion
In this paper, we presented a training method of an
audiovisual signature of a person by coupling state-of-
the-art approaches for the two modalities computed
separately and merged lately.
The main contribution of this paper is the validation
of a novel audiovisual confidence index to find saliency
areas for both audio and visual percepts. This index
is based on spatio-temporal coherence between visual



localization and auditive distance estimation at several
instants of the training phase.
Future work will focus on spatiotemporal analysis of
the audiovisual trajectories for fusion, then on trans-
porting the presented audiovisual signature in a larger
network of sparse sensors. With audiovisual signatures
of multiple persons in a room, we plan to infer activ-
ity recognition in real-time for meetings, lectures or
work groups from interaction between dominant par-
ticipants.

References
[1] A. Bedagkar-Gala and S. K. Shah. A survey of

approaches and trends in person re-identification.
Image and Vision Computing, 32(4):270 – 286,
2014.

[2] A. Bhattacharyya. On a measure of divergence
between two multinomial populations. Sankhya:
The Indian Journal of Statistics (1933-1960),
7(4):401–406, 1946.

[3] J.-F. Bonastre, F. Wils, and S. Meignier. Al-
ize, a free toolkit for speaker recognition. In
Acoustics, Speech, and Signal Processing, 2005.
Proceedings. (ICASSP ’05). IEEE International
Conference on, volume 1, pages 737–740, March
2005.

[4] C. Busso, S. Hernanz, C.-W. Chu, S. il Kwon,
S. Lee, P. Georgiou, I. Cohen, and S. Narayanan.
Smart room: participant and speaker localization
and identification. In Acoustics, Speech, and Sig-
nal Processing, 2005. Proceedings. (ICASSP ’05).
IEEE International Conference on, volume 2,
pages ii/1117–ii/1120 Vol. 2, March 2005.

[5] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. In Computer Vi-
sion and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1,
pages 886–893 vol. 1, June 2005.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[7] T. Falk, C. Zheng, and W.-Y. Chan. A non-
intrusive quality and intelligibility measure of
reverberant and dereverberated speech. Audio,
Speech, and Language Processing, IEEE Trans-
actions on, 18(7):1766–1774, Sept 2010.

[8] M. Farenzena, L. Bazzani, A. Perina, V. Murino,
and M. Cristani. Person re-identification by
symmetry-driven accumulation of local features.
In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 2360–
2367, June 2010.

[9] P.-E. Forssen. Maximally stable colour regions for
recognition and matching. In Computer Vision
and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1–8, June 2007.

[10] T. Germa, F. Lerasle, N. Ouadah, and V. Cade-
nat. Vision and {RFID} data fusion for tracking
people in crowds by a mobile robot. Computer Vi-
sion and Image Understanding, 114(6):641 – 651,
2010. Special Issue on Multi-Camera and Multi-
Modal Sensor Fusion.

[11] S. Graf, T. Herbig, M. Buck, and G. Schmidt.
Features for voice activity detection: a compara-
tive analysis. EURASIP Journal on Advances in
Signal Processing, 2015(1):1–15, 2015.

[12] A. J. Kolarik, B. C. J. Moore, P. Zahorik,
S. Cirstea, and S. Pardhan. Auditory distance
perception in humans: a review of cues, develop-
ment, neuronal bases, and effects of sensory loss.
Attention, Perception, & Psychophysics, pages 1–
23, 2015.

[13] L. F. Lamel, J. luc Gauvain, M. Eskenazi, and
M. E. Limsi-cnrs. Bref, a large vocabulary spoken
corpus for french. pages 505–508.

[14] E. Larsen, N. Iyer, C. R. Lansing, and A. S.
Feng. On the minimum audible difference in
direct-to-reverberant energy ratio. The Journal
of the Acoustical Society of America, 124(1):450–
461, 2008.

[15] R. Mazzon, S. F. Tahir, and A. Cavallaro. Person
re-identification in crowd. Pattern Recogn. Lett.,
33(14):1828–1837, Oct. 2012.

[16] D. H. Mershon and L. E. King. Intensity and
reverberation as factors in the auditory percep-
tion of egocentric distance. Perception & Psy-
chophysics, 18(6):409–415.

[17] A. Mogelmose, C. Bahnsen, T. Moeslund,
A. Clapes, and S. Escalera. Tri-modal person
re-identification with rgb, depth and thermal fea-
tures. In Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2013 IEEE Confer-
ence on, pages 301–307, June 2013.

[18] L. Rayleigh. On our perception of sound
direction. Philosophical Magazine Series 6,
13(74):214–232, 1907.

[19] D. A. Reynolds. Speaker identification and ver-
ification using gaussian mixture speaker models.
Speech Commun., 17(1-2):91–108, Aug. 1995.



[20] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn.
Speaker verification using adapted gaussian mix-
ture models. Digital Signal Processing, 10(13):19
– 41, 2000.

[21] J. F. Santos, M. Senoussaoui, and T. H. Falk.
An updated objective intelligibility estimation
metric for normal hearing listeners under noise
and reverberation. In International Workshop
on Acoustic Signal Enhancement (IWAENC),
September 2014.

[22] R. Satta. Appearance descriptors for person re-
identification: a comprehensive review. CoRR,
2013.

[23] A. Saxena and A. Ng. Learning sound location
from a single microphone. In Robotics and Au-
tomation, 2009. ICRA ’09. IEEE International
Conference on, pages 1737–1742, May 2009.

[24] E. Scheirer and M. Slaney. Construction and eval-
uation of a robust multifeature speech/music dis-
criminator. In Acoustics, Speech, and Signal Pro-
cessing, 1997. ICASSP-97., 1997 IEEE Interna-
tional Conference on, volume 2, pages 1331–1334
vol.2, 1997.

[25] W. Schwartz and L. Davis. Learning Discrim-
inative Appearance-Based Models Using Partial
Least Squares. In Proceedings of the XXII Brazil-
ian Symposium on Computer Graphics and Image
Processing, 2009.

[26] A. Tawari and M. Trivedi. Speech based emo-
tion classification framework for driver assistance
system. In Intelligent Vehicles Symposium (IV),
2010 IEEE, pages 174–178, June 2010.

[27] Z. Zivkovic. Improved adaptive gaussian mixture
model for background subtraction. In Pattern
Recognition, 2004. ICPR 2004. Proceedings of
the 17th International Conference on, volume 2,
pages 28–31 Vol.2, Aug 2004.


