
HAL Id: hal-01807513
https://laas.hal.science/hal-01807513v1

Submitted on 4 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intelligent Checkpointing Strategies for IoT System
Management

François Aïssaoui, Gene Cooperman, Thierry Monteil, Saïd Tazi

To cite this version:
François Aïssaoui, Gene Cooperman, Thierry Monteil, Saïd Tazi. Intelligent Checkpointing Strategies
for IoT System Management. 2017 IEEE 5th International Conference on Future Internet of Things
and Cloud (FiCloud), Aug 2017, Prague, Czech Republic. 8p., �10.1109/FiCloud.2017.34�. �hal-
01807513�

https://laas.hal.science/hal-01807513v1
https://hal.archives-ouvertes.fr

Intelligent Checkpointing Strategies
for IoT System Management

François Aı̈ssaoui1, Gene Cooperman1,2, Thierry Monteil1, Saı̈d Tazi1
1LAAS-CNRS, Université de Toulouse, CNRS, INSA, UT1 Capitole, Toulouse, France

2College of Computer and Information Science Northeastern University, Boston, MA / USA
Emails: aissaoui@laas.fr, gene@ccs.neu.edu, {monteil, tazi}@laas.fr

Abstract—The Internet of Things (IoT) continues to expand
in terms of the number of connected devices. To handle the
data produced by those devices, gateways are deployed to collect
data, possibly to analyze it, and finally to send it to the cloud
or to the end-user to support new services. This process involves
complex software that is deployed on those gateways. Moreover,
the dynamicity due to new services, mobility, etc., could be
corrupted by new events that then require the deployment of
software components on additional equipment. Those new events
arise in at least two fundamental ways: devices that may change
their geographical location; and limitations due to hardware
resources and energy consumption. We propose to use autonomic
monitoring and control in response to a changing environment
in order to manage deployed software with little or no human
intervention. A new generic approach is described, based on a
semantic model of the system being monitored. Much of the
power of the proposed approach is accomplished through a novel
use of checkpointing in order to control the software deployed
on the gateway.

Index Terms—Semantics, Ontology, Internet of Things, Check-
pointing, System Management, Self-healing

I. INTRODUCTION

The Internet of Things (IoT) is a growing field with a
prediction by Gartner of 20 billion connected devices in 20201.
Those devices use gateways to communicate with the cloud,
the web services and the users. Usually, the gateway consists
of cheap and low-powered machines with a reduced energy
consumption. These under-powered machines are not able to
fully handle exceptional events arising from the large, complex
software. Examples of such exceptional events include failure
recovery and event reporting. Since an IoT application is often
large (for example, transport, logistics, e-health, automotive,
etc. [1]), the problem is best tackled through a generic ap-
proach.

The problem of management of such a system becomes
more difficult in the case of multiple gateways to handle
all the devices. There is a need to: monitor this kind of
system; discover the symptoms that impede the correct system
operation; determine their cause; and then decide on actions to
perform — all while requiring only limited human interaction.

We propose a novel, intelligent framework based on seman-
tic reasoning, which makes use of a checkpointing mechanism
to more flexibly manage such an IoT system. Traditional
monitoring systems manage such complex systems while con-
tinuing to tightly bind software processes and their associated

1http://www.gartner.com/newsroom/id/3598917

devices to the original gateway on which they run. By using
a checkpointing mechanism, software can be migrated from
one gateway to another. Checkpointing is the ability to save
the state of a running process to a file in stable storage, where
the process may later be restarted and continued using that file.
Since files can be copied between gateways, this immediately
enables software migration between gateways.

The ability to migrate software is useful in at least two
cases for IoT. First, the ability to migrate software is valuable
in cases such as logistics, transport, and other domains where
the devices may change their geographical location. Second,
migration may be required when a gateway has limited RAM,
CPU cores, battery-based energy, etc. In both of these cases,
even the mapping of devices to IoT gateways may change over
time. Rather than terminate a process and start a new one when
a device moves, one simply migrates an associated process,
complete with all the device data and history contained in that
process. There is no need to follow the error-prone process
of exporting and re-importing device data in a standardized
manner.

To manage the possibilities offered by a checkpointing
mechanism, we need to represent the knowledge of the IoT
system in a formal way. For this purpose, we choose semantic
technologies which use standards provided by the World
Wide Web Consortium (W3C) to express vocabularies. Those
vocabularies provide a formal description of concepts from a
specific field. With the use of a common vocabulary, different
entities can exchange information in a formal way. Moreover,
the model defined by ontologies can include an embedded set
of rules. Those rules and the description allow a reasoner to
infer new knowledge related to the provided data. This is used
in our contribution in order to determine issues in the managed
system.

Our framework uses semantic description to represent a
complex IoT system while respecting its constraints. Thus,
by providing information on the current system state, any
symptoms and requests for change can be inferred by the
semantic reasoner, based on the rules and the constraints of the
system. Then, using those symptoms and a request for change,
the framework generates a plan of action to perform on the
system in order to restore itself to a correct state.

As a proof of concept, we demonstrate the semantic model
through a logistics application. In this application, the transport
of a physical package may have specific requirements. To

satisfy those requirements, sensors can be placed on the phys-
ical package in order to monitor the environment. The data
produced by the sensors must be sent to the nearest compliant
gateway, where it can be forwarded to the specific high-
level application for processing. But if the package moves,
which occurs frequently in logistics applications, the software
that ensures communication between the package and the
high-level application must then be migrated. Our framework,
based on semantic description, is able to represent this kind
of scenario and also perform the needed software migration
through a checkpointing mechanism.

In Section V, we will model a scenario involving a box of
vaccines. The transport of a box of vaccines requires that the
box remain within a certain range of temperature and humidity
in order to ensure the quality of the vaccines. As trucks arrive
at a transport center, boxes of vaccines are migrated to an
appropriate warehouse according to vaccine type.

The paper is organized as follows. Section II presents the
background and related work on checkpointing strategies and
the “standard” usage of semantics in the IoT. Section III
presents our contribution, describing the ontology used to
manage the system and how the interaction is managed.
Section IV describes two instances of the proposed model
as applied to logistics. Section V provides an experimental
analysis of the scalability of the semantic manager. We then
present conclusions and future work in Section VI.

II. BACKGROUND AND RELATED WORK

An overview of the related literature is provided next. First,
an overview of a checkpointing mechanism using Distributed
Multi-Threaded CheckPointing (DMTCP) is provided. Then,
the usage of the semantic technologies in the domain of IoT is
discussed. Finally, we compare our approach to the paradigm
of autonomic computing, and provide the background for our
use of some well-known IoT standards.

A. Checkpointing Mechanism
Checkpointing enables the creation of images (snapshots)

of a running process. The checkpoint image allows one to
recreate the process, and even to migrate it to another computer
if needed.

In this work, the semantic framework manages both the
software processes and their migration as required by the
constraints of the software. To perform this migration, a check-
pointing mechanism is used, implemented by DMTCP [2].
DMTCP provides a transparent checkpointing mechanism that
provides for checkpoint/restart without any modification of the
original application code or operating system. DMTCP also
provides a plugin facility to adapt the transparent checkpoint-
ing capability of the target application to external subsystems,
such as the handling of a network connection [3].

It has been demonstrated that the checkpointing mechanism
using DMTCP can be adapted to fit the IoT domain in term
of performances in [4]. This current work does not focus on
the performance of the checkpointing mechanism itself but on
how to use this mechanism to provide an intelligent manager
framework for IoT.

B. Semantics usage in the IoT

Semantic technologies and linked data are used to provide
shared vocabularies that enable the interaction between differ-
ent components. They follow W3C standards for these tech-
nologies and their implementation. Serrano et al. [5] recom-
mend the use of semantic technologies for IoT to provide
interoperability in the case of heterogeneous data.

Different types of data can be formalized by the semantic
models. Sheth et al. [6] provide a fundamental approach
to sensor data interoperability through semantic modeling.
This formalization facilitates the development of generic ap-
plications that require data for a sensor network. Barnaghi
et al. [7] also provide data interoperability for sensors through
semantics to facilitate data integration and service discovery
in the IoT system.

A different point of view is taken by Desai et al. [8]. The
authors directly model the description of the nodes in their
ontology, i.e., for the sensors and the gateway. This allows the
representation of the capabilities of the nodes and facilitate
the creation of new services. They also describe the gateways
as the main interface between the devices and high-level
business applications. The role of the gateways is to translate
the fuzziness of the sensor networks into well-known and
standardized protocols. This shows the importance of gateways
in the IoT architecture and the software that supports this
interface. Our approach provides for the execution of the target
software in the framework of their own requirements.

C. Autonomic Computing and Device Management

In a manifesto of IBM from 2001 [9], Paul Horn describes
the growing complexity of the software ecosystem and in-
dustry. More and more, the development of software requires
increasing care to ensure the smooth functioning of such
systems. This vision has been discussed in a work by Kephart
et al. [10] that provides four features needed for autonomic
computing: 1) self-configuration; 2) self-optimization; 3) self-
healing; 4) self-protection.

In our approach, we are using the self-healing feature to
implement our manager framework. To represent the data
of the managed system, we will use autonomic computing
paradigm vocabulary for the “Event”, “Symptom”, “Request
for Change” and “Plan” that will be included in our ontology.
Then, to interact with the system, our framework uses a device
management protocol such as Lightweight M2M (LWM2M)2,
a standard that has been proposed by the Open Mobile Alliance
(OMA). This enables us to retrieve such information from
the gateways as the levels of RAM usage, CPU usage and
disk space. This allows the system to use the DMTCP check-
pointing component to propose the checkpoint and restart
operations for the processes under consideration.

III. FRAMEWORK DESCRIPTION

Our framework uses multiple components and technologies
to achieve the management of an IoT system.

2http://openmobilealliance.org/iot/lightweight-m2m-lwm2m/

The first part is the ontology containing the vocabulary and
the rules of the framework. It is described in the following, in
sub-section III-A.

The second part corresponds to the strategies used to operate
on the system being managed. This second part uses the
inferences of the reasoner operating on the ontology and
the data of the system in order to determine the actions
required to perform. This component is described later, in sub-
section III-B.

A. System Representation

The first part of the system is in charge of finding the
symptoms and potential actions to perform on the system to
resolve those symptoms. To determine that information, the
component uses an ontology, the semantically enriched data
of the system, and a reasoner to infer new knowledge based
on the rules.

A symptom corresponds to an entity or parameter of the
system that has an issue. This can be seen as a symptom within
the paradigm of autonomic computing.

1) Ontology classes: The first part of the ontology de-
scribes the deployed System in terms of Machines and Devices.

The System class corresponds to an abstract concept of the
target system being managed. A System instance is linked to
the other instances to be managed within the current scenario
and is also linked to the policies that need to be applied.

A Machine corresponds to a physical (or virtual) entity that
runs an operating system capable of hosting and executing
some software. Some example of sub-classes of the Machine
class are “Gateway” and “VirtualMachine” (see Figure 1).

System

Machine Device Policy

RamPolicyGateway Server

hasMachine hasDevice hasPolicy

subclassOf

Fig. 1. Main System components

A Device is a physical connected entity which is able to
sense or act on the environment. A Device can be connected
to a Gateway to send its information to an application. It may
use a communication protocol, such as Bluetooth or Wi-Fi,
in order to send or receive information from a gateway. This
concept is aligned with the definition of Sensor from the SSN
ontology3.

A Network corresponds to a communication Network. It
allows one to determine which entity is reachable through the
Network.

A Policy correspond to a general requirement for the man-
aged system. If the policy is not satisfied after a modification

3https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Device

of the system or a fluctuating parameter, a symptom has to be
issued and changed to be applied to the system. An example of
a sub-class of Policy is RamPolicy which defines the minimum
available RAM required on the gateway of the system.

On the Machines, software is executed and needs to be
represented. An abstract class SoftwareEntity is defined to rep-
resent an entity that is executed on a Machine. “Application”
and “Process” are sub-classes of SoftwareEntity. The Process
class represent a process in term of an “Operation System” that
is executed on a Machine. An Application is an abstract entity
that provides a set of features or services. An Application
represents complex software that can be split into multiple
processes.

A characteristic of all software being considered here is
that it is checkpointable and migratable by DMTCP. This
characteristic is described by a CkptableEntity (checkpointable
entity) class that represent a checkpointable Process or Appli-
cation. CkptableProcess and CkptableApplication represents
the corresponding checkpointable entities in term of classes in
the ontology. Figure 2 illustrates this hierarchy. It also provides
a higher-level abstraction, the MigrationEnabledEntity class,
which represents an entity that can be migrated through a
specific mechanism.

MigrationEnabledEntity

CkptableEntity

CkptableApplicationCkptableProcess

subclassOf

Fig. 2. Migration Enabled Entity classes

2) Ontology properties: The previous classes are linked
by a set of Object Properties or Data Properties defined in the
ontology.

In this section, we consider two types of properties: “static
properties” and “dynamic information properties”. The static
properties correspond to descriptive information provided
by the system that will not change, such as the machine
specifications, the devices to consider, and the policies. The
dynamic information properties correspond to the information
concerning the current state of the system. That information
changes over time. But at any given moment, we will consider
a specific state of the system, and we will use the dynamic
information to infer the potential symptoms.

The following properties correspond to the static properties
of the system.

The System class is the domain of the object property
hasSystemComponent. It links the virtual concept of system
to the physical components that it is composed of. This object
property has two sub-properties: hasMachine and hasDevice.
They represent the corresponding machines of the system and
the devices of the system.

Machine

Device

SoftwareEntity

Gateway

isExecutedOn

hasConnectedDevice

isConnectedTo actsOnDevice

Fig. 3. Relation illustration between Machine, Device and Software classes.
Also represents the possible constraint between a SoftwareEntity and a Device
by the actsOnDevice object property.

The System class also has a relation with the Policy class.
The hasPolicy class defines the policies to apply to the target
system.

The RAM usage of the gateway can impact its behavior
in the case of a RAM constraint. To account for this, we
need to represent the maximum amount of RAM available
on a machine. The hasMaxRam data property defines from a
Machine this amount.

Next, to represent some application constraints, the ontol-
ogy allows us to express some requirements between two
concepts. For example, the requirement represented by the
object property actsOnDevice between a SoftwareEntity and a
Device means that the SoftwareEntity has to be executed on
the Gateway where the device is located. If this requirement is
not satisfied, the framework considers that there is a Symptom
in the system that needs to be fixed. Figure 1 illustrates the
System class and its links to the system components.

The next properties correspond to the dynamic information
properties that change over time and that allow us to represent
the state of the system.

The Devices are moving and are sending information to
the Gateway. The isConnectedTo relation links a Device to
the Gateway by which it sends and receives information. The
inverse property is defined as hasConnectedDevice and it lists
the Devices connected to a Gateway.

A relation is defined to represent the location of the soft-
ware, i.e., where it is executed. This relation is isExecutedOn,
and it links a SoftwareEntity to a Machine.

To represent the current state of the gateway, the hasCurren-
tRamUsage data property provides the amount of RAM used.
Coupling this information with the current RAM policy and
the maximum RAM usage, we can determine if a gateway is
in a critical state.

B. Inferences and Application of Checkpointing Strategies

From the system description, the semantic reasoner is going
to infer new knowledge. For this purpose, we have defined a
set of classes representing the MAPE-K loop from autonomic
computing [10], which receives and reacts to events from the
monitored system. Based on the events received, symptoms of
problems, and requests for change, the actions needed by the
system for its correct operation are inferred and performed.

The Symptom class is an abstract representation of some-
thing outside the normal operation of the system. By itself, this
class is not enough to define the symptom of the system. For
this, we define sub-classes such as LackOfRam or LackOfMem-
ory, which represent a lack of RAM and a lack of Memory in a
Machine, respectively. The hasSymptom object property allows
one to link a machine to a specific instance of a symptom. The
inference of those symptoms is done using SWRL rules. The
rule for the inference of the symptom LackOfRam is provided
in Listing 1.

RamPolicy (? p o l i c y) ˆ
h a s P o l i c y (? system , ? p o l i c y) ˆ
hasMachine (? system , ? machine) ˆ
hasMinAllowedRamLeft (? p o l i c y , ?minRam) ˆ
Gateway (? gw) ˆ
h a s R a m L e f t P e r c e n t (? gw , ? ramLef t) ˆ
s w r l b : l e s s T h a n (? ramLef t , ?minRam) ˆ
s w r l x : createOWLThing (? symptom , ?gw , ? p o l i c y)

−> LackOfRam (? symptom) ˆ
hasSymptom (? gw , ? symptom)

Listing 1. Inference rule for LackOfRam symptom

For the symptom of the Software part, we defined a sub-
class named WrongSoftwareLocation, which represents a prob-
lem in which some Software does not satisfy its constraints.
For instance, if a SoftwareEntity “requires” a Device and the
Device is connected to a different gateway than the gateway
where the software is executed, then this symptom has to
be inferred. An object property is linked to this symptom,
describing the potential location where the software should
be. This property is named potentiallyMigratesTo. We cannot
assert the migration request at this time because we have to
check the resources of the target gateway. Listing 2 shows the
SWRL rules that enable this inference.

hasMachine (? system , ? deviceGw) ˆ
hasMachine (? system , ? sof twareGw) ˆ
ac t sOnDev ice (? s o f t w a r e , ? d e v i c e) ˆ
i sConnec t edTo (? dev i ce , ? deviceGw) ˆ
i sExecu tedOn (? s o f t w a r e , ? sof twareGw) ˆ
d i f f e r e n t F r o m (? deviceGw , ? sof twareGw) ˆ
s w r l x : createOWLThing (? symptom , ? s o f t w a r e ,

? deviceGw)

−> WrongSof twareLoca t ion (? symptom) ˆ
p o t e n t i a l l y M i g r a t e s T o (? symptom , ? deviceGw) ˆ
c o n c e r n s S o f t w a r e (? symptom , ? s o f t w a r e)

Listing 2. Inference rule for WrongSoftwareLocation symptom. The abrevi-
ation “Gw” in the rule variables stands for “gateway”.

Next, we define a RequestForChange (RFC). This concept
represents a modification required for the correct operation of
the system. It does not contain how to perform this change.

For the scenario presented in Section IV-A, we defined two
RFCs. The first RFC is named MigrateEntity. It represents
the required migration of the software to a new location.
Two object properties can be linked to a MigrateEntity RFC.
The first one concerns the software to migrate and it is
named hasMigrationRequest. The second object property is
hasMigrationTarget, and it determines the target machine.

The second RFC is LightenMachine. The request represents
the need to “lighten” a machine by removing some software.
This RFC has an object property that shows the target of
the request: targetsMachine. This RFC is inferred when a
WrongSoftwareLocation symptom is emitted to a gateway and
this gateway has a critical state to address. Two examples are
lack of RAM and lack of memory.

When the Symptoms and RFCs are inferred by the reasoner,
our framework retrieves that information from knowledge
base. Then, based on the inferences, the framework creates
a set of migration plans to fix the system state.

At first, we need to consider the gateway to lighten of soft-
ware, in order to create some space for the incoming software.
For this, the framework looks at the currently running software
on the gateway to be lightened and tries to find which software
is not strongly constrained to be on the gateway; i.e., which
software has no explicit constraint to remain on the current
gateway. An example of software with no explicit constraint
is software that does not require any device that is connected
to the current gateway. When extracting this software from the
initial gateway, we need to ensure that the new target gateway
is not also a gateway that needs to be lightened. Another
element to check is if there is a migration request on the new
target gateway. We need to be sure there are enough resources
for all the software to be migrated there.

After the lightened gateways are handled, we can next
create the migration plan for the MigrateEntity RFCs. Since
the management of resources was already been done in the
previous part, it is not required to check again if there are
enough resources for the migrations under consideration.

Require: Cs is CheckpointableEntity
Ensure: Cs is migrated to Tg

CurrentLocation← currentLocation(Cs)
CsCkptImg ← createCkptImage(Cs, CurrentLocation)
migrateCkptImage(CsCkptImg, CurrentLocation, Tg)
{migrating an image correspond to a file transfer}
Result← restart(Cs, CsCkptImg, Tg)
if Result == SUCCESS then

updateLocation(Cs, Tg)
else {operation failed, report failure}

reportMigrationError(Cs, Tg)
end if

Fig. 4. Algorithm for the establishment of Migration Plan using DMTCP

The algorithm presented in Figure 4 shows the process
to create a migration plan. This process is applied to each
software required to be migrated. At first, we retrieve the
knowledge base where the software is currently being ex-
ecuted. Then, we can proceed to the checkpoint of this
software using the checkpoint operation of DMTCP. When
the checkpoint image has been created, the software can be
stopped on the current gateway. The checkpoint image file is
then copied to the new target gateway. Finally, using DMTCP,
the restart operation is performed on the image and the process
is restarted on the new target gateway.

IV. THE SEMANTIC MODEL IN OPERATION

This section presents the scenario used to instantiate the
model presented in Section III. It begins by describing a
scenario from the logistics domain. Then, two instances of
the model to detect incoherences in the proposed scenario are
presented. They are motivated by the two rationales for process
migration described in the introduction. The first model con-
siders issues of geographical location: placing incoming boxes
of vaccines in a specific location along with their associated
monitoring software. The second model considers the issue
of limited resources, such as hardware limitations or energy
consumption. the second model demonstrates the usage of the
model rules by simulating a lack of RAM in the system.

A. Model instance: Box of Vaccines

For this scenario, the logistics of transport of goods is con-
sidered. This is an interesting domain because a transportation
company has to handle many different goods and it is difficult
to provide an associated traceability mechanism.

More precisely, this scenario considers the transportation of
critical goods. In particular, the package of goods must be kept
in a specific state for its safety. This is applied to the transport
of a box of vaccines that must be kept at a specific range of
temperature and humidity for its conservation.

For this purpose, the temperature, humidity and GPS sensors
are attached to a box of vaccines that senses the environment of
the box. Then, the data are sent via a low-powered and short-
range wireless communication protocol such as Bluetooth Low
Energy (BLE).

The software is required to be executed on a gateway
connected to the box of vaccines sensors in order to receive the
data. Then, to ensure the security of the communication, the
data is encrypted and sent to the global business orchestrator.
Finally, this orchestrator will check the values of the data
and, depending on the business rules, will require intervention
concerning the associated software process for the package of
vaccines.

Moreover, the boxes of vaccines are separated by types.
Each type of vaccine is stored in a specific warehouse for
that type, and each box of vaccines contains only one type of
vaccine.

The need to migrate the software along with the box
of vaccines then arises. This can be a complex task when
considering many boxes of vaccine and many gateways. To
evaluate our approach, we consider two specific cases: 1) the
box of vaccines moves to the warehouse of the same type, the
gateway has enough resources to accept the software, and the
migration is planned; and 2) the box of vaccines moves but
the target gateway does not have enough RAM to accept the
software, and so the system must find another plan to satisfy
this constraint. Recall that we are considering gateways to
be of low capacity and devices to be low-powered. Hence,
any process swapping mechanism by the operating system is
disabled, so as not to allow the gateways to become over-
loaded.

Figure 5 shows the architecture deployed in the first sce-
nario. The box of vaccines with its sensors is displayed along
with the wireless connection to the gateway. The software of
the box is represented by the diamond labeled “Monitoring
Software” in the gateway of the truck. The connection between
the software and the devices is not established. So the software
is not able to pursue its normal operation. The goal of our
framework is to detect this type of issue by providing a
semantic description of the software and then to use the
checkpointing mechanism to fix it.

Box	of	Vaccines

Tem Hum GPS

Warehouse_GatewayTruck_Gateway

Monitoring
Software

Box	of	Vaccine	Orchestrator	(cloud)

Bluetooth	LE	communication

Sending	business	data:	
temperature,	humidity,	GPS

Fig. 5. Architecture of the Scenario presented in Section IV-A. It displays
the Box of Vaccines connected to the Warehouse Gateway after it has been
moved to the warehouse. The Software monitoring the Box is still executed
on the Truck, where it cannot receive information from the sensors.

In this scenario, we define another semantic class in the
ontology that represents a box of vaccines. The class is called
BoxOfVaccines. This class has an object property hasSensor,
which links the box to its sensors. The sensors are instances
of the Device class.

a) First case: For the first case, we consider a set of five
warehouse gateways spread within a transport site for logistics.
Each warehouse handled a specific type of vaccine. A varying
number of trucks, containing a random number of boxes of
vaccines, with each box chosen of random type, will arrive
at the site. In this situation, one needs to dispatch the box
of vaccines depending on its type and requires the software
executing on the truck gateway to be migrated to the correct
warehouse gateway.

Figure 6 shows the instances created in the knowledge base.
Each different shape represents a different type of instance
in the knowledge base. The labeled circles are instances of
the Device class. The rectangular box is an instance of the
BoxOfVaccines class. The diamond-shaped box is an instance
of SoftwareEntity. The rectangles with rounded corners are
instances of the Gateway class. The hexagon represents an
instance of the VaccineType class.

In this scenario, we assume there is no RAM constraint and
the Warehouse Gateway has enough resources to accept
the incoming software. For the purpose of this scenario, a
new symptom is defined that represents the box of vaccines

BoxOfVaccines

TempGPS

hasSensor

Warehouse_Gateway Truck_Gateway

Monitoring
Software

isExecutedOn

actsOnDevice
Hum

Type
A

hasVaccineType

storesVaccineType

Fig. 6. Representation of the ontology instances used for the first scenario.
Snapshot after the truck arrives at the site. The box of vaccines is linked to its
type, which is the same as the Warehouse Gateway. The Monitoring Software
is still connected to the Truck Gateway and must be migrated to the
warehouse. This inconsistency triggers a rule in the semantic reasoner.

that requires a placement into a warehouse. The SWRL rule
shown in Listing 3 creates this symptom when a box of
vaccines is still linked to a TruckGateway. The TruckGateway
class is a subclass of the Gateway class (in semantic terms).
Another rule, similar to the MigrateEntity RFC inference rule
presented in Section III is also defined for the scenario. This
last inference will then trigger the creation of a migration
plan in the framework, followed by the actions performed
using DMTCP. This demonstrates the use and the extensibility
capability of our framework model in a basic example of
migration.

TruckGateway (? t r u c k) ˆ
t r a n s p o r t s B o x O f V a c c i n e s (? t r u c k , ? box) ˆ
hasVacc ineType (? box , ? vacc ineType) ˆ
s t o r e s V a c c i n e T y p e (? warehouse , ? vacc ineType) ˆ
s w r l x : makeOWLThing (? symptom , ? box , ? warehouse)

−> BoxRequ i r e sP l acemen t (? symptom) ˆ
conce rnsBoxOfVacc ines (? symptom , ? box) ˆ
t a r g e t s L o c a t i o n (? symptom , ? warehouse)

Listing 3. Inference rule for BoxRequiresPlacement symptom

b) Second case: For this case, a third gateway is
taken into account, called Warehouse Gateway Bis. More-
over, a RamPolicy is defined, which has a threshold of
80% of the max RAM Usage. The intended migration is
the same: we want the software to be migrated onto the
Warehouse Gatewaay. The same symptom as before, show-
ing the wrong software location, is also created for this case.
Let’s consider 2048 MB to be the maximum RAM available on
the gateway of the warehouse and 1750 MB to be the current
RAM usage. This parameter triggers the RamPolicy rules and
will create a LackOfRam symptom linked to the target gateway.
Those symptoms, both targeting the same gateway, create the
LightenGateway RFC.

The framework receiving the information will begin by
finding software running on the target gateway that is not
strongly constrained on this machine. It will then create a
plan to migrate this software to the second gateway, which

corresponds to the warehouse. Now that the second gateway
has sufficient resources to accept the software, a migration
plan is created for the software corresponding to the box of
vaccines.

V. EXPERIMENTAL EVALUATION

This section presents a scalability study performed on
this first scenario, geographical migration, as described in
Section IV. First, the experimental environment is specified,
followed by the scalability study.

A. Experimental Environment

To evaluate our work, a study of the scalability of the model
has been carried out and is described in this section. Since the
goal of this framework is its use in the IoT domain in general,
we need to evaluate the size of the system that can be manage
in a reasonable time.

To evaluate the scalability, we consider the first scenario,
which was presented previously in Section IV-A. Multiple
instances of this scenario are injected into the knowledge
base to generate a complex instance of the model. Then the
reasoner is executed on this knowledge base and it performs
the inferences required for the analysis. The time taken to
perform this analysis and determine the required migration is
evaluated and help us determine the scalability of our method.

The experiment was carried out using an Ubuntu server
(version 14.04) with an Intel(R) Xeon(R) CPU E5-2623 v3
(3.00 GHz) and 32 GB of RAM. The Java Virtual Machine
(JVM) used is OpenJDK JVM version 1.8.0 111. To manipu-
late the RDF and OWL files, serialized as XML, representing
the model and the data, OWLAPI version 4.2.7 has been
used. The SWRLAPI version 2.0.0 has been used to create
and manipulate the SWRL rules. Then, the Drools engine
(version 6.5.0) is linked to apply the SWRL rules to the
ontology via the SWRLAPI Drools bridge (version 2.0.0).
The JFact reasoner (version 4.0.4) is then used to ensure the
consistency of the ontology. Protégé version 5.1.0 has been
used to create the model, but it is not used in the experiment.

B. Scalability study

Figure 7 shows the results of the experiment with the
detailed values in table I. The x axis represents the number of
box of vaccines in the knowledge base. Each truck gateway is
linked to a random set of box of vaccines, between 10 and 20,
with a random type. Each random uses a uniform distribution.
The y axis shows the execution time to perform the inferences
on the knowledge. The time is expressed in seconds and is
displayed on a logarithmic scale. For each x value displayed,
the experiment has been run 30 times, and the chart shows
the average execution time with the solid black line, and the
minimum and maximum of the series are displayed.

Table I shows that the execution time of our process depends
greatly on the number of instances in the model. Starting with
an average of 3.71 seconds for 1 instance in the model to
about 63 seconds for 1430 instances. The first three numbers
(11, 67 and 143 boxes of vaccines) show an execution time of

1
10

10
0

 11 67 143 289 731 1 430

Ex
ec
ut
io
n	
tim

e	
in
	se

co
nd

s

Number	of	box	of	vaccines

Fig. 7. Average-min-max chart displaying the dependence of execution time
(in seconds, logarithmic scale) of the semantic reasoner on the number of box
of vaccines in the Semantic Knowledge Base. For each number of boxes of
vaccines, the experiment is performed 30 times. The high value represents
the maximum of the series, the middle value represented by the line is the
average, and the lowest value is the minimum. The exponentially increasing
execution time here would be improved by coupling the semantic reasoner to
a combinatory computation tool in future work.

about 4 seconds. The next number, with 289 is just 1 second
longer than the 10 instances.

TABLE I
THIS TABLE DISPLAYS THE DATA SHOWN IN THE FIGURE 7. IT

REPRESENTS THE EXECUTION TIME OF THE SEMANTIC REASONER
DEPENDING ON THE NUMBER OF TRUCK GATEWAYS PRESENT IN THE

KNOWLEDGE BASE. THE VALUES ARE EXPRESSED IN SECONDS.

Truck
gateways

Box of
vaccines Average Minimum Maximum

1 11 3.71 3.42 4.10
5 67 3.88 3.59 4.16

10 143 4.15 3.93 4.41
20 289 5.18 4.95 5.42
50 731 13.36 11.86 15.48
100 1 430 63.10 59.04 69.03

We note that creating the framework has a static cost of
3 seconds, due to the choice of technology. Specifically, the
Java platform has some virtualization costs and the semantics
technologies are not efficient in terms of execution time. In
particular, the creation of the rule engine with the SWRLAPI
and Drools takes about 3 seconds to be instantiated, indepen-
dently of the number of box of vaccines.

The execution time increases greatly with the number of
instances and it is especially high when considering more than
1000 boxes of vaccines. The time of 63 seconds for 1430 boxes
of vaccines is excessive because our framework has the goal of
providing a quick analysis of the system in order to perform
changes in reasonable time. If the analysis takes too much
time, the system may have changed again and the result of
the analysis may be wrong. For this reason, future work will
couple a semantic reasoner to a combinatory computation tool.

To conclude, the experiments have shown that the model is
well suited for IoT applications in general. We have instanti-
ated this model for a transportation logistics scenario and have

shown that the response time is sufficient for fewer than 1000
boxes of vaccines. In fact, the number of devices to manage in
a real system is closer to hundreds of nodes rather than 1000,
and there are several devices per gateways. So our approach
provides reasonable performance in term of execution time
for this scale. Moreover, a hundred truck will not arrive at
the same time at a logistic site. Then, the reasoning can be
performed several times when some trucks arrives with fewer
instances and so, fewer execution time.

For a greater number of instances, another approach or dis-
tribution of the problem may have to be considered. Another
kind of approach would be to couple the semantic reasoner to
a combinatory engine that would help the computation of the
rules.

C. Cost of Checkpointing in Process Migration

While the previous section showed that the semantic rea-
soner operates in reasonable time for typical systems of
today, there remains the question of the additional overhead
time in checkpointing and restarting a process in IoT. This
question was answered in a previous paper [4]. Specifically,
[4, Figure 3] shows that IoT processes with a memory footprint
of up to 20 MB can generally be checkpointed in about
2 seconds and restarted in a similar time using the DMTCP [2]
checkpointing package. Similarly, by using DMTCP-specific
optimizations, the time could be reduced to 0.2 seconds.
In future work, the overhead of the network will also be
considered.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a novel framework based on semantic
technology that represents current IoT systems, while provid-
ing distributed management of the running software elements
through a checkpointing mechanism. This approach enables
the management of large IoT system software without human
interaction and with only a limited number of issues that
must be passed on directly to the business software. The
semantic approach provides for interoperability of our model
with other models and also provides for extensibility of the
ontology. Also, this work demonstrates that the execution time
is reasonable for most IoT systems, but would need some
improvement through a combinatory engine integrated with
the semantic reasoner in order to handle a large numbers of
elements beyond what is common in IoT systems today.

Another possible improvement to the current work is the
consideration of policies. Sometimes the system may have to
make a choice between several possibilities. This choice can
be impacted by a policy. For instance, we can choose between

several communication protocols, but we need to consume less
energy, and so this energy policy will affect this choice.

In future work, we aim to provide a different architecture
for this framework that enables scalability for a larger number
of elements by creating a distributed environment with collab-
oration between the instances of the framework. In the context
of IoT, a framework with a large deployment of gateways is
envisioned, and the collaboration among them will be managed
through a single gateway that connects all devices. This will
provide a practical and scalable approach toward a distributed
system.

ACKNOWLEDGMENTS

This work has been supported by a “Chaire d’Attractivité”
of the IDEX Program of the Université Fédérale de Toulouse
Midi-Pyrénées under Grant 2014-345, and by the National
Science Foundation under Grant ACI-1440788.

REFERENCES

[1] R. Van Kranenburg, E. Anzelmo, A. Bassi, D. Caprio, S. Dodson, and
M. Ratto, “The Internet of Things,” A critique of ambient technology
and the all-seeing network of RFID, Network Notebooks, vol. 2, 2011.

[2] J. Ansel, K. Aryay, and G. Cooperman, “DMTCP transparent
checkpointing for cluster computations and the desktop,” in 2009
IEEE International Symposium on Parallel & Distributed Processing.
IEEE, may 2009, pp. 1–12. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5161063

[3] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, “Design and
implementation for checkpointing of distributed resources using process-
level virtualization,” in IEEE Int. Conf. on Cluster Computing (Clus-
ter’16). IEEE Press, 2016, pp. 402–412.

[4] F. Aı̈ssaoui, G. Cooperman, T. Monteil, and S. Tazi, “Smart scene
management for IoT-based constrained devices using checkpointing,”
in Network Computing and Applications (NCA), 2016 IEEE 15th Inter-
national Symposium on. IEEE, 2016, pp. 170–174.

[5] M. Serrano, P. Barnaghi, F. Carrez, P. Cousin, O. Vermesan,
and P. Friess, “Internet of Things (IoT) semantic interoperabil-
ity: Research challenges, best practices, recommendations and next
steps,” IERC: European Research Cluster on the Internet of Things,
Tech. Rep., 2015, http://www.internet-of-things-research.eu/pdf/IERC
Position Paper IoT Semantic Interoperability Final.pdf.

[6] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sensor web,” IEEE
Internet Computing, vol. 12, no. 4, pp. 78–83, jul 2008. [Online].
Available: http://ieeexplore.ieee.org/document/4557983/

[7] P. Barnaghi, W. Wang, C. Henson, and K. Taylor, “Semantics for the
Internet of Things: early progress and back to the future,” International
Journal on Semantic Web and Information Systems, vol. 8, no. 1, pp.
1–21, 2012.

[8] P. Desai, A. Sheth, and P. Anantharam, “Semantic gateway as a service
architecture for IoT interoperability,” in 2015 IEEE International
Conference on Mobile Services. IEEE, jun 2015, pp. 313–319.
[Online]. Available: http://ieeexplore.ieee.org/document/7226706/

[9] P. Horn, “Autonomic Computing: IBM’s perspective on the state of
information technology,” IBM, Tech. Rep., 2001.

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

