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Mutual Localization of UAVs based on Blinking Ultraviolet Markers
and 3D Time-Position Hough Transform

Viktor Walter1, Nicolas Staub1,2, Martin Saska1 and Antonio Franchi2

Abstract— A novel vision-based approach for indoor/outdoor
mutual localization on Unmanned Aerial Vehicles (UAVs) with
low computational requirements and without external infras-
tructure is proposed in this paper. The proposed solution
exploits the low natural emissions in the near-Ultra-Violet

(UV) spectrum to avoid major drawbacks of the visible spec-
trum.Such approach provides much better reliability while be-
ing less computationally intensive. Working in near-UV requires
active markers, which can be leveraged by enriching the infor-
mation content through blinking patterns encoded marker-ID.
In order to track the markers motion and identify their blinking
frequency, we propose an innovative use of three dimensional
Hough Transform, applied to stored position-time points. The
proposed method was intensively tested onboard multi-UAV
systems in real-world scenarios that are very challenging for
visible-spectrum methods.The results of our methods in terms
of robustness, reliability and precision, as well as the low
requirement on the system deployment, predestine this method
to be an enabling technology for using swarms of UAVs.

I. INTRODUCTION

The use of swarms of Unmanned Aerial Vehicles (UAVs)
has extends significantly the capabilities of single UAV,
allowing for tasks otherwise impossible for single robot due
to payload, actuation or sensory limitations. Typically, small
UAVs are used for their cost-effectiveness and commercial
availability and they can safely compose compact multi-UAV
systems with small relative mutual distances. This raises the
importance of mutual relative localization, in order to main-
tain safety distances, enforce the desired flocking behavior
or the decentralized bio-inspired swarm stabilization [1], [2].

A typical challenge of mutual localization for aerial
swarms is to present a low-cost infrastructure-independent
solution, suitable for both indoor and outdoor settings and
reasonable mutual distances. Literature is rich in approaches
relaxing these requirements, like indoor work conducted with
Motion Capture systems (MoCap), e.g. [3], [4], or Infra-
red blinking markers, coupled with an event-based ground
camera [5] and outdoor setups relying on Global Navigation
Satellite System (GNSS) [6], [7]. These solutions provide
precise mutual localization information ( 1 cm, considering
RTK-GNSS) with the major drawback of requiring pre-
installed infrastructures, limiting the usage to known, unclut-
tered, and easily-accessible environments. Additionally, they
are costly and tend to rely on intensive radio-communication
between the swarm members, which is subject to limited
range, interferences and does not scale up for large swarms.
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Fig. 1: Far away UAV against urban background in the shade.
Barely noticeable in visible spectrum but obvious in UV spectrum.

Typical solutions to these issues are visible-spectrum
vision-based approaches [8]. In an indoor-only setup, color-
based markers can be used, see [9], [10], that are easy to
segment under controlled lighting conditions, but not in the
extremely unpredictable lighting conditions and the multi-
colored outdoor environment. For outdoors, black and white
markers are preferred, leading to solutions which combine
passive markers and object detection, see [11], [12], used for
swarms [2], [13] and heterogeneous groups of robots [14],
[15], [16]. The drawbacks of these approaches are the need
for large markers, computational complexity and sensitivity
to lighting conditions.

Our solution extends our previous research on a novel,
vision-based mutual localization in the Ultra-Violet (UV)
spectrum [17] . Motivated by the low amount of near-UV
radiation in sunlight and most artificial sources, compared to
the visible spectrum. The technology uses active UV markers
and standard cameras with UV band-pass filters, allowing for
fast detection of markers in complex environments.

In order to retrieve the orientation or identity (ID) informa-
tion, we encoded individual marker ID in blinking patterns.
These are retrieved using an unprecedented application of
3D Time-Position Hough Transform. Indeed, the algorithm
presented is the first exploiting the Hough Transform for
tracking of objects in time. Since, in this case, the precision
of the shape fitting is less relevant than the computational
speed, this is en exemplary use-case for such algorithm.

The rest of the paper is structured as follows. Sec. II intro-
duces the theoretical background necessary for the proposed
algorithm presented in Sec. III. Finally, Sec. IV summarizes
the results of our experimental proof-of-concept.

II. THEORETICAL BACKGROUND

A. UV spectrum: properties and motivations
For the sake of brevity, only key properties for our

approach are presented, more details are presented in [17].
The solar spectrum approximates the black-body radiation

model and has its peak intensity in the visible spectrum [18],
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while UV radiation is significantly less intense even close to
the visible spectrum. This can be leveraged using affordable
near-UV LEDs and suitable band-pass filters applied on
a monochromatic camera. Tests have shown that the UV
radiation refracted through the atmosphere and reflected from
matte surfaces can be neglected, see [17]. Artificial radiation
sources with strong UV emissions are rare, making this
wavelength range very attractive for our application.

The image spots caused by UV LEDs sources are saturated
at any time of the day, while the only other bright features
are the sun or its specular reflections. Such images can be
binarized by static thresholding, as opposed to the more
computationally intensive adaptive thresholding needed for
the visible spectrum. This allows for computationally simple
detection of markers in the UV-range, robust to outdoor
lighting conditions1.

Following extensive testing in the wavelengths range of
commercial UV LEDs. Best results are achieved with near-
UV wavelength of 395 nm, compatible with widely available
fisheye lenses with a large Field of View (FoV).

B. 3D time-position parametrization
With the proposed near-UV vision system, active markers

appear in the camera image as white spots against a nearly-
black background, see Fig. 1. While easy to locate, they
are individually anonymous. In order to enrich their infor-
mation content we devised blinking patterns encoding ID
information (single marker ID or ID common to markers
on one side of a UAV). While a non-blinking marker can
be tracked among two consecutive camera frames using the
nearest distance between two frames, this is not possible for
blinking markers which are only visible in their on-frames,
and periodically disappear in their off-frames. The only
impact of this addition is a decrease of the admissible flight
dynamics. On the other hand the introduction of blinking
patterns does not only provide additional information, but
also increases robustness by allowing 1) to easily filter out
the sun and its reflections (non-blinking bright spots) and
2) to detect aliasing or occlusion, if the detected blinking
frequency is not among the set of given patterns.

Identification and tracking of these blinking markers calls
for a fast algorithm able to accommodate their periodical
disappearance, which will use the following time-position
parametrization. First, consider that markers observed by a
camera are defined by their x-y coordinates in the image
plane. These can be stored in an accumulator along time,
with t-indexes such that the latest camera image corresponds
to t = 0.We refer to triplets (x, y, t) as t-points which corre-
spond to observations. Then for a set of markers with limited
physical dynamics, their t-points will lie along smooth curves
w.r.t. time, intermittent for blinking markers,see Fig. 2-a.

We chose to approximate those curves, around t = 0, by
lines, see Fig. 2-b. We refer to these lines as t-lines. The
time window used for this approximation impacts both the
admissible flight dynamics and the range of usable blinking
frequencies. The t-lines can be parametrized by their origin-
point x-y coordinates and two angles that we call pitch ' and

1
mrs.felk.cvut.cz/uvdd1

a) b)

Fig. 2: Basic assumptions for the proposed system. (a) moving
points (green) in present camera images (blue plane) follow smooth
trajectories w.r.t. time. Due to blinking of the markers these curves
are intermittent, making some of the points temporarily invisible
(red). (b) considering short enough time-span these curves can be
approximated by lines and such lines can be parametrized by their
origin-point (yellow) and their pitch ' and yaw  .

yaw  , see Fig. 2-b. The origin-points are the points located
in the image plane where the t-lines intersect. In on-frames
they coincide with a t-point of t = 0, otherwise they are
retrieved via Hough Transform, as detailed in Sec. III, and
correspond to the theoretical marker position along the curve.
The pitch and yaw map to the image speed of the tracked
marker, and to the direction of its motion respectively.

Clearly the blinking frequency of a tracked marker can
be retrieved via the t-points spacing along a t-line, the
construction of which relies on a Hough Transform, see
Sec. III. An additional benefit of considering t-lines is that
markers fixed to a translating rigid body will have parallel
t-lines, thus allowing for association of markers and objects.

C. Hough Transform

Hough Transform is a well-known method used to retrieve
regular geometric forms described by a set of parameters. An
example application is fitting a over a set of collinear points.
This is done by projecting the points into image matrix
in the form of curves representing the range of possible
lines passing through this point in terms of their param-
eters. The pixels of the temporary image matrix (Hough
space) are incremented along each of these curves. Such
projections of a number of collinear points will intersect
in the Hough space, creating a local maximum in value
representing the most likely parameters of a line common to
all the original points. For general 3D line fitting scenarios
with reasonable precision the Hough Transform will require
a dense discretization of the parameter space consisting
of at least four parameters [19]. This means searching for
local maxima in a large 4D space which is not feasible for
UAV embedded solutions. Instead we use a more purpose-
fitted implementation of Hough Transform, relaxing t-lines
reconstruction to guarantee a good enough approximation in
order to reliably separate adjacent markers. As we aim at a
good enough approximation, the discretization steps of the
t-line parameters, �' and � , can be chosen large enough
to enforce robustness against small errors in the origin-point
coordinates arising from the camera image pre-processing.
Moreover the set of possible t-lines is constrained by the
physics of the system, allowing to reduce the size of the
Hough space.
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Fig. 3: Flow chart of our tracking algorithm based on Hough
Transform. Both origin-point and blinking frequencies are retrieved,
by-products are the full t-line parameters.

III. ALGORITHM FOR ORIGIN-POINT POSITION AND
BLINKING FREQUENCY TRACKING

This section details the proposed algorithm to retrieve the
origin-points and their blinking frequencies from the camera
grey-scale image. The overall flow is summarized in Fig. 3.

A. Base algorithm
1) Image pre-processing: The pre-processing of the grey-

scale image starts by the detection of bright spots, which
are used to construct t-points, see Sec. II-B. The t-points are
stored in a set, U ⇢ N3. These t-points can be interpreted
as points in a bounded 3D space of height F corresponding
to the highest t-index, i.e. the time window of U . The set
of t-points is updated with each new camera image. We are
interested in a way to retrieve for each t-line both the origin-
point and the blinking frequency along the t-line.

2) Hough Space Operations: A direct approach would
consist in applying 4D Hough Transform on U directly,
which proves to be computationally expensive and cum-
bersome. Therefore, our algorithm is based on two simpler
3D Hough voxel spaces, considering origin-point coordinates
combined with pitch and yaw separately. To reduce the
search space for the construction of the Hough Transform,
the pitch and yaw are discretized such that

 j = j
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� 
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where the range limits and discretization steps are parameters
of our algorithm, listed in Tab. I. Our specialized Hough
Transform translates t-points into their images in the form of
voxelated surfaces in the two aforementioned voxel spaces.
If multiple t-points belong to the same marker, their images

Fig. 4: Erroneous peaks (red) in Hough Transform for pitch (left)
and yaw (center), are suppresed by element-wise multiplication.

in the Hough spaces will intersect at voxels corresponding
to parameters of the t-line on which they lie.

To find the t-line parameters one needs to find local max-
ima in a 3D voxel space, which is computationally complex.
We use the fact that since the curves followed by the t-
points are non-retreating w.r.t. time and since the markers
are attached around non-transparent objects, it is physically
impossible for multiple t-lines to share the same origin-point.
With this assumption, we can simplify the search for local
maxima into 2D, the Hough spaces are flattened into so-
called maxima matrices. This operation is done by assigning
to each [x, y] element of the maxima matrix the highest
value among voxels of the Hough space with the same x-
y coordinates. This results in easier detection for origin-
coordinates at the expense of an information loss about
the associated angle parameters. To keep this information
easily accessible, a second matrix, so-called angle matrix,
is constructed during the flattening process, which stores
the angle value (respectively  or ') corresponding of the
maxima in the Hough space for each x-y coordinates.

3) Origin-point retrieving: From there origin-points can
be retrieved as peaks in the maxima matrices. However some
aliasing phenomena, as well as ambiguity-based artifacts may
be found in the maxima matrix. For pitch, erroneous peaks
in between two slow moving markers can appear. For yaw,
two different kinds of erroneous peaks can appear; some
corresponding to opposite yaw, as well as peaks perpendic-
ular to the connecting lines of neighboring markers due to
discretization. To increase robustness against these erroneous
peaks, the two maxima matrices are multiplied element-wise,
which leads to the suppression of the erroneous peaks as they
are not likely to be present in both spaces.

The origin-point coordinates correspond to peaks in the
combined maxima matrix, and are retrieved in a two-step
method; 1) t-point of index t=0 are collected as their coordi-
nate are more reliable than the estimated one, then 2) peaks
in the combined maxima matrix are collected. After each
located peak, its surroundings are nullified in the combined
maxima matrix, allowing for finding further peaks. During
the peak search we also consider the number of expected
origin-points, L, once L peaks are found the search can stop.
The policy to define L can be based on considering: 1) the
knowledge of visible origin-points based on the number of
UAVs and the average number of visible markers, 2) the
maximum number of markers seen simultaneously within the
last F frames or 3) any other heuristic.

At this stage of the algorithm, the t-line origin-points are
retrieved, i.e. the image positions of markers both in on- and
off-frames. From the respective angle matrices, it is possible
to retrieve the two other t-line parameters estimates.

4) Blinking frequency retrieval: As we decided to encode
additional information into blinking patterns further process-
ing is needed to retrieve them. A possible way to do so
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Fig. 5: Cone shell defined by the estimated t-line pitch. The t-
lines with distant origin-point (red filled) will intersect the expanded
cone shell in few points (hollow red), while t-lines with origin-
point (green filled) nearby to the center of the t-cone (yellow) will
intersect in most of their points (hollow green). This suppresses
their influence on the estimated frequency and yaw.

is to cluster all t-points in the vicinity of the identified t-
lines to find their average blinking frequency. To reduce
computational requirements induced by exploring two Hough
spaces of small granularity, we choose �'⌧ � and forgo
an angle matrix for  . This only gives a reliable estimate
of the pitch parameter, while the  maxima matrix is still
rich enough to reject aliasing. Instead, we now consider t-
cones, which are generated by t-lines rotated around their
t-axis passing through the origin point, see Fig. 5, and their
vicinity to retrieve both blinking frequency and t-line yaw,
by averaging the values of the corresponding t-points. The
vicinity rv is a tunable parameter defining the maximum
distance from the t-cone where we look for t-points. Note
that this method is likely to collect more t-points which are
not a part of the desired t-line in the averaging process, see
Fig. 5. Nevertheless they are, in practice, outnumbered by
the t-points corresponding to the desired t-line. Lastly, the
origin-point with blinking frequency under a certain (low)
threshold can be disregarded as being the sun or its specular
reflections, which are the most significant contaminant of the
camera image in the UV spectrum.

This concludes the algorithm as both origin-points and
their associated blinking frequency are retrieved, along with
the other t-lines parameters.

B. Improvements

In order to increase the robustness to high flight dynamics
and computational efficiency, we have designed two refine-
ments of our algorithm.

1) Weighted Hough space: First, to increase the admissi-
ble dynamics of the tracked markers we propose to introduce
weight in the construction of the Hough space. Instead of
giving equivalent weight for all t-indices, we introduce the
following weighting function,

w(t) = �(F � t) + F 2 N,

where � is a parameter regulating the weight ratio between
the newest t-points, and the oldest ones in U . In this way
the more recent t-points affect the t-lines parameters more,
making our algorithm more resilient to abrupt changes of
direction, implied by highly dynamic flight. This refinement
leads directly to better origin-point estimate.

2) Pre-computed masks: The second refinement reduces
the computational complexity of the Hough space con-
struction, by applying pre-computed masks to generate it.

Fig. 6: A mask used in Hough space for pitch, generated for t-points
with t = 10 (left) and a mask for yaw, generated for t-points with
t = 15 (right). Side bitmaps show the corresponding mask slices.

The constructed masks resemble hollow cones for the pitch
Hough space, see Fig. 6-left, and spiral staircases for the yaw
Hough space, see Fig. 6-right. These shapes can be explained
intuitively. We observed that the possible origin-points of
all t-lines passing through a t-point, can be easily expressed
w.r.t. the t-line parameters, ' and  , for a given t-index t.
The potential origin-point for this t-point directly underneath
has the parameter ' = ⇡

2 and as the distance of the potential
origin-points increases, the corresponding pitch decreases,
which leads to a cone shape in the Hough space. Such cones
are of the same shape for a given t, while the x and y

parameters of the t-point merely shift it to the respective
x-y position. Similar reasoning explains the mask shape for
the yaw Hough space. In order to prevent discontinuities
in the masks, which arise from the angle discretization, we
introduce overlap parameters, �' and � .

To construct the Hough space, at each t-point in U , the
introduced masks are used as follow: 1) retrieve the mask
associated with the t-index 2) retrieve the x-y coordinates of
the t-point and then 3) apply the mask at the coordinates
by increasing the corresponding voxel values in the Hough
space. This considerably speeds up the construction of the
Hough space as instead of calculating all t-lines passing
through each t-point we apply a static, pre-computed, mask.

IV. EXPERIMENTAL VALIDATION

Experimental parameters are grouped in Tab. I. The chosen
parameters influence the maximal admissible flight dynam-
ics, in our case the maximum linear image speed for a
marker is 144 px/s, which translates to a maximum speed
perpendicular to the camera axis of respectively 0.6 and
3 ms�1, for marker-camera distance of 1 and 5 m.

The innovative part of the system, the UV active markers
and camera, are introduced and discussed in [17]. They can
be easily fitted to any UAV platform, which we demonstrate
by using a standard hexarotor for outdoor experiments and
a standard quadrotor for the indoor ones. Indoor experiment
used motion capture system (MoCap) as ground truth.

In the testing phase, our algorithm runs real-time off-
board on an Intel NUC 7 (4 cores, 2.6 GHz), a classical
embedded computer for UAVs. The prototypical MATLAB
implementation loads a single core up to 48.8% on average,
validating that our approach can be easily embedded. Inded
there are enough resources left to run typical mission control
and planning algorithms. The final C code implementation
is expected to run significantly faster. The experiments were
recorded on video (mrs.felk.cvut.cz/uvdd2).
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Symbol Meaning Impact on Experimental
Value [unit]

F time window size of U admissible dynamics 0.3f
�' ' discretization step in Hough Transform robustness to dynamic motion; selectivity; computational complexity ⇡/64 rad
�  discretization step in Hough Transform computational load ⇡/4 rad
�' mask overlap parameter robustness; overall selectivity ⇡/68 rad
' upper limit of the pitch value minimal expected movement ⇡/2 rad
' lower limit of the pitch value admissible dynamics; marker selectivity (via �') ⇡/4 rad
L number of expected peaks number of markers; computational complexity 3 (o) 10 (i)
� weighting factor admissible dynamics 1
r
v

inspected vicinity of t-cones robustness; marker selectivity 3 px
f camera frame-rate maximal blinking frequency f

b

72 Hz
t
x

camera exposure rate selectivity w.r.t. ambient radiation; effective distance range 1000 µs
[f

b

; f
b

] blinking frequency range number of ID encodable 3.34 – 40 Hz

TABLE I: Main parameters of the proposed solution, when needed (o) and (i) denotes outdoor and indoor parameters respectively.

distance from the camera [m]
0  0.5 1  1.5 2  2.5 3  3.5 4  4.5 5  5.5

p
os

it
io

n
er

ro
r
[p

x
]

0 

5 

10

15

20
UAV 1 UAV 2

Fig. 7: Indoor precision testing with MoCap as ground truth, the
position error in the camera horizontal direction against the distance
to the camera is assessed. Marker close have larger (but reasonable)
error, due to larger spot in image, making the exact pixel position
of the marker ambiguous.

A. Indoor validation against ground truth
To evaluate the accuracy, two quadrotor UAVs are flown

in front of a fixed camera, markers are located on the UAV
arms, as described in [17]. To identify each UAV, blinking
patterns are assigned such that each UAV has two dedicated
frequencies, one for front and one for back markers.

In the experiment the UAV 1 was hovering within 1 m
of the camera while performing yaw rotation motion, with
blinking frequencies of 6 and 10 Hz. The UAV 2 was
following a zig-zag like trajectory from 5 to 2 m toward
the camera, with blinking frequencies of 15 and 30 Hz. The
UAVs motion are constrained by the limited size of the flying
arena, forbidding tests on distance longer than 5 m.

MoCap information is translated to camera image and
MoCap-based image positions are paired with the closest
estimated positions of origin points.The position error against
the camera-marker distance is used to asses performances,
see Fig. 7. Markers close to the camera suffer an error of
at most 20 px, while for further away markers the error is
mostly below 5 px. This correlates with the size of the bright
spots in the image that make t-point detection less precise.

The results were additionally evaluated w.r.t. the blinking
frequency of the markers, see Fig. 8. It appears that the
blinking frequencies have not detectable influence on the
position error, as the trend for each individual frequency
follows the aggregated values for their respective UAV.

B. Outdoor validations and characterization
Additional outdoor experiments were conducted to assess

our approach performances in operational conditions. Exper-
iments were conducted around noon by clear weather and
consisted of flights of two hexarotor UAVs, one equipped
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Fig. 8: Impact of blinking frequency on the position error, indoor.
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Fig. 9: Example of outdoor tracking for UAV horizontal motion
(the most agile). Near the instant t = 13 s the UAV was rotated,
so that only two markers remained visible.

with a camera and one equipped with markers following [17].
The markers were set to blink with two distinct frequencies,
such that two triplets on adjacent hexarotor arms shared
frequency. Blinking frequencies where set at 15 and 30 Hz,
for back and front respectively. The tracking results presented
in Fig. 9 show the good performance of the proposed
approach under outdoor light conditions.

In particular, our algorithm was able to keep track of the
IDs of the markers encoded in their blinking frequency, while
still providing accurate image position estimation even in
between the on-frame t-points.

C. Blinking frequency estimation

Both indoor and outdoor data are used to assess the
performances of the frequency estimation, as the generated
frequency are known, they are compared in Fig. 10. By fil-
tering out the obvious outliers, we compute the average error
for all points close to a given frequency. Performances of the
blinking frequency estimation, both indoor and outdoor, are
good with mean absolute error (MEA) below 3.9%, 2.2%,
3.8% and 3.1% for respectively 6, 10, 15 and 30 Hz blinking
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Method Resolution FoV Range ID count Environment Properties

Color circles [20] 752⇥ 480 125� N/A 3+ indoor, well illuminated large marker size, lighting sensitive
WhyCon [11] 752⇥ 480 42� 5.5 m 1 indoor/outdoor, illuminated large marker size ( 18 cm)
ALM-DVS [5] 128⇥ 128 65� N/A 3+ indoor requires event-based camera
CNN-YOLO [21] 1280⇥ 720 132� 15 m N/A indoor/outdoor, illuminated high computational load, marker independant
Proposed approach 752⇥ 480 180� 15 m 6+ indoor/outdoor small markers, low computational intensity

TABLE II: Performance comparison with various representative methods.
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Fig. 10: Estimated Frequencies evolution, in both indoor (top)
and outdoor (bottom) experiments. In both cases the frequency
estimation performs with a MEA below 3.9%.

frequency. This also demonstrates that the blinking frequency
estimation performs similarly for all frequencies well inside
the admissible blinking frequency range.

D. Comparison with other methods
Our proposed methods is significantly more versatile than

state-of-the-art methods, allowing usage both indoor and out-
door without illumination requirements, see Tab.II. Moreover
our appraoch has a low impact in terms of computational
power and works with small markers. For each method
the precision and range can be tuned by selecting different
resolution and FoV, therefore there are no standard metrics to
evaluate them. Despite the combination of small resolution
and large FoV in our experiments, the performances are
comparable or exceeding those of other methods.

V. CONCLUSION

In this paper, we proposed a novel system for outdoor
and indoor mutual relative localization using active UV LED
markers. It enables significantly better performances in com-
parison with state-of-the-art methods of UAV mutual local-
ization. Additionally, we have shown how active markers can
be leveraged to encode additional information via blinking
patterns. Our approach relies on 3D time-position Hough
Transform and has been tested in active UAV deployment
both indoor and outdoor. Results from outdoor experiments
show excellent detection reliability w.r.t. backgrounds such
as the sky, trees or even buildings, while still being able to
decode the blinking signal. The theoretical predictions, as
well as the experimental data presented here, show a lot of
promise for deployment in swarm robotics and multi-robot
systems in general.
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