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Fast Mutual Relative Localization of UAVs using Ultraviolet LED
Markers

Viktor Walter1, Martin Saska1, Antonio Franchi2

Abstract— This paper proposes a new methodology for out-
door mutual relative localization of UAVs equipped with active
ultraviolet markers and a suitable camera with specialized
bandpass filters. Mutual relative localization is a crucial tool
for formation preservation, swarming and cooperative task
completion in scenarios in which UAVs share working space
in small relative distances. In most current systems of compact
UAV swarms the localization of particular UAVs is based on
the data obtained from motion capture systems for indoor
experiments or on precise RTK-GNSS data outdoor. Such an
external infrastructure is unavailable in most of real multi-
UAV applications and often cannot be pre-installed. To account
for such situations, as well as to make the system more
autonomous, reliance on onboard sensors only is desirable. In
the proposed approach, we rely on ultraviolet LED markers,
that emit light in frequencies that are less common in nature
than the visible light or infrared radiation, especially in high
intensities. Additionally, common camera sensors are sensitive
to ultraviolet light, making the addition of a filter the only
necessary modification, keeping the platform low-cost, which
is one of the key requirements on swarm systems. This also
allows for a smaller size of the markers to be sufficient,
without burdening the processing resources. Thus the proposed
system aspires to be an enabling technology for deployment
of large swarms of possibly micro-scale aerial vehicles in real
world conditions and without any dependency on an external
infrastructure.

I. INTRODUCTION

Mutual relative localization of flying robots is indispens-
able in many real-world applications that require deployment
of multiple Unmanned Aerial Vehicles (UAVs) sharing the
same workspace in small relative mutual distances. Using
compact multi-UAV systems brings numerous benefits in-
cluding cooperative task completion, extension of reach of a
single robot and distribution of capabilities into independent
members. Moreover, several tasks that are not solvable by a
single robot do exist and some of them were successfully
solved by teams of UAVs developed by the Multi-robot
Systems group at CTU in Prague 3 by employing onboard
visual mutual relative localization - see Fig. 1 a) and c) for
examples. In this paper, we propose a novel robust method
of infrastructure-independent relative localization for flights
of multiple UAVs, applicable for outdoor environments, as
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Fig. 1: Examples of applications of mutual relative localization
developed by our group. a) Cooperative carrying of large objects,
b) simultaneous flight through forest-like environments using bio-
inspired swarming rules, c) mapping of historical buildings by a
formation of camera-carrying UAV and spotlight-carrying UAVs
to obtain footage with fixed illumination angle d) heterogeneous
formation of self-stabilised UAV-UGV.

well as the indoors. The method is based on the application
of markers composed of ultraviolet LEDs on the UAVs, in
addition to equipping the observer UAVs with cameras with
fisheye lenses and specialized bandpass filters. The relative
pose of the observed UAVs can then be retrieved easily from
the image, where the markers are visible as bright spots on
dark background that can be located with little processing.
Our intention is to provide each swarm member with an as
complete as possible information on the state of all UAVs
in close proximity without any the of communication among
the robots or with a base station. Fulfilling this goal requires
direct sensing of mutual relative distances, information about
the relative bearings and, if possible, also about their relative
headings.

As can be seen in numerous examples of flocking of an-
imals, such information can be effectively obtained through
vision [1]. In our previous works on mutual localization [2],
[3], passive markers in conjunction with an object detection
algorithm have been used to achieve the same sensory ability.
This vision-based system has been deployed in numerous
indoor and outdoor experiments [4], [5], [6], where multiple
drawbacks, such as strong lighting conditions dependency,
large size of the markers, limited operational space and
computational complexity have been identified. The most
significant is the fact that the changing outdoor lighting
conditions may prevent consistent recognition of the markers.
The system proposed in this paper aims to alleviate these
drawbacks and to further enlarge the application domain of
UAV swarms.



Fig. 2: Example of an image from the onboard camera with filter of
a hexarotor UAV equipped with 6 markers on its arms. The picture
was taken at noon, with the exposure rate set to 1000 µs. Lower
left shows the same view from a conventional camera.

Fig. 3: An extreme case of long range and hard to separate
background. In the visible spectrum the UAV is difficult to locate
even by the human eye and today’s popular CNN methods [7],
while in UV the three markers are clearly visible as unique peaks
in brightness and can easily be detected by the proposed system.

A. State of the art and contributions

Most of the multi-UAV experiments that require local-
ization have been realized in laboratory conditions relying
on an absolute measurement by a motion capture system
(Optitrack4, VICON5, etc.) [8] and the relative pose measure-
ment is emulated by calculating it from a source of absolute
pose as a placeholder [9]. Outdoor cooperative flights [10],
[11] tend to rely on GNSS (Global Navigation Satellite
System) if a close proximity of robots is not required or on
RTK-GNSS data (provided in our case by Tarsus BX3056),
which may achieve the precision of ±10 mm. Obviously,
these approaches suffer from the necessity to pre-install an
external infrastructure (motion capture cameras or RTK base-
station) which precludes flights in environments that are
unknown or difficult to reach by the operators themselves.
Another problem is transition from outdoor to indoor en-
vironments, flight near elevated objects of larger volume -
buildings, rock formations, etc. - or flight in an unknown,
cluttered or inaccessible enclosed environment. Additionally,
continual reception of such external information requires
wireless communication, which is subject to limited range
and interference both from unrelated sources and by the units
themselves in the case of a large swarm. This makes the

4http://optitrack.com/
5https://www.vicon.com/motion-capture/engineering
6https://cdn.shopify.com/s/files/1/0928/6900/

files/\\Datasheet\_BX305\_Kit\_433\_915\_EN\_0913.
pdf

system difficult to scale up to larger number of units, which
is the main idea of robotic swarms. Another challenge caused
by the infrastructure dependence the task may easily be
deliberately obstructed by interfering with the infrastructure,
such as by introduction of artificial radio interference on
key radio frequencies. In order to be reliable even in such
circumstances, the units need to be able to independently
avoid damage and complete their mission. If the UAVs are
flying in a formation, they should be able to preserve it
or keep their mutual distances within safe ranges, which is
reliably enabled by the proposed approach.

Numerous principles of direct mutual localization can be
found in literature. From a theoretical point of view the
mutual localization problem in group of robots boils down to
the (bearing) rigidity problem, see [12] and reference therein
for an introduction to this concept. The multi-agent mutual
localization problem has been also faced in the case in which
measurements do not provide the identity of the measured
robot, i.e., they are anonymous [9].

Relative localization of noise-emitting objects such as
UAVs was successfully tested in [13]. This method, however,
requires a large and highly specialized equipment, while
providing only an approximate relative bearing of the target
and being sensitive to acoustic environmental noise.

Another approach was used in [14], where point-clouds
obtained from RGB-D cameras attached to each unit are
aligned to obtain their relative poses. These sensors have
severely limited range and field of view and the algorithm is
computationally too complex for most onboard computers of
lightweight UAVs. Similarly, [15] used the alignment of lines
detected in images of the environment of the UAVs to estab-
lish their relative positions. Such an approach can be applied
efficiently in an environment with multiple straight lines,
such as in streets or offices, but not in natural environments
where straight lines are rare. Both of the aforementioned
approaches additionally require communication between the
units, at fairly high bandwidths.

Numerous experimental solutions based on vision and
mutual observation of UAV and UGVs equipped with known
geometrical markers were tested [16], [17]. Our previous
solution uses circular visual markers [2], [3] for mutual
localization in small swarms of UAVs [5], [6] and in het-
erogeneous formations [4]. The main disadvantage of these
methods is the sensitivity to light conditions, computational
complexity and the physical dimensions of these markers.
The large size of the markers (see fig. 1-a), needed for proper
detection from reasonable distances and angle range leads
to problems connected to aerodynamics and maintenance
difficulties. In addition, these markers are highly susceptible
to a partial occlusion that can prevent detection.

A basic and often used approach is to apply a simple,
easy to segment color-based markers that work well in
controlled light conditions of laboratory environments [18],
[19]. While in a laboratory it is easy to apply active or passive
markers of a color that we ensure is not otherwise present
in the environment, this is seemingly unfeasible in outdoor
conditions, since in nature as well as in urban scenarios, all
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colors of the visible spectrum are naturally present.
The closest approach to the proposed system can be

found in [20], where UAV localization through infrared lights
blinking in the order of kilohertz attached to helicopters is
implemented. Such frequency allows for the markers tracked
even with aggressive flight maneuvers. This was achieved
by using an event-based camera. The solution in [20] was
only tested in indoor environments, with the camera being
statically placed in the room, instead of onboard of a UAV.
The use of a heavy and expensive specialized camera makes
it unsuitable for outdoor onboard deployment. Additionally,
the low resolution of contemporary event-based cameras
decrease the precision and the range of detection.

The system presented here is based on the observation that
while the colors of the visible spectrum, as well as a wide
band of the infrared wavelengths, are present with relatively
high intensity in normal sunlight, the ultraviolet light is
significantly less intense. This means that in the UV spectrum
the natural environments are dark and when an object bright
in the ultraviolet is observed, it is likely to be artificial.
Exploiting this fact does not even require a new specialized
sensor, since common monochromatic digital cameras tend
to be receptive to near ultraviolet frequencies, and need only
be modified with a proper band-pass filter. The UV light
can then be used as a robust and easy detect feature. The
only false positives in detection being the sun itself and
its specular reflections, while even most of artificial light
sources emit little to none UV radiation.

To sum up the contribution of the paper related to the
current literature, we emphasize that the proposed solution
combines knowledge gained during hundreds of flights with
multiple closely cooperating UAVs in realistic indoor and
outdoor conditions using different state-of-the-art localiza-
tion systems and a theoretical analyses of sources of dis-
turbance that lead to false positive detections in common
workspaces of UAV systems. Based on this data we propose
the HW design of a system made of multiple onboard
UV light sources that reliably provides the required in-
formation (distance and bearing of neighbouring vehicles)
in all possible configurations of the team. In comparison
with state-of-the-art solutions, our solution presents better
reliability w.r.t different weather conditions and precision,
while significantly reducing size and weight of the overall
system and the required computational power. We provide
two approaches for mutual localization using this HW setup.
The first minimalistic approach uses a single camera and a
single UV LED on each UAV to provide bearing information
and a rough estimation of the relative distance. This method
together with the work [21], where we have shown that
such a sensory information (even anonymous) is sufficient
for reliable coherent swarming, provides a complex solution
for deployment of large swarms of micro aerial vehicles. The
scalability is shown in [21] by a surprising observation that
the swarm stability and coherence increases with number of
swarm members even with such a limited sensory input. The
second approach presented in this paper exploits possibility
of using multiple LEDs onboard of UAVs to increase pre-

Fig. 4: The spectrum of solar radiation in wavelengths near the
visible spectrum. Notice the rapid decrease in irradiance in the UV
region.7

cision of the distance measurement and operational space.
In fact, this approach exploits full size of the UAVs, putting
the LEDs as far apart as possible, which increases baseline
used for the distance estimation, resulting in higher preci-
sion, in comparison with passive markers that are always
significantly smaller that the UAV itself.

The paper is structured as follows. Section II deals with the
theoretical background applied in the design of the system.
Section III comprises the overview of the hardware used.
Section IV explains the methodology used in estimating the
mutual location of the target (neighbouring UAV) as well as
the system identification. Finally, section V summarizes the
results of experimental testing of the system.

II. THEORETICAL BACKGROUND

A. The ultraviolet markers and sensors

Using UV light for mutual localization is an obvious
approach for deployment of swarms in real outdoor envi-
ronments, as it was the case in our experiments, but not in
typical laboratory experiments [8], [22]. The solar radiation
approximates the blackbody radiation, with peak intensity
centered on the visible light (see figure 4). This means
that the shape of the intensity to wavelength characteristic
is asymmetric w.r.t. the wavelength. The intensity decays
considerably slower with growing wavelengths than it does
with diminishing wavelength. Ultraviolet parts of sunlight
are therefore significantly less intense than the visible light
and the infrared, even relatively close to the visible spectrum.
We can exploit this observation to apply active markers that
can be easily distinguished from the multicolored natural
backgrounds purely based on the intensity. In the implemen-
tation, this requires physical band-pass filtering tuned to the
ultraviolet wavelengths of the markers.

7https://commons.wikimedia.org/w/index.php?title=
File:Solar_spectrum_ita.svg&oldid=261911890
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A gray-scale camera is more suitable for this task since it
is less selective w.r.t. the wavelength than RGB cameras and
is thus more sensitive to light outside of the visible spectrum.
Note, that while the sun does still emit considerable amounts
of UV radiation, this radiation is spread across a range of
wavelengths and most of it is filtered out by the atmosphere.
Additionally, it does not reflect well on solid natural surfaces.
With low enough exposure rate of the camera, the only
objects that will locally saturate the resulting image to white
will be the markers, directly observed sun and some of its
specular reflections. The appropriate exposure rate depends
on the required maximal detection distance. Our tests have
shown that the UV light refracted through the atmosphere
and reflected from matte surfaces is normally too dim to
prevent the detection. The image of the sun and its reflections
should be a minor issue which can be accounted for by
using knowledge of the size or other specific characteristics
of the spots caused by the sun or the knowledge of sun
position based on current place and time. The possibility to
set the exposure so that the markers will create saturated
white spots on dark background can be used to binarize
the image using simple static thresholding, as opposed to
the more computationally demanding adaptive thresholding
needed for arbitrary lighting conditions. The image spots
caused by artificial light sources will be saturated regardless
of the time of the day.

In order for this system to be suitable for mutual localiza-
tion of multiple UAVs, the camera has to be able to observe
the surroundings in a large field of view. This can be achieved
by using a fisheye lens. A potential drawback that has to be
addressed is the high rate of decay of UV light in common
types of glass, proportional to the specific frequency. In our
tests, this has limited the wavelength of the UV light that we
could use. Light sources radiating at 365 nm were suppressed
to the extent that they were mostly invisible to the camera,
while light sources with wavelengths of 395 nm were clearly
visible. Specialized lenses permeable to high-frequency UV
that also have wide FoV and are portable could not be found
on the market at the current time. Moreover, the infrared filter
applied to the lenses by the manufacturer also blocks out UV
light. A shorter wavelength would allow for better filtering
of of the sunlight. Despite this, the 395 nm light sources and
filters proved to be sufficient in our experiments.

III. HARDWARE OVERVIEW

The camera used in our experiments is based on the Matrix
Vision mvBlueFOX-MLC200wG sensor, equipped with the
Sunnex DSL215 fisheye lens and Midopt BP365-R6 ultravi-
olet bandpass filter.

The mvBlueFOX-MLC200wG (figure 5-c) is a greyscale
CMOS sensor with a resolution of 752 × 480 pixels, max-
imum frame-rate of 93 without binning and quantum effi-
ciency at 395 nm of ≈34 %8 In our experiments we were
able to achieve a maximum frame-rate of 70 Hz with the
exposure rate set to 1000 µs. The DSL215 is a fisheye lens

8https://www.matrix-vision.com/\\USB2.
0-single-board-camera-mvbluefox-mlc.html

Fig. 5: Summary of the proposed system components. The UAV
(a) is equipped by a mvBlueFOX-MLC200wG camera sensor (c)
with DSL215 lens with BP365-R6 bandpass filter that allows it to
observe and localize ultraviolet LED-based markers (d) or (e)

with the maximal FoV of 185◦. This value, however only
applies to the horizontal field of view with the MLC200wG
sensor. 9 The BP365-R6 is a miniature interference-based
optical bandpass filter for ultraviolet imaging10. The custom
size of 6 × 6 × 1 mm allowed us to attach it between the
lens and the sensor so that the whole image is covered, as
seen in figure 5-b. For the markers, we have selected the
ProLight PM2B-1LLE, (figure 5-d) which is a high power
ultraviolet LED, with the maximum of emission centered on
the wavelength of 395 nm and with Lambertian radiation
pattern. 11

This beacon-sensor system is small, lightweight and rela-
tively affordable, and thus ideal for deployment with small
UAVs.

IV. METHOD DESCRIPTION

A. System identification

1) Camera calibration: In order to convert the image
positions of the detected spots corresponding to the markers
on the UAVs into relative bearing vectors, it was necessary
to perform geometric calibration of the camera. We have
selected the model described in [23], suitable for cameras
with wide FoV, that translates pixel positions directly into
bearing vectors.

The parameters of the camera projection are affected by
the different index of refraction of UV light compared to
the visible light , as well as by small eccentricities of the
lens mount. To account for these factors we calibrated the
camera with the band-pass filter on and the lens attached in
the final position. For the chessboard-type calibration pattern
to be fully visible, the pattern had to be illuminated by a UV
light source, with the exposure rate and threshold manually
adjusted for the different angles of view, some parts of the
pattern became overbright or overly dark depending on the
angle of reflection. After obtaining the images, the calibration
was done semi-automatically using the OCamCalib toolbox
12. The toolbox itself provides a method of converting pixel
position into a unit bearing vectors of the markers, here
denoted c2w and the reverse function w2c.

9http://www.optics-online.com/OOL/dsl/dsl215.pdf
10http://midopt.com/filters/bp365/
11http://datasheet.octopart.com/\\

PM2B-1LLE-Prolight-datasheet-41916849.pdf
12https://sites.google.com/site/scarabotix/

ocamcalib-toolbox, [24]
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The angle φ between the optical axis of the camera and
an optical ray corresponding to a point in the image was
modeled as a linear function of the distance r of the point
from the optical center in pixels. The slope of the function
was measured to be

k = φ/r = 3.7673× 10−3 rad px−1. (1)

2) Spot size: An interesting imaging effect that can be
exploited in this setup is the blooming effect of the camera.
The markers used here are small LEDs, which with an
idealized camera each LED would be projected into a single
point on the sensor resulting in a single bright pixel. With
real-world cameras, these markers are shown in the image as
spots of sizes depending on the distance. This effect occurs
due to a combination of monochromatic optical aberrations
of the lens and of the finite capacity of the CMOS elements
in the sensor causing excess charge being spilled over to
the surrounding pixels. The exact analysis of the nature and
relative impacts of these phenomena is beyond the scope of
this paper.

The sizes of the spots can, however, be analyzed w.r.t.
the distance of the marker (see figure 6) and thus used to
give a rough estimate of the distance of the marker. Since
the geometry of these spots depends on many unknown
variables, and due to the finite resolution of the camera,
the true position of the ray incidence within such a spot
is ambiguous. The spots shrink down to the size of a single
pixel at a certain distance from the camera, depending on the
resolution, exposure rate, type of sensor and the radiation
intensity of the marker in the direction of the camera. In
order to preserve high output rate and ease of processing,
we store the sizes of these spots in terms the number of
pixels S after thresholding. To represent the position of the
spot, we store the x and y image coordinates of the middle
pixel in order of contour filling.

Since the tend to be slightly blurry around their edges, the
size of the spots after binarization depends on the selected
threshold.

While the estimation of distance based on such an im-
precise information is not ideal, it can inform of a neighbor
breaching certain safety radii or leaving the minimal mutual
distance. With the algorithm presented in [21] and the
proposed approach, we can achieve coherent swarming using
a minimal required mutual localization setup consisting of
one simple camera and LED per unit (total mass of 50g),
which opens new perspectives in use of micro aerial vehicles
(MAVs).

Additionally, knowing the characteristics of the spot sizes
S(l) w.r.t. the distance from the camera l is useful for
establishing margins of error for measurements based on the
estimated bearing vectors. For this purpose, we can select
a function Smax(l) such that the values will lay under it.
These were measured in experiments and can be seen in the
next sections.

B. Directional vector estimation
Measuring the relative bearing between UAVs is one of

the main requirements to let them stably fly in swarms with

Fig. 6: Relative difference in sizes of spots generated by markers
attached to quadrotor UAVs approximately 2 m (lower triplet) and
5 m (upper triplet) away from the camera.

a predefined shape. However, it is not always necessary for
each UAV to measure all the relative bearings w.r.t. all the
other members. Indeed, Franchi et al. [22], [9] have shown
that a stable, controllable swarm with a predetermined shape
can be achieved by resorting only to a certain minimum
number of directed observations of relative bearings between
the swarm members with known identities. It was also
demonstrated [25] that it is possible to reconstruct the shape
of the swarm purely based on relative bearings of the unit
even when the identities of the observed neighbors are
unknown. With our system, such control algorithm will be
applicable not only to units with limited processing and data
transfer capabilities but also to outdoor applications. Since
we have already calibrated the camera, we can convert a
pixel position mi to the relative bearing vector vi towards a
single marker as

vi = c2w(mi). (2)

In reality the pixel position mi corresponds to a range
of bearing vectors that are projected to the same CMOS
element, while the vector vi corresponds to the center of
that range. In the worst case, the spot is a linear chain and
the true bearing vector corresponds to the farthest point of
the pixel located the farthest away from the pixel we have
stored to represent the spot position. The calculated relative
bearing vector vi can, therefore, differ from the true bearing
vector vb at most by the angle

ε = k

(
Smax(l)−

1

2

)
. (3)

C. Distance estimation based on image distance of two
markers

The distance of an object in an image can be estimated
based on the distance of two points M1 and M2 on the
object (two LEDs of known relative position onboard of the
UAV) and the angle α they form with the camera origin C.
This requires for the camera to be calibrated, and is only
applicable if we have a reasonable assumption on the angle
between

←−−→
M1M2 and the direction towards the camera. For

this method to be used for UAV localization, there needs
to be at least a pair of visible markers. These two markers
should not deviate too much from perpendicular alignment
w.r.t. the direction towards the camera.

In order to limit the dependence of the precision of the
distance estimation on the relative orientation of the observed
UAV, the markers should be placed along a circle centered on
the UAV local frame of reference, with equal distances be-
tween adjacent markers. Additionally, these markers should
be spaced as far apart as possible, while still allowing
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Fig. 7: Allignments of LED markers for a hexarotor, and a quadro-
tor. In the center layout, only a single marker would be visible from
some directions, as opposed to the rightmost layout, with markers
consisting of two LEDs at the mutual angle of 120◦.
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Fig. 8: The relative radiant intensities w.r.t. the direction for two
combined, symmetrically aligned ideal Lambertian radiators. With
the mutual angle being 120◦ the intensity in the central direction
is the same as for a single radiator aimed in that direction.

at least a single adjacent pair to be visible from every
direcion. For multirotor UAVs with a star-like layout, with
the propellers attached to equally spaced arms extending
from the center, the best choice is to attach these markers at
the ends of these arms. In other cases, they can be attached
to a protective cage or on specific additional components,
to ensure radial symmetry. For a hexarotor UAV with equal
arm lengths and internal angles, which is our most common
use-case, the markers, composed of a single LED each, are
attached to the ends of the arms. In this case a single LED
per arm is sufficient, since the intensity of radiation in a
Lambertian radiator (such as our chosen LEDs) at the angle
of 60◦will not drop below 50 % of the intensity in the frontal
direction. In a similar quadrotor UAV, the markers must be
composed of symmetrically angled pair of LEDs to account
for the negligible intensities of radiation in the perpendicular
direction in a single LED (see figure 7 and 5-e).

We recommend for the angle between these two LEDs
to be 120◦in order to get approximately the same radiation
intensity in the direction away from the center as with a
single centered LED (see figure 8).

For a hexarotor with such markers we can estimate the
distance in a range defined by two borderline assumptions:

1) The observed pair is in perpendicular alignment w.r.t.
the direction towards the camera - camera in position
CA in figure 9;

2) One marker of the pair is on the connecting line of the
hexagonal frame - camera in position CB in figure 9.

Which situation is currently closer to being the case un-
known. While hexarotor is used as an example, similar bor-
derline assumptions can be defined for quadrotors, octarotors,
etc.

Depending on whether we need to check for UAVs being

lA

lB

M1

M2

CA

CB

αA

αB

60◦ 60◦

v

d/2

d

Fig. 9: Schematic of the two borderline algnments of a hexarotor
and the camera. With the camera in position CA, the observed pair
is in perpendicular alignment w.r.t. the camera. In position CB the
points are in the 30◦alignment w.r.t. the camera.

too close or too far away, we can select either calculation.
In the case 1) the UAV is more likely to be closer than
estimated, while in the case 2) it is more likely to be further
away. In a swarming algorithm such as [21] the UAVs need to
compare the distances of neighbors with two margins, the far
limit and the near limit, between which the distance should
be kept. In order to make such swarming more reliable,
it makes sense to calculate with case 1) for the far limit
and with case 2) for the near limit. This is also applicable
for tasks such as cooperative carrying of large objects (see
figure 1-a), where these limits are connected with the level
of control over the object, collision avoidance and energy
conservation.

The distance can be calculated from the triangle formed
by the camera C and the two markers M1 and M2. The
parameter d is distance between M1 and M2 and α is
]M1CM2. The relative bearing vectors from the camera
towards points M1 and M2 are denoted v1 and v2.

α = arccos (v1 · v2) = arccos (c2w(m1) · c2w (m2)) (4)

In the case 1), the distance lA to the UAV center can be
expressed as

lA =

(
d

2

)
cot
(α
2

)
+ v, (5)

while in case 2), the distance lB can be expressed as

lB = v cot (α) +

(
d

2

)
. (6)

The symbol v here stands for the height of an equilateral
triangle with side d.

The intensity of radiation in a Lambertian light source,
such as the one we are using is roughly proportional to
the cosine of the angle from the axis. It therefore is more
common to see only two of the six markers than three or
four.
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To establish error margins for the two cases at ground
truth distance l, we take the assumption that the wrong case
was presumed, so that while calculating for case 1), the real
situation corresponded to case 2) and vice-versa. If in the
case 2) the calculation for the case 1) was used, the relation
of the estimated distance to the real distance would be

laerr =

(
d

2

)
cot

(
arctan

(
v

l − d
2

)
/2

)
+ v. (7)

In the converse case, the erroneous selection of calculation
results in the estimate

lberr = v cot

(
2 arctan

(
d
2

l − v

))
+

(
d

2

)
. (8)

These margins should be additionally expanded by the ef-
fects of finite resolution and spot size. Due to foreshortening,
as the UAV retreats away from the camera, the change of
mutual distance of the two markers in the image becomes
less and less pronounced. This is more significant when
the mutual distance of the images of the markers becomes
comparable with the size of a pixel. As was the case in the
directional vector estimation, the maximum angular error ε
in the direction of the vector v1 is equal to k(Smax(l)− 1

2 )
The final maximal value of distance estimation in the first

case is then:

lamax =

(
d

2

)
cot

arctan
(

v
l− d

2

)
− k (Smax(l)− 1

2 )

2

+v

(9)
The minimal value for this case is:

lamin =

(
d

2

)
cot

(
arctan

(
d
2

l − v

)
+ k (Smax(l)−

1

2
)

)
+v

(10)
In the other case, where we presume that one of the spots

in the observed pair corresponds to a marker on the line
connecting the camera and the center of the UAV, the maxima
and minima of the estimation can be expressed similarly:

lbmax = v cot

(
arctan

(
v

l − d
2

)
− k (Smax(l)−

1

2
)

)
+

(
d

2

)
(11)

lbmin = v cot

(
2 arctan

(
d
2

l − v

)
+ k (Smax(l)−

1

2
)

)
+

(
d

2

)
(12)

D. Full pose estimation

For a more precise position estimation of a neighbor
UAV that is more suitable for 3D environments and returns
orientation as well, we might consider using a Perspective-
n-Point method. This may prove quite challenging in imple-
mentation, due to the anonymity of the observed points and
due to the diminished visibility of the markers not facing
the camera. Additionally, these methods are computationally
more complex, which may reduce the output rate. One way
to increase the number simutaneously of visible points is to

increase the number of the LEDs on the UAV. This may be
done in two possible ways:

1) by composing each marker out of multiple LEDs, as
can be seen in figure 5-e

2) by adding more single-LED markers for denser cover-
age.

Care should be taken with such a modification, since if the
distribution of the markers is too dense then they will tend
merging in the image into a single spot. The problem of
anonymity can also be addressed this way, by constructing
patterns that can be matched with a known template without
ambiguity.

Another potentially effective approach under consideration
is to encode information such as individual ID of a marker
into blinking patterns.

V. EXPERIMENTS

A. Distance estimation based on spot size

To evaluate the relationship between the mutual distance
and the size of the bright spot an Optitrack motion-capture
system was used to record the ground-truth distance between
the camera and a single LED in its view, while the size of
the spot was being recorded simultaneously. This procedure
was repeated for multiple exposure rates. The binarization
threshold used for segmentation of the bright spots was set
to 200 out of 255, or 78.42% of the saturated brightness
(for the characteristics, see figure 10). These tests seem to
indicate, that the best exposure rate for detecting whether the
neighbors are within a reasonable distance with this setup
is 1000 ms, when the spot shrank consistently to the size
of a single pixel at 6.62 m while still sufficiently filtering
out the ambient UV illumination. Therefore, a very simple
and low-cost approach (only one camera and one LED is
required) can be used for an effective collision avoidance as
it provides sufficient safety distance. For example the safety
distance used in Multi-robot Systems group in [26] was 5 m.
Within the range from 3.14 m to 6.62 m the occurence of
spots with the size of 1 pixel become common. For distances
smaller than 3.14 m the non-linear the characteristic can
be used for a rough, but quantitative distance estimation
in applications, where the UAVs have to operate within
very close mutual distances. From the characteristic for
the 1000 µs exposure rate (figure 11) we have derived the
parameters of an approximating equation (13) in the form
of a quadratic-hyperbolic function rounded to the nearest
integer.

Smax = b1.3398 + 31.4704

(x− 0.0154)
2 e. (13)

A quadratic-hyperbolic function was selected because the
number of saturated pixels from a single ray depends roughly
on the overall energy that has been received by the sensor
from the marker, which in turn is governed by the inverse
square law.

A different exposure rate can be selected for tasks where
closer or greater mutual distances are required (note the
different single-pixel thresholds in figure 10). For example,
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Fig. 10: Distance dependence of the bright spot size for multiple
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in applications where very tight formations of micro aerial
vehicles are needed we can select short exposure rate to reach
a higher precision in distance estimation at short distances,
in addition to better selectivity w.r.t. other light sources.

If the margins used in a swarming algorithm are derived
from the spot sizes, then we can expand or shrink a formation
simply by changing the exposure rate. This can even be done
dynamically based on the circumstances, altering the swarm
parameters on-the-fly (for instance by changing the constants
in a Boids model [27] we can change the swarm size and
thus adjust the working area).

Using a high exposition rate presents a trade-off, since it
allows for detection and quantitative distance estimation in
larger mutual distances, but has the side-effect of lower se-
lectivity w.r.t. other light sources and thus lower robustness.

B. Bearing vector estimation precision

In order to verify the precision of the relative bearing
vector estimation and the distance estimation based on the
mutual distance of two spots in an image, we have equipped
a hexarotor frame with an arm length of 0.4 m with UV
light sources on the end of each arm. Precision and relia-
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Fig. 12: Angles between the estimated bearing vectors based on
the image and the true bearing vectors. The red line denotes the
expected maximal errors based on equation 3

bility of the mutual distance estimation were evaluated in
different relative positions and orientations using Optitrack
as a ground truth.

Lines connecting the camera with the potentially visible
markers were calculated from the ground truth poses of the
camera and the hexarotor frame. Relative bearing vectors
were estimated from the bright spots in the image. The
bearing vectors and connecting lines were compared and the
angles between the closest found matches were stored. Figure
12 shows, that the predicted maximal error in the estimation
according to equation (3) holds.

C. Neighbor distance from mutual distance of points

In the same dataset as used previously, the pair of adjacent
spots with the greatest mutual distance in the image was used
as the basis for the distance estimation. The distance of the
frame center from the camera was calculated both accord-
ing to equation 5 and equation 6. The estimated distances
compared to the ground truth obtained from the OptiTrack
system can be seen in figure 13, together with plots of the
predicted margins of error based on the previously obtained
function Smax(l). Note, that in the first case most estimates
are greater than the ground-truth, while in the other case the
opposite is true.

Figure 14 shows the relative errors in estimations in both
cases.

Within the tested range the error increases roughly linearly
with the distance. This is conforms to the expectations and
is of no concern in forming a swarm, since the precision is
only low outside of collision range.

The precision is decreased by the randomized angle of
the observed pair of markers so that the results would be
consistent with real-world situations.

For comparison, the precision listed in [2] was measured
in ideal laboratory conditions with all variables accounted
for. In such unrealistic conditions our system will exhibit
higher precision, due to the larger baseline.

D. Outdoor experiments of mutual localization of two UAVs

To verify the selectivity of the sensor, as well as the
range and precision in an outdoor environment, which is the
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primary intended use-case, we have performed a flight with
a pair of our outdoor UAV platforms. The platform itself
is a DJI 550 frame, equipped with a Pixhawk controller
an Intel NUC computer, described in detail in [26]. The
sensory equipment comprises a range sensor for altitude
measurements, RTK-GNSS antenna for ground truth mea-
surement, the UV camera described in this paper and a color
camera for a conventional video recording. The target UAV
was equipped with six ultraviolet LED markers as described
above. The exposure rate of the camera was set to 1000 µs.

The markers could still be detected at 15 m and after that
there were spurious drop-offs. Compare the table III in [2],
where the maximum range is 5.5 m for the highest resolution.
Indeed, since the camera FoV listed in the paper is only
42◦while our system uses a FoV of 180◦, our system can be
meaningfully compared with their system being used with
less than the smallest listed resolution, where the maximum
range was only 3.2 m.

An example of the image obtained by the ultraviolet-
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Fig. 15: UAV distance estimates compared with the ground truth.
The two estimates according to equations (5) - case A and (6)
- case B tend to be greater and smaller than the ground truth
respectively. The spurious pattern around 60 s and 110 s is the
result of the observed UAV spinning in place, leading to the two
equations rapidly exchanging their validity.
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sensitive camera can be seen in the figure 2. We have
attempted to measure the precision of the ultraviolet marker-
based localization by using the RTK-GNSS data inertial
measurement unit and built-in compass as ground truth. As
is shown in figures 15 and 16, the distance estimations
according to equations (5) and (6 resulted in upper and
lower margins, enclosing the ground truth. While the position
retrieved by RTK-GNSS was sufficiently precise, the orien-
tation estimate was burdened by a severe drift (see figure 17-
below), causing misalignment in the bearing vector returned
by our UV sensor. This hints at an alternative application
of our system as a precise orientation sensor if the position
of two or more mutually unoccluded UAVs is known from
RTK-GNSS data, since the observed relative bearing does
not drift.

VI. CONCLUSION

In this paper we have proposed a novel system for outdoor
and indoor mutual relative localization using ultraviolet LED
makers. The main intended use-case of this method is in
swarm control and stabilization of formations of light-weight
helicopter UAVs in arbitrary environments. The proposed
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Fig. 17: Selected frames from the video output of the camera and
visualization of the mutual state estimation procedure. The blue star
and white square represent the ground truth of the observed UAV.
The thick red line shows the range of possible positions computed
by our system. This can be seen in a video found at http://
mrs.felk.cvut.cz/uvdd1.

approach enables significantly higher detection range, ro-
bustness to light conditions and surrounding environment
(background of images) in comparison with state-of-the-art
methods, while having low computational intensity, small
size and weight and providing sufficient precision. The error
in the relative bearing vector towards a single ultraviolet
marker is in operational distances below 0.02 rad in distances
above 3 m, and thus allows direct applicability of the
method using most of the current swarming and formation
stabilization approaches. Two algorithms for estimating the
mutual distance were developed to satisfy requirements of
known multi-UAV stabilization techniques. The first relies
on the size of the detected spot in the image, while the
second is based on the diminishing apparent internal distance
between a pair of retreating markers with known true mutual
distance. The system was tested in outdoor environment and
was shown to be robust with respect to outdoor lighting
conditions as predicted. The theoretical predictions, as well
as the experimental data presented here, show a lot of
promise for deployment in swarm robotics.
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