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Comparative Evaluations of Selected

Tracking-by-Detection Approaches
A. A. Mekonnen and F. Lerasle

Abstract—In this work, we present a comparative evaluation of
various multi-person tracking-by-detection approaches on public
datasets. The work investigates five popular trackers coupled with
six relevant visual people detectors evaluated on seven public
datasets. The evaluation emphasizes on exhibited performance
variation depending on tracker-detector choices. Our experimen-
tal results show that the overall performance depends on how
challenging the dataset is, the performance of the detector on
the specific dataset, and the tracker-detector combination. Some
trackers are more sensitive to the choice of a detector and some
detectors to the choice of a tracker than others. Based on our
results, two of the trackers demonstrate the best performances
consistently across different datasets whereas the best performing
detectors vary per dataset. This underscores the need for careful
application context specific evaluation when choosing a detector.

Index Terms—Tracking-by-Detection, Multi-person Tracking,
People Detection

I. INTRODUCTION

People detection and tracking is an important research area

with prominent applications in video surveillance, pedestrian

protection systems, human-computer interaction, robotics, and

the like. As a result, it has amassed huge interest from the

scientific community [1], [2], [3]. Tracking of people in a

scene, usually referred as multi-person tracking, falls under

multi-object tracking (MOT). MOT deals with the process

of accurately estimating the state of objects – primarily,

position, identity, and configuration – over time from a set

of observations. Due to incurred challenges, e.g., scene clutter,

target dynamics, intra/inter-class variation, measurement noise,

sensor motion, and frame rate, it has long been established that

coupling trackers with detectors, in a paradigm called tracking-

by-detection, helps to better tackle these challenges [4], [1],

[5]. In our context, tracking-by-detection approaches rely on

a people detector to start, update, re-initialize, guide (avoid

drift), or terminate a tracker. In the literature, it is common

to find plethora of tracking-by-detection approaches applied to

multi-person tracking. However, the usual trend is to select a

single detector and directly couple it with the tracker, e.g, [1],

without any comparative evaluation. With the advent of several

people detection techniques that exhibit significant variations

in detection performance/speed (due to remarkable advances

in learning and data mining techniques)[3], [2] and the asym-

metric progress in detector and tracker research, this trend
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must change. The first step should be to evaluate the effect

a detector choice has on tracking performance and relevant

associations with filtering strategies therein. To the best of

our knowledge no such work exists to date. There are indeed

very good experimental comparative works in detection, e.g.,

[3], as well as in tracking, e.g., [6], but none that shows

the interrelated effects of detector and tracker choices and

corresponding implications in different application contexts.

This paper, which is an updated and significantly extended

version of our preliminary work in [7], tries to bridge this gap

by presenting a comparative evaluation of exemplar tracking-

by-detection approaches, with different detector and tracker

choices, on relevant public datasets. Based on experimental

results obtained, it goes beyond to present generalized insights

and discussions that highlight the influence of detector and

tracker choices on tracking performance

In this work, we consider five different trackers (filtering

strategies) based on their pervasive use in the literature and

relevance in MOT Challenge [8]: A Decentralized Particle

Filter (DPF), e.g., [1], Tracker Hierarchy [9], Reversible Jump

Markov Chain Monte Carlo - Particle Filter (RJMCMC) [5],

Simple Online Real-time Tracker (SORT) [10], and Markov

Decision Processes (MDP) [11] tracking. DPF and RJMCMC

are selected as they are the most popular Monte Carlo ap-

proaches; Tracker Hierarchy and SORT, on the other hand,

showcase a deterministic like approach with mixed closed-

form stochastic and deterministic tracking strategy. MDP is

unique as it tries to model lifetime of a target with Markov

Decision Processes, on top of similar target dynamics and

appearance considerations.

The aforementioned trackers are coupled with six selected

detectors, namely: Histogram of Oriented Gradients (HOG)

based detector denoted as HOG-SVM [12] , Deformable Part-

based Model (DPM) detector [13], Aggregate Channel Fea-

tures (ACF) based detector [2], Locally Decorrelated Channel

Features (LDCF) [14] that builds upon ACF, and two deep

learning (DL) based detectors namely Region-based Convolu-

tional Neural Networks (RCNN) [15], and Deep Convolutional

Neural Networks for Pedestrian Detection (DeepPed) [16].

These detectors mark distinct detector superiority era onsets as

published in 2005, 2010, 2014 (x2), and 2015 consecutively.

Furthermore, our choice is motivated by the fact that LDCF,

ACF and DPM are amongst the current best detectors based on

hand-crafted features, and DeepPed and RCNN are the promi-

nent ones amongst deep learned feature based approaches.

HOG-SVM, though not currently amongst the best, uses

features that are constituents, in one way or another, of current
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state-of-the-art approaches and historically has been the de

facto benchmark detector. Here, it is important to mention that

we do not consider detectors that use background/foreground

subtraction techniques, e.g., [17], as they have been recently

dominated by the success in the former types (i.e., those that

employ learned people models). To summarize, the selected

trackers and detectors are quite relevant and representative for

the intended comparative evaluation.

The rest of this paper is organized as follows: Sec. II

presents related work and highlights our contributions. Sec. III

details the adopted tracking-by-detection framework, and it is

followed by Sec. IV and Sec. V which describe the selected

visual people detectors and multi-object tracking methods in

detail, respectively. Sec. VI details the experimental settings

and obtained results; Sec. VII provides a comprehensive

discussion, and Sec. VIII presents concluding remarks.

II. RELATED WORK AND CONTRIBUTIONS

Tracking-by-detection is overwhelmingly present in MOT,

especially in video surveillance, due to recent advances in

detector performance [6]. It provides a strong framework on

which multi-target trackers can recover from drift, target loss,

occlusions or target confusion. The main advantage of this

method is that it allows multi-object trackers to rely on the

output of the detector in order to give birth, kill, or correct

a track. Tracking-by-detection approaches in the literature

can be roughly categorized into two: a batch and an online

approach. The batch approach utilizes global optimization over

an entire video content to determine target trajectories from

detections, e.g., [17]. The online approach, on the other hand,

can be either a first order Markovian system that employs

a recursive probabilistic approach to update and refine the

trajectory of targets on a frame by frame basis, e.g., [18], [1],

or a tracklet based system that first generates short tracklets

by linking frame by frame detections, which are then globally

associated to build longer tracks, e.g, [19]. As the name

suggests, the batch approach renders itself to offline use while

the latter is suitable for online tracking applications. In this

work we focus on first order (online) Markovian trackers.

As illustrated in Fig. 1, tracking-by-detection contains three

main components: a detector, a tracker (filter), and a data

association module. The tracker by itself further encapsulates

target appearance model, target dynamic model, and state-

space exploration technique.

The earliest account of coupling learned detectors in

tracking-by-detection can be traced back to the works of

Beymer and Konolige [20]. In their work, they made use of a

learned template based person detector with a Kalman Filter

based tracker. Tracking-by-detection paradigm became popular

only after significant improvements in people detection were

demonstrated a couple of years later [21], [22]. Until recently,

the majority of tracking-by-detection works have resorted to

the HOG people detector [1], [18], [9]. Even currently, given

the vast pool of detectors with varying performances, only

a handful of them have been investigated for tracking-by-

detection – HOG and ACF to be precise, e.g., [1], [8]. The

trend is to pick a detector and directly use it – to the best

of our knowledge there is no comparative work that shows

the effect of a detector choice on tracker performance in

different application contexts. This work addresses this gap

by carrying out detector-tracker choice evaluations on public

datasets to highlight the gains and losses incurred under

different contexts. In the following consecutive paragraphs,

related works in people detection and tracking are briefly

discussed.

As highlighted, the literature on people detection is quite

vast (please refer to [3], [23] for extensive surveys), but to

briefly recap it, early success was achieved using rudimen-

tary Haar like features inspired by Haar Wavelets that cap-

ture region intensity differences, but have limited descriptive

power [24]. These were later significantly improved with the

use of gradient based HOG features [12]. Building on HOG,

several works have proliferated improving the state-of-the-

art by combining HOG with other features (utilizing hetero-

geneous pool of features). Examples include: the HogLBP

detector [25] that combined HOG features with Local Binary

Patterns (LBP), and the MultiFTR detector [26] that combined

HOG with Haar like and shape context features. The next

significant improvement was made by the Deformable Parts-

based Model (DPM) detector which uses slightly altered HOG

features in a parts based detector configuration that explicitly

looks for different automatically learned parts of a person (five

to be exact) to detect a person [13]. Following this, further

improvements have been made possible with the advent of

Channel Features [27] and their derivatives. Channel features

combined with soft-cascade boosting frameworks ([28], [29])

are amongst the current best approaches both in terms of

detection performance and computation time [30].

The tracker, particularly Multi-Object Tracker (MOT) in this

work, is another core component of tracking-by-detection that

is responsible for accurately estimating the state of targets

– location, identity, and dynamic configuration – over time

from a set of observations, e.g., [31], [4]. Without loss of

generality, MOT is considered to refer to tracking of multiple

people henceforth. Two main paradigms exist for MOT state

representation, which also indirectly govern the state-space

filtering technique: A centralized approach, in which all the

states of the tracked targets are joined, as subspaces, to yield

a single representation that captures the entire configuration

of the tracked persons [5], [32], [33]; and a decentralized

approach whereby each target is represented, and consequently

tracked independently, e.g., [1]. The advantage of the joint

representation is, should the targets interact, an interaction

model can be incorporated in the tracking problem and tackled

systematically. On the other hand, for the independent repre-

sentation, target interaction models can not be incorporated

directly. It naturally lends itself to ad-hoc solutions based on

a high level supervisor which manages the trackers’ behaviors

during close-by interactions [18], [1].

The tracker is further governed by the adopted target

dynamic and appearance model. The target dynamic model

dictates how the targets evolve in the current time frame

from the previous state. In MOT, it is common to consider

random walk, e.g., [32], [34], linear autoregressive models

with constant velocity, e.g., [1], and non-linear models, for
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example, in the form of social forces [35], to describe target

evolution. On the subject of appearance model, trackers can

usually be classified in either of two groups: generative [36],

[37] and discriminative methods [38], [39]. Generative models

usually learn a model that directly represents the target object

or person and use it to rate candidate positions, either by using

back-projection to find the region with minimal reconstruction

error [9] or by sampling [40] to find the best candidate.

Discriminative methods, on the other hand, prefer to model

tracking as a binary classification task in order to discriminate

the target from the background in the feature space [38], [39].

For these reasons, recent trackers have tried to make detectors

and trackers work hand-in-hand in a framework that leverages

their respective strengths. For example, [41], [1] complement

the generic appearance model of its detector with online-

trained classifiers that are able to accurately discriminate

between targets.

Contributions: The main goal of this work is a system-

atic evaluation of relevant detector-tracker combinations (that

define a specific tracking-by-detection approach), on several

public datasets to assess the effect of detector and tracker

choices on MOT performance under different applicative con-

texts. To achieve this, we consider a combination of six visual

people detectors and five multi-object trackers, and evaluate

their performance on seven public datasets. This is a very

challenging endeavor and a crucial contribution to the state-

of-the-art that is lacking this kind of experimental benchmark.

Hence, our main contributions can be summarized as: (1) Sys-

tematic evaluation of tracking-by-detection approaches based

on relevant combination of trackers and detectors on different

application contexts; and (2) Based on the experimental results

obtained using the chosen detectors and trackers, we try to

go beyond and present generalized discussions and guidelines

that highlight the influence of detector and tracker choices on

tracking performance.

III. FRAMEWORK

Visual People

Detector

Data

Association

Multi-Object Tracker

(Filter)

Appearance

Model

Dynamic

Model

Fig. 1: Basic components of a tracking-by-detection frame-

work and their interactions.

The adopted tracking-by-detection framework is depicted in

Fig. 1. It builds upon object detectors to initialize, terminate,

and update tracks. It is important to mention here that all

tracking in this work is carried out on the image plane –

the output of a tracker describes a bounding rectangular box

delineating the target. Detections and tracks are matched by

a data association module that identifies detections as, (1)

one of the targets, in which case it is used to update the

track, or (2) as a new target, in which case it is used to

create a potential track that awaits further associations with

future detections to become a track. The tracker, or filter,

itself will then handle how tracks are propagated at the current

frame given a dynamic model, and estimate the most probable

bounding box of the target at the current frame using an

appearance model. The filter’s purpose is to compensate for the

detector’s unreliability, i.e., high number of false positives and

false negatives, and discrete number of responses in opposition

to, for instance, a likelihood map.

The visual detector outputs a set of unlabeled detections,

along with their detector confidence, from the current image.

Detector confidence can be thresholded in order to reduce false

detections. The list of detectors considered are presented in

detail in Sec. IV. These detections are then sent to the data

association module which matches detections in the current

frame with tracks from previous time frames – if any – using

the detections’ and the tracks’ location, scale, and appearance,

via a matching score Si,j (for the ith detection and jth track)

computed as:

Si,j = λd

∥

∥

∥

∥

xi − xj

yi − yj

∥

∥

∥

∥

2

+ λs ‖si − sj‖2 + λappB(Hi,Hj) (1)

Where λd, λs and λapp are adjustable parameters, and

B(Hi,Hj) is the Bhattacharyya color histogram similarity

coefficient. x, y denote position on the image plane, and

s denotes scale. Scores are thresholded to ensure unlikely

associations (i.e., associations with low scores) are not made.

Even though, the Hungarian algorithm is usually used for the

association using the score matrix, we use a greedy algorithm

that iteratively associates detections and tracks with the highest

score as it has been shown to be sufficient [1].

When a detection is assigned to a track, the track’s re-

maining lifespan is increased, whereas tracks that are not

matched to a detection see their lifespan decrease. When a

track remains unmatched to any detection for a certain number

of frames, the track is killed. The unmatched detections are

used to create potential new tracks, which become an active

track when associated with sufficient number of detection

consecutive frames. Once data association is performed, the

tracking (filtering) process takes place. The list of considered

trackers are described in Sec. V.

IV. VISUAL PEOPLE DETECTORS

This section presents the different visual people detectors

investigated in this work. As presented in Sec. II, the state-of-

the-art in visual people detector encompasses several detectors

that have different detection performance, computation time,

and model abstraction. In this work, we select six detectors,

namely: HOG-SVM [12], DPM [13], ACF [2], LDCF [14],

DeePeed [16], and RCNN [15] for the intended tracking-by-

detection evaluations. Relevant characteristics of these detec-

tors are summarized in Table I.

A. Histogram of Oriented Gradients (HOG-SVM)

This detector, proposed by Dalal and Triggs [12], is one

of the classical and oldest detectors. This detector computes

local histograms of the gradient orientation on a dense grid
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TABLE I: Summary of the six detectors investigated (see text

for abbreviations).

Detector Feature Type Model Classifier NMS Training Dataset

HOG-SVM [12] HOG Holistic Linear SVM PM INRIA dataset

DPM [13] HOG Parts-based Latent SVM PM INRIA dataset

ACF [2] Channel Features Holistic AdaBoost PM INRIA dataset

LDCF [14] Channel Features Holistic AdaBoost PM INRIA dataset

DeepPed [16] Deep Learned (CNN) Holistic Linear SVM PM INRIA dataset

RCNN [15] Deep Learned (CNN) Holistic Linear SVM PM INRIA dataset

and uses linear Support Vector Machine (SVM) as a classifier.

The learned model is based on a holistic (full-body) abstraction

trained on the public INRIA person training dataset [12]. The

detection outputs are filtered by a Pairwise Max (PM) Non-

Maximal Suppression (NMS) technique that suppresses the

less confident of every pair of detections that overlap suffi-

ciently. Although HOG-SVM is not the current best detector,

its constituent HOG features are the most discriminant features

to date [3].

B. Deformable Parts Model (DPM)

DPM [13] is a parts based detector that works by aggregat-

ing evidence of different parts of a body to detect a person

in an image. The detector uses a mixture of deformable part-

based models and a modified version of HOG features. The

model consists of a root filter (one that characterizes full-body)

and several part filters; its score over a candidate window is

determined as the score of the root filter plus sum of the scores

of each part filters, taking the maximum over placements of

the parts, minus a deformation cost that penalizes deviation

from ideal part locations relative to the root filter. It is learned

using partially labeled data with a latent SVM on the INRIA

person dataset. The final detection bounding box is determined

with a learned mapping function that uses the detected parts’

positions. It uses a PM based NMS technique. Since this

detector relies on parts, it detects partially occluded people

well and leads to better localization accuracies.

C. Aggregate Channel Features (ACF)

This is a fast person detector based on the notion of channel

features that has outperformed several detectors on various

benchmarking datasets [2]. It is based on aggregates of features

represented as channels, a variant of Boosted classifier, and a

holistic person abstraction. A channel is a per-pixel feature

map computed from a corresponding patches of input pixels.

It can, for example, be the L component of the LUV color

transformed input image, or even a histogram of each quan-

tized gradient orientation (one channel per orientation) of the

input image. ACF uses ten channels – gradient magnitude,

HOG (6 channels), and LUV color channels. Each channel is

aggregated over blocks to create lower resolution channels.

The final classifier is learned using AdaBoost and depth

two decision trees over these channel features. The detector

considered in this work is trained on the INRIA person dataset

and uses PM based NMS.

D. Locally Decorrelated Channel Features (LDCF)

The LDCF people detector [14] is a detector that also

relies on channel features like ACF. But, instead of training

a classifier on the features directly, it applies a decorrelation

step beforehand. The key point is the observation that decision

trees used in Boosting, that use orthogonal (single feature)

splits, can generalize better if the correlation between channel

features is reduced. Hence, LDCF modifies ACF by applying

decorrelating filters per channel. The filters are determined

as the eigen vectors of a channel specific covariance matrix

computed from a large collection of natural images.

E. Deep Convolutional Neural Networks (DeepPed)

This people detector, referred as DeepPed [16], is a pedes-

trian detection system based on deep learning, adapting a

general-purpose convolutional network to the task at hand. The

detector employs a combination of LDCF as region proposal

algorithm, a finetuned deep convolutional neural network for

feature extraction, and a linear SVM for the final classification.

Due to the complexity of the different stages and parameters

involved, it is not possible to provide useful details here. But,

the actual detector pipeline with the utilized parameter values

is detailed in [16] dubbed as DeepPed.

F. Region-based Convolutional Neural Networks (RCNN)

The RCNN people detector is based on the works of

Girshick et al. [15]. This detection system consists of three

modules. The first generates category-independent region pro-

posals. These proposals define the set of candidate detections

available to the detector and are based on selective search.

The second module is a large convolutional neural network

that extracts a fixed-length feature vector from each region

(each selected region is warped into a pre-defined and fixed

rectangular region). The third module is a class specific linear

SVM that classifies each fixed-length feature as a person or

not. Even though the detector presented in [15] is applied to

several classes, in this work, the model trained for pedestrian

detection on the INRIA dataset is utilized.

The selected six people detectors highlight advances made by

different generation of detectors. Both HOG-SVM and DPM

are based on similar underlying HOG features. LDCF and

ACF are based on the notion of channel features. DeepPed and

RCNN are based on deep learned features and represent recent

advances made in machine learning. On recent benchmarks

made on public datasets [42], [43], [16], [15], DeepPed and

RCNN show better performance, followed by LDCF, ACF, and

DPM respectively. HOG-SVM performs poorly, nevertheless,

it is important to include it in benchmarking as it marks the

first significant advance made by a people detector. Detection

evaluation results on public datasets used in this work are

presented in Section VI-C.

V. MULTI-OBJECT TRACKERS (MOT)

MOT is considered here in the vein of multi-person tracking

utilizing a tracking-by-detection paradigm as illustrated in

Sec. III. We consider two classes of trackers, purely probabilis-

tic ones – based on sequential Monte Carlo approach (DPF and

RJMCMC) and Markov Decision Processes (MDP) – and a

deterministic like approach with mixed closed-form stochastic

and deterministic tracking strategy (Tracker Hierarchy and

SORT). Furthermore, the selected trackers can be categorized

as decentralized (DPF, Tracker Hierarchy, SORT, and MDP),
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and centralized (RJMCMC). These trackers combined with the

six detectors are evaluated on seven publicly available bench-

marking datasets (Sec. VI). Table II summarizes important

characteristics of the considered trackers; details are provided

subsequently.

TABLE II: Summary of considered tracking (filtering) types.

IS: importance sampling, MH: Metropolis-Hastings sampling,

MMSE: minimum mean square error, KF: Kalman Filter.

Tracker Sampling
Appearance

Model

Dynamic

Model

Data

association

Point

estimate

DPF IS Multi-Template Random walk Greedy MMSE

RJMCMC MH Multi-Template Random walk Greedy MMSE

Hierarchy [9] – Multi-Template Linear velocity (KF) Hungarian Mode (Mean shift)

SORT [10] – – Linear velocity (KF) Hungarian Mean

MDP [11] – Single-Template Optical flow Hungarian Lucas-Kanade [44]

A. Decentralized Particle Filter (DPF)

In this approach, each target is assigned a unique instance

of a Particle Filter as a tracker. This target specific tracker

is based on the ICondensation [40] filter, a sequential Monte

Carlo approach which approximates the posterior over the tar-

get state xt given all measurements up to time t, Z1:t, using a

set of N weighted samples, i.e., p(xt|Z1:t) ≈ {x
(i)
t , w

(i)
t }Ni=1.

Tracking is achieved sequentially with the notion of Im-

portance Sampling whereby the particles at time t − 1 are

propagated according to a proposal density q(.) and their

weights are updated in accordance with Eq. 2.

w
(i)
t ∝ w

(i)
t−1

p(zt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1, zt)

(2)

The DPF utilized here is the same as presented in [7] but

with improved multi-template appearance model. The exact

label for the resulting tracking-by-detection method is derived

by appending the detector name on the tracker, e.g., DPF-ACF.

a) State Space: The state of a target j at time t in particle

i, x
(i)
t , is represented by the vector [xit, y

i
t, s

i
t]
T , where x and

y denote the position, within the image plane, and s denotes

the scale of the rigid boundary box encapsulating the target at

time t. Here, showing the target index j is not relevant as a

single DPF tracks only one target.

b) Particle Sampling: The importance function used to

sample particles q(x
(i)
t |x

(i)
t−1, zt) is described in Eq. 3.

q(x
(i)
t |x

(i)
t−1, zt) = βp(x

(i)
t |x

(i)
t−1) + απ(x

(i)
t |zt) + γp0(x

(i)
t ) (3)

This proposal distribution propagates β proportion of the par-

ticles from the previous time frame with the target dynamics

model, sample α proportion of the particles from the detector

proposal π(x
(i)
t |zt), and sample the remaining particles from

the prior distribution (α, β, γ should sum to 1). This allows the

tracker to incorporate detection information into the filtering

step. The detector proposal distribution π(x
(i)
t |zt) is modeled

as a Normal distribution N (x
(i)
t |z

(i)
t ,Σd), where z

(i)
t indicates

a detected target that has been associated with particle i, and

Σd is the covariance matrix of the detector d ∈ {HOG-SVM,

DPM, ACF, LDCF, DeepPed, RCNN}.

c) Dynamic Model: Given the nature and variability of the

evaluation datasets (Sec. VI-B) and difficulty of characteriz-

ing motion of humans on the image plane, a random walk

dynamics model is used, i.e., for a particle i, p(x
(i)
t |x

(i)
t−1) =

N (x
(i)
t |x

(i)
t−1,Σdyn).

d) Appearance Model: The appearance of a tracked target

j is kept track of using a dynamically updated multi-template

(MT) histograms (template ensemble) similar to [9]. In this

case, the appearance of tracked target is captured by the set of

NT histograms
{

Hj
ck,k

}NT

k=1
. Here, j identifies the target, ck

identifies the two color channels of the kth histogram (see [9]

for details). With this change, the likelihood measure of a DPF

is given by Eq. 4.

p(zt|x
(i)
t )|j ∝ exp

(

−λ

NT
∑

k=1

B

(

Hj

ck,k
,H

x
(i)
t

ck,t

)

)

(4)

H
x
(i)
t

ck,t
stands for the histograms (with color channels ck)

computed from the image frame at time t at the bounding box

specified by x
(i)
t . B(, ) is the Bhattacharyya color histogram

similarity coefficient. The target template ensemble update is

managed as in [9].

e) Tracker Birth and Death: The creation of a new track and

the removal, or death, of an instantiated track is managed in an

ad-hoc manner as in [1], [18]. Whenever there is unassociated

detection, a new potential track, one instance of DPF, is

created. Once Nbirth number of consecutive detections have

been associated with it, it is upgraded to a real track and marks

the birth of a new tracked target. Similarly, when a tracked

target has not been associated with a detection for Ndeath

number of consecutive frames, it is removed and the target is

no longer tracked.

B. Reversible Jump Markov Chain Monte Carlo - Particle

Filter (RJMCMC)

RJMCMC, proposed in [45], [5], is a popular joint state

(centralized) tracker that represents the state of all tracked

targets with a single state vector. Unlike classical joint state

particle filters that are based on Important Sampling, RJM-

CMC relies on the Metropolis-Hastings (MH) algorithm [46]

for sample generation. Similar to DPF, RJMCMC approxi-

mates the posterior over the tracked targets’ state Xt−1 given

all measurements up to time t − 1, Z1:t−1, using a set of

M particles. But, this time the particles are unweighted, i.e.,

p(Xt−1|Z1:t−1) ≈ {X
(i)
t−1}

M
i=1. The posterior at the current

time frame is approximated with Eq. 5. Xt =
{

xj
t

}|Xt|

j=1

represents the states of all tracked targets. |Xt| denotes the

total number of tracked targets.

p (Xt|Z1:t) ∝ p(zt|Xt)

M
∑

i=1

p(Xt|X
(i)
t−1) (5)

RJMCMC defines a Markov Chain over the state configuration

so that the stationary distribution of the chain approximates

the posterior distribution in Eq. 5. It uses a set of m moves

to change the dimension of the state, i.e., adding new target,

removing untracked targets, or leave it unchanged according

to a prior move proposal qm. Each move m is associated

with a move specific proposal distribution Qm(.), and must

have a reverse move m∗ that assures reversibility so that

detailed balance will be achieved and the chain will converge
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to the desired stationary distribution [5]. During the estimation

process, at the ith iteration, it first samples a move from qm
and proposes a new particle X∗ based on Qm(.). It then

computes the acceptance ratio αa (Eq. 6) with Qm(.) and

the reverse move proposal distribution Qm∗(.). The proposed

particle is accepted with probability αa or otherwise rejected.

The burn-in, Mb, and thin-out, Mth, particles are discarded

leaving M unweighted samples to represent the posterior.

αa = min

(

1,
p(X∗|Z1:t)Qm∗(X

(i−1)
t ;X∗)qm∗Ψ(X∗)

p(X
(i−1)
t |Z1:t)Qm(X∗;X

(i−1)
t )qmΨ(X

(i−1)
t )

)

(6)

Ψ(.) is the interaction model. The implementation in this

work is similar as in [7] with the addition that the appearance

model now is based on multi-template histogram ensemble.

a) State Space: The state vector of a person j in particle i
at time t is a vector xi

j,t = [Idij,t, x
i
j,t, y

i
j,t, s

i
j,t]

T , where x, y, s
denote the position and scale of a target in the image plane,

and Id indicates the identity of the target. Consequently, the

ith particle at time t is represented as Xi
t = {Iit , x

i
(j,t)}, j ∈

{1, ..., Int }, where Iit is the number of tracked persons in the

ith particle.

b) Proposal Moves: The set of proposal moves considered

are: m = {add, delete, remove, stay, update, swap}.

The choice of the proposal privileged in each iteration is

determined by qm, the jump move distribution.

c) Interaction Model: As in [45], [5], we adopt a pairwise

Markov Random Field (MRF) where the cliques are restricted

to the pairs of nodes (targets define the nodes of the graph),

that are directly connected to the graph. This is given by

Eq. 7, where D(, ) denotes the normalized Euclidean distance

between the state vectors.

Ψ(Xi
t) = Πj 6=k

(

1− e
−λmrfD2(xi

j,t,x
i
k,t)
)

(7)

d) Appearance Model: The appearance model is based on

multi-template histogram ensemble similar to the DPF. The

difference is the way p(zt|X
(i)
t ) gets computed for the ith

particles since X
(i)
t contains the states of all tracked targets.

Let X̂ denote the subset of updated or swapped targets

(excluding removed or added targets whose likelihood is set

to one). Then the likelihood for particle X
(i)
t is computed via

Eq. 8..

p(zt|X
(i)
t ) ∝ exp



−λ
∑

x∈X̂

I(j, x)

NT
∑

k=1

B
(

Hj

ck,k
,Hx

ck,t

)



 (8)

I(j, x) =

{

1, if j = id(x)

0, otherwise
(9)

The indicator function I(j, x), Eq. 9, insures a target’s appear-

ance model is correctly matched with the correspond target in

the state vector.

The RJMCMC is coupled with the different detectors pre-

sented and evaluated. The coupled tracker-detector is denoted

using RJMCMC followed by used detector acronym, e.g.,

RJMCMC-ACF. Similar to DPF, the detection-track data as-

sociation is handled via a greedy assignment algorithm.

C. Tracker Hierarchy (Hierarchy)

This multi-object tracker is another tracking-by-detection

decentralized MOT that assigns a single tracker per target.

It is a tracker that consists of a rich appearance model of the

target in the form of a template ensemble and uses hierarchy of

expert and novice trackers for efficient multi-person tracking.

It alternates between mean-shift mode estimator (to consider

the target’s appearance) and a Kalman filter (to account for

the target’s linear velocity motion dynamics) [9]. Please refer

to [9] for further details. This tracker combined with any of the

detectors is labeled as Hierarchy followed by detector name,

e.g., Hierarchy-ACF.

D. Simple Online and Realtime Tracker (SORT)

The SORT tracker, proposed by Bewley et al. [10], is

a lightweight multi-object tracker that depends solely on

detections and dynamic motion model without using any target

appearance model for tracking. The tracker focuses on efficient

and reliable handling of the common frame-to-frame associ-

ations. Additionally, it employs two classical yet extremely

efficient methods, Kalman filter and Hungarian method [47], to

handle the motion prediction and data association components

of the tracking problem respectively.

The tracker tracks each target independently and approxi-

mates the inter-frame displacements of each target with a linear

constant velocity model which is independent of other objects

and camera motion. In assigning detections to existing targets,

each targets bounding box geometry is estimated by predicting

its new location in the current frame. The assignment cost

matrix is then computed as the intersection-over-union (IOU)

distance between each detection and all predicted bounding

boxes from the existing targets. The assignment is solved

optimally using the Hungarian algorithm. Tracker birth and

death are handled similar to the DPF presented in Sec. V-A.

In our experiments, this tracker is evaluated by using each of

the six presented detectors. Each variant is postfixed with the

name of the associated detector, e.g., SORT-ACF.

E. Multi-object Tracking by Markov Decision Processes

(MDP)

The MDP tracker [11], formulates the online MOT problem

as decision making in Markov Decision Processes (MDPs),

where the lifetime of an object is modeled with an MDP.

Learning a similarity function for data association is equivalent

to learning a policy for the MDP, and the policy learning is

approached in a reinforcement learning fashion which benefits

from both advantages of offline-learning and online-learning

for data association. In this framework, a single object tracker

is considered to be an agent in MDP, whose task is to track

the target. Then good policies are learned for the MDP with

reinforcement learning, and multiple MDPs are employed to

track multiple targets.

Given a new input video frame, targets in tracked states

are processed first to determine whether they should stay as

tracked or transfer to lost states. Then a pairwise similarity

between lost targets and object detections which are not

covered by the tracked targets is computed. After that, the

similarity scores are used in the Hungarian algorithm to obtain
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the assignment between detections and lost targets. According

to the assignment, lost targets which are linked to some object

detections are transferred to tracked states. Otherwise, they

stay as lost. Finally, an MDP is initialized for each object

detection which is not covered by any tracked target. To

propagate the tracked targets to the next frame (target dynamic

model), optical flow from densely and uniformly sampled

points inside the target window is used. The corresponding

point estimate location in the new frame is determined using

the iterative Lucas-Kanade [44] method with pyramids. Ad-

ditionally, the framework can naturally handle the birth/death

and appearance/disappearance of targets by treating them as

state transitions in the MDP while leveraging existing online

single object tracking methods. Please refer to [11] for further

details. Similar to the other trackers, this tracker is evaluated

by using each of the six presented detectors. Each variant is

postfixed with the name of the associated detector, e.g., MDP-

ACF.

VI. EXPERIMENTS AND RESULTS

This section presents the different experiments carried out

in detail. The objective is to evaluate the different tracking-

by-detection approaches on public datasets in order to gather

useful insights on the detector-tracker choice and more specifi-

cally on how each approach behaves under varying application

contexts. We first evaluate the detectors’ performances on each

dataset and then proceed with tracking-by-detection evalua-

tion. The section begins with a presentation of the evaluation

metrics and the datasets used, and follows with a description

of the specific experimental/implementation settings used and

obtained results.

A. Evaluation metrics

Detector performance is measured in terms of precision and

recall which are defined according to Eq. 10. Precision charac-

terizes the proportion of detections that are indeed true targets,

whereas recall indicates the proportion of correctly detected

targets. TP stands for true positives, FP for false positives,

and FN for false negatives. These values are determined based

on the per image evaluation described in [3].

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(10)

Tracker performance, on the other hand, is quantified using

the prevalent CLEAR-MOT metrics [48]. The CLEAR-MOT

metrics are principally based on computation of two quantities:

the multi-object tracking accuracy (MOTA) and the multi-

object tracking precision (MOTP), Eq. 11.

MOTA = 1−(FP+FN+Idsw); MOTP =

∑

j,t
S(xj , gt)
∑

t
ct

(11)

Where FP =
∑

t
FPt

gt
denotes the total number of false

positive, FN =
∑

t
FNt

gt
denotes the total number of false

negatives, and Idsw =
∑

t

Idsw,t

gt
denotes the total number

of id switches, divided by the total number of ground truth

targets (gt) summed over the entire dataset. Even though it

is not directly computed, the true tracking rate (true positive)

can be expressed as TP =
∑

t
TPt

gt
. MOTP is the average

bounding box overlap (intersection over union) between the

estimated target position and ground truth annotations over

the correctly tracked targets. A tracker estimated rectangular

position R(xj) is considered a correct track if its overlapping

area score S(xj , gt) =
R(xj)∩R(gt)
R(xj)∪R(gt)

with the ground truth

annotation gt is above a threshold So. For all the metrics

MOTA, MOTP, Precision, and Recall, the higher they are the

better.

B. Datasets

For evaluation, we use seven publicly available datasets

summarized in Tables III and IV. These datasets are selected

to encompass varying target characteristics, environment con-

texts, and sensor configurations. They include: static/mobile

camera, differing image frame resolutions, indoor/outdoor

settings, cluttered/uncluttered backgrounds, repeated target

occlusions, and several target interactions. As can be seen

(observed) from Fig. 2 (Tables III and IV), PETS-S2L1

features an outdoor scene captured using a surveillance camera

with a slanted perspective view; it has several occlusions

and inter-target interactions. The CAVIAR-OneShop dataset

features intermittent target occlusions in an indoor scenario

and the targets’ speeds vary, with some of them remaining

static for some time. Similarly, CAVIAR-EnterExit features

the same environment as CAVIAR-OneShop with more diverse

directions of movements and several background clutters.

TUD-Crossing features pedestrians crossing the road from a

side view (static camera) with bi-directional horizontal target

motions in a dense crowd. It has the most severe inter-

target occlusions. The ETH-Bhnhof, ETH-Jelmoli, and ETH-

Sunnyday datasets are all acquired using a moving camera. In

ETH-Bahnhof the camera is mounted at hip-height and most

targets walk towards or away from the camera on a crosswalk.

In ETH-Jelmoli, the camera shows an erratic movement amidst

a crowd of people moving in different directions at a plaza.

The scene gets very complex though the crowd remains

sparse. In ETH-Sunnyday the camera is moving forward on a

crosswalk in a dense crowd. Targets move towards and away

from the camera. Fig. 2 shows sample frames taken from each

datasets.

The six detectors are evaluated on all the presented

datasets using precision-recall metrics. Fig. 3 shows the

precision-recall curves generated by varying the final de-

tection threshold. Generally speaking, all the detectors ex-

cept HOG-SVM perform well on PETS-S2L1, TUD-Crossing,

and ETH-Sunnyday, achieving a higher than 80% recall at

some operating points. But, on the rest perform moder-

ately with severe under-performance observed in CAVIAR-

OneShop and ETH-Jelmoli. The operating point of each

detector per dataset is determined by setting the detector

output threshold value to a point that maximizes the F1-score
(

= 2. precison.recall

precision+recall

)

. This point determines an operating

point that balances precision and recall trade-offs equally.

Accordingly, the thresholds for each detector are denoted as θd
where d ∈ {RCNN, DeepPed, LDCF, ACF, DPM, HOG-SVM} (see values

for PETS-S2L1 in Table A.1 of [49]). The exact precision-

recall obtained for all the datasets using these thresholds are

shown in Table III. This table helps highlight each detector’s



8

(a) CAVIAREnterExit (b) CAVIAROneShop (c) PETS-S2L1 (d) TUD-Crossing (e) ETH-Bahnhof (f) ETH-Sunnyday (g) ETH-Jelmoli

Fig. 2: Sample images taken from each dataset.

performance on the different datasets. It will later be used

as a basis to compare performance with detector alone and

with tracker incorporated. LDCF records the highest recall and

precision in three and six of these datasets respectively. RCNN

and DPM demonstrate the highest recall in the remaining four

datasets. HOG-SVM and DeepPed show the worst recall rates.

All in all, CAVIAR-OneShop and ETH-Jelmoli prove to be

very difficult leading to very low recall rates (57% and 56%
best case scenarios respectively).

C. Implementation details

Several implementation choices and experimental setups are

discussed below. To tune the different free parameters related

to the detectors and trackers (e.g., detector thresholds, number

of particles, etc), a tuning dataset is used. For each evaluation

dataset, a separate public dataset acquired in the same setting

is used for tuning. For both CAVIAR datasets, the CAVIAR-

WalkByShop [50] is used for tuning; for PETS-S2L1, the cor-

responding PETS-S1L1 [51] dataset is used. The parameters

used for all the three ETH datasets are tuned based on the

ETH-Crossing [53] dataset. Finally, for TUD-Crossing, TUD-

Campus [52] is used. The parameters for SORT, Hierarchy,

and MDP are either tuned or trained based on the approach

outlined in their original publications using the corresponding

tuning datasets (please refer to [10], [9], [11], respectively

for details). For DPF and RJMCMC, the tuning strategy is

discussed below. The tuned parameters based on the PETS-

S1L1 dataset for DPF and RJMCMC are shown in Table A.1

of the supplemental material [49]. Every experiment, tuning,

and final evaluation, related to DPF and RJMCMC, is always

averaged over ten runs to account for the stochastic nature of

these filters and obtain meaningful statistics.

1) Detectors: The detectors used in the experiments are

based on publicly available open source implementations:

RCNN based on Girshick et al. [15] Python implementation;

DeepPed based on Tome et al. [16] Matlab implementation;

LDCF and ACF, based on Dollar’s Matlab toolbox [54]; DPM

based on the Matlab implementation released by Girshick et

al. [55]; and the HOG-SVM detector based on OpenCV [56],

the open source computer vision library, with slight modifi-

cations to provide continuous detection scores (the original

provided only binary output).

The covariance matrix associated with each detector output

(used for particle sampling, see Sec. V-A(b)) is determined

using the tuning datasets. The output of each detector, position

and scale, is compared with the ground truth to define an error

term for each detection-ground truth pair. Then the standard

deviations of these samples are determined to compose the

covariance matrices Σd (with diagonal components only) of

the detector specific proposal distributions.

2) Trackers: The two particle based trackers, DPF and

RJMCMC, are our implementations (in C++). For the Tracker

Hierarchy, we use the original C++ implementation from [9].

For SORT [10] and MDP [11], the Python and Matlab

implementations provided by the authors, respectively, are

used. The parameters of target dynamic model, random walk

covariance matrix Σdyn, for DPF and RJMCMC are deter-

mined using the tuning datasets. Displacements of the targets

in x, y, and s between consecutive frames are cached using

the ground truth annotations. The variance of each variable is

determined from this data and set as the diagonal elements of

the covariance matrix. Sample values obtained based on PETS-

S1L1 and ETH-Crossing are listed in Tables A.1 and A.2

in [49], respectively. There are more pronounced horizontal

target displacements than vertical.

a) DPF: The sampling proposal distribution weights, Bhat-

tacharyya coefficient scale, color histogram update rate, max-

imum number of templates, and track birth and death con-

trollers are set to the values indicated in Tables A.1 and

A.2 [49] based on observation from several works in the

literature [9], [1], [57]. To determine the number of particles

N to use, several runs are performed, on the tuning dataset,

varying the number of particles and detector used. Then N
is set to value that gives better accuracy averaged across the

different used detectors.

b) RJMCMC: For the RJMCMC tracker variants, the two

most important parameters to tune are the number of effective

particles M to use and the move proposal distribution qm. The

other parameters – dynamics of the targets, detector covariance

matrix, and appearance model related parameters – remain

the same as in DPF. To determine M , the tuning dataset is

evaluated varying the number of particles used. This is done

for each detector type. M is then set to a value that gives the

maximum average MOTA.

Determining good values to use for RJMCMC’s move pro-

posal distribution qm is very important and at the same

time difficult. qm is a vector composed of six continuous

values corresponding to each move considered (add, delete,

remove, stay, update, and swap). All these values should

sum to one. Since exhaustive search is infeasible (continuous

parameters and infinite possible combinations), we select a

total of 14 intuitively selected combinations and construct

the set {qm,k}
14
k=1 (after preliminary visual inspection). If

we denote the average MOTA obtained when using qm,k as

MOTAqm,k
, then, the move proposal distribution to use is

selected as the one that has the maximum MOTA score:

qm = argmax
qm,k

{

MOTAqm,k

}

(12)

Evidently, the MOTP does not vary a lot and stays more or
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Fig. 3: Detector performance evaluation, in terms of precision-recall metrics, on all the public datasets.

TABLE III: Utilized public datasets with detector performance.

Dataset Camera Resolution fps #Frames #Ids
Detector Recall / Precision

RCNN DeepPed LDCF ACF DPM HOG-SVM mean

CAVIAR-EnterExit [50] static 384× 288 25 383 4 .73/.91 .60/.93 .71/.97 .69/.94 .69/.89 .62/.84 .67/.91

CAVIAR-OneShop [50] static 384× 288 25 1377 6 .57/.82 .21/.73 .45/.93 .43/.95 .51/.88 .37/.76 .42/.85

PETS-S2L1 [51] static 768× 576 7 795 19 .70/.79 .85/.88 .92/.95 .92/.94 .85/.95 .81/.89 .84/.90

TUD-Crossing [52] static 640× 480 25 200 13 .70/.92 .69/.92 .75/.93 .74/.93 .63/.87 .53/.68 .67/.88

ETH-Bahnhof [53] mobile 640× 480 14 1000 224 .58/.75 .49/.57 .70/.83 .63/.78 .57/.73 .52/.47 .58/.69

ETH-Sunnyday [53] mobile 640× 480 14 354 30 .69/.81 .19/.79 .70/.91 .62/.91 .76/.85 .67/.60 .61/.81

ETH-Jelmoli [53] mobile 640× 480 14 440 74 .52/.76 .39/.71 .54/.90 .52/.87 .56/.79 .43/.52 .49/.76

TABLE IV: Characteristics of the utilized datasets.

Dataset Environment Camera View
Illumination

Variation

Background

Clutter
Occlusion Interactions

Target Height (pixel)

min max average

CAVIAR-EnterExit [50] indoor (corridor) Perspective ⋆⋆ ⋆ ⋆ ⋆ 8.0 144.0 68.5

CAVIAR-OneShop [50] indoor (corridor) Perspective ⋆⋆ ⋆ ⋆⋆ ⋆⋆ 3.0 151.0 82.0

PETS-S2L1 [51] outdoor (neighbourhood block) Perspective ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ 52.0 153.0 83.3

TUD-Crossing [52] outdoor (road) Fronto-parallel ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 130.0 207.0 162.4

ETH-Bahnhoff [53] outdoor (walkway) Fronto-parallel ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 25.0 477.0 97.4

ETH-Sunnyday [53] outdoor (walkway) Fronto-parallel ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ 48.0 468.0 135.2

ETH-Jelmoli [53] outdoor (walkway) Fronto-parallel ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 38.0 459.0 116.1

less constant over a detector.

The actual values of the selected move proposal distributions

are shown in Table A.1 [49] for PETS-S1L1 and Table

A.2 [49] for ETH-Crossing.

3) Computation Time: The main objective of this paper is a

systematic tracking-by-detection accuracy and precision per-

formance evaluation to highlight detector and tracker choice

trade-offs. Depending on the choice of detector and tracker,

the frame rate of the complete tracking-by-detection algorithm

varies. As the detectors and trackers selected for evaluation

are implemented in heterogeneous programming languages,

e.g, Python, Matlab, and C++, and heterogeneous processors,

CPU and GPU, it is impossible to determine a fair comparison.

Nevertheless, we provide observed average frame rates during

experimental evaluation here as a guide: For the detectors,

HOG-SVM (∼3.8 fps), DPM (∼0.48 fps), ACF (∼23.4 fps),

LDCF (∼5.4 fps), DeepPed (∼2 fps), and RCNN (∼4.7 fps);

and for the trackers, DPF (∼8.2 fps), RJMCMC (∼1 fps),

SORT (∼220 fps), Hierarchy (∼7.5 fps), and MDP (∼1.1 fps).

These frame rates are obtained on ETH-Bahnhof dataset. Since

the detection and tracking computations are decoupled, the

overall detection-by-tracking algorithm frame rate reflects the

contributions of both. For example, SORT-LDCF has ∼5.2 fps,

and RJMCMC-DPM has ∼0.3 fps. This results are obtained

on a PC with Intel Core i7-2720QM CPU, 8 GB of RAM, and

NVIDIA Quadro 1000M GPU.

D. Results

Each detector-tracker combination is evaluated on the seven

described public datasets using the parameter settings de-

scribed in the previous section. Evaluation results are reported

based on the MOTA and MOTP metrics (for both metrics

higher means better). More importantly an overlap threshold

So = 0.5 is used, according to established evaluation proto-

col [8], [58]. Several summarized tables that highlight specific

attributes are presented. They are categorized to make specific

comparisons easy. The categories try to answer the following

questions:
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Q1- Which tracking-by-detection combination does better?

Q2- Which tracker, irrespective of utilized detector, performs

better?

Q3- Which detector, irrespective of utilized tracker, performs

better?

Q4- How do the different tracking-by-detection methods per-

form on mobile and static camera datasets (different

contexts)?

Q1) Tracking-by-Detection Overall Assessment: To deter-

mine the overall performance of each tracking-by-detection ap-

proach (detector-tracker combinations), results of experimental

runs averaged over each dataset are presented. Tables V and VI

present the average MOTA and MOTP results. In four out of

the seven datasets, the SORT tracker shows the best tracking

accuracy – in three combined with LDCF (SORT-LDCF) and

in one combined with RCNN (SORT-RCNN). Similarly, MDP

records the best tracking accuracy in remaining three datasets,

combined with LDCF in two and with RCNN on the third

one. With the exception of Hierarchy-RCNN, that achieves the

second best accuracy on one dataset, the rest of the best and

second best accuracy results are obtained with SORT and MDP

trackers. Overall, on average, SORT-LDCF shows the best

tracking accuracy of 62.8% across all the datasets followed

by MDP-RCNN with 59.6%. A very important observation to

make is that the best and worst average tracking accuracies

across all datasets are obtained when combining LDCF with

SORT and Hierarchy trackers, respectively. Compared to the

rest, Hierarchy is much more sensitive to the detector choice.

Looking at average tracker precision, Table VI, the SORT

tracker exhibits the best tracking precision on five of the seven

datasets. SORT-ACF results in the best average precision of

77.8% across all datasets. This is seconded by SORT-DPM at

77.4%. The worst precision is obtained when using RJMCMC-

HOG-SVM at 58.1%.

Q2) Tracker Assessment: To analyze which tracker irrespec-

tive of used detector performs better, Table VII presents MOTA

and MOTP results of each tracker family, averaged across all

detectors per dataset. The results indicate that the MDP tracker

achieves a better average MOTA in four of the datasets. In the

other three, SORT gives the best average result. Overall, when

averaged across the different datasets, MDP achieves a 47.4%
average MOTA followed by SORT with 46.9%. Similarly, in

precision, MDP leads to better results in five of the datasets

followed by SORT in the remaining three. Irrespective of the

detector choice, MDP manifests better filtering capabilities

(higher TP and lower FP ) and better target localization. This is

observed in the overall average results too. In terms of average

tracking accuracy, the trackers can be ranked as follows: MDP,

SORT, DPF, RJMCMC, and Hierarchy.

Q3) Detector Assessment: Table VIII presents average track-

ing accuracies per detector (averaged across the five trackers).

For ease of comparison, each detector’s Recall/Precision (R/P)

is also shown for each dataset. In three of the seven datasets,

LDCF leads to best tracking accuracy results. DPM achieves

best results on two datasets, and RCNN and ACF on single

datasets each. Even though LDCF has the highest recall on

four of the datasets, it is edged out by DPM which has the

highest recall only on two datasets. When averaged across all

datasets, DPM achieves an average MOTA of 42.1%. It is

seconded by ACF which achieves 37.0%; LDCF ranks third

with 36.8%. The worst result is demonstrated by HOG-SVM

with an average MOTA of 18.0%. In terms of repeatability,

DPM results in the lowest MOTA standard deviation across

the different datasets and trackers. Based on average MOTA,

detector ranking follows DPM, ACF, LDCF, RCNN, DeepPed,

and HOG-SVM.

Q4) Performance on Mobile vs Static Camera Datasets:

Table IX presents MOTA and MOTP results averaged over the

static (fixed) camera and mobile camera based datasets. The

best tracking accuracy on static and mobile camera datasets

are achieved by MDP-RCNN and SORT-LDCF, respectively.

On the other hand, the second best results are obtained by

SORT-LDCF and MDP-LDCF on static and mobile datasets,

respectively. On average, the best static camera tracking ac-

curacy is 7.8% higher than the mobile one. The best tracking

precision on static datasets is obtained by both SORT and

MDP combined with the DPM detector. On mobile datasets,

it is achieved by SORT-LDCF. The best and worst detector

choices for DPF, RJMCMC, Hierarchy, SORT, and MDP result

in tracking accuracy margins of 12.5%, 38.0%, 58.1%, 39.2%,

and 29.3% on static datasets, respectively. This becomes

33.1%, 62.4%, 70.3%, 41.9%, and 29.6% on mobile datasets,

respectively. These are steep differences even though the

highest difference in detector recall and precision is < 15%.

VII. DISCUSSIONS AND GUIDELINES

We stir the discussion based on the questions, Q1 - Q4,

raised in Sec. VI-D. The results presented in Tables V – IX

provide very rich insights into the performance of the different

detector-tracker combinations on different datasets/contexts.

Undoubtedly, the performance of each tracking-by-detection

approach is significantly influenced by the detector and tracker

choices.

Consider the overall performance of tracking-by-detection

approaches on each dataset (i.e., Q1 and results in Ta-

bles V and VI). On the two CAVIAR datasets (EnterExit

and OneShop), there is significant average tracker accuracy

difference because of detector choice. This is with a maximum

of six targets and slight illumination variation due to shadows

from the indoor vertical columns. The overall performance on

CAVIAR-OneShop is very low due to the low detector recall

and precision. In these two datasets, since the background

environment does not change, any false positive occurrence

is likely to recur exacerbating the overall performance. The

PETS-S2L1, on the other hand, is an easier dataset even

though there are several occlusions and target interactions. The

background clutter is minimal and as a result of the mount po-

sition of the camera, the corresponding target displacement on

the image plane is small. Consequently, the maximum tracking

accuracy is reported on this dataset.The fourth dataset, TUD-

Crossing, exhibits a significant inter-target occlusion (targets

crossing on a zebra cross). MDP and SORT based trackers

obtain the best tracking accuracies while Hierarchy based

trackers do the worst. The three ETH datasets – ETH-Bahnhof,

ETH-Sunnyday, ETH-Jelmoli – all have similar characteristics.
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TABLE V: Tracking-by-detection average accuracy (MOTA↑ µ/σ) on the public datasets. The best and second best results,

on each dataset, are highlighted.

Dataset
RCNN DeepPed LDCF

DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP

CAVIAR-EnterExit .773/.006 .468/.000 .798/.000 .767/.000 .815/.000 .488/.004 .476/.000 .621/.000 .541/.000 .582/.000 .550/.009 .623/.000 -.632/.000 .679/.000 .392/.000

CAVIAR-OneShop .477/.006 .098/.016 .046/.000 .516/.000 .492/.000 .073/.002 .106/.011 .067/.000 .122/.000 .091/.000 .276/.004 .378/.000 -.410/.000 .416/.000 .034/.000

PETS-S2L1 .338/.002 -.095/.000 .511/.000 .617/.000 .685/.000 .581/.000 -.033/.000 .626/.000 .689/.000 .785/.000 .677/.000 .524/.033 .650/.000 .836/.000 .680/.000

TUD-Crossing .492/.012 .022/.022 .054/.000 .664/.000 .698/.000 .439/.007 .400/.013 .137/.000 .588/.000 .637/.000 .338/.004 .486/.000 -.360/.000 .679/.000 .763/.000

ETH-Bahnhof .285/.015 -.275/.000 .178/.000 .491/.000 .439/.000 .144/.011 .003/.000 .048/.000 .253/.000 .235/.000 .427/.012 .276/.000 -.180/.000 .622/.000 .381/.000

ETH-Jelmoli .298/.008 -.339/.000 -.100/.000 .418/.000 .424/.000 .169/.007 -.050/.000 -.077/.000 .186/.000 .302/.000 .372/.004 .293/.000 -.109/.000 .478/.000 .454/.000

ETH-Sunnyday .435/.004 -.254/.000 .147/.000 .574/.000 .616/.000 .087/.007 .026/.000 .111/.000 .088/.000 .238/.000 .591/.006 .434/.000 -.244/.000 .686/.000 .828/.000

Average .443/.158 -.054/.266 .215/.300 .578/.109 .596/.139 .283/.199 .133/.203 .238/.258 .352/.231 .410/.241 .462/.138 .431/.119 -.184/.381 .628/.132 .505/.258

Dataset
ACF DPM HOG-SVM

DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP

CAVIAR-EnterExit .642/.011 .542/.000 .366/.000 .614/.000 .216/.000 .577/.004 .514/.015 .614/.000 .621/.000 .615/.000 .527/.005 .432/.049 .610/.000 .570/.000 .503/.000

CAVIAR-OneShop .370/.002 .375/.000 -.152/.000 .260/.000 -.053/.000 .418/.002 .419/.000 .123/.000 .442/.000 .392/.000 .324/.003 .171/.000 -.355/.000 .323/.000 .271/.000

PETS-S2L1 .684/.000 .466/.000 .589/.000 .807/.000 .609/.000 .585/.009 .424/.000 .576/.000 .697/.000 .824/.000 .555/.011 .194/.000 .419/.000 .666/.000 .797/.000

TUD-Crossing .338/.004 .456/.000 .203/.000 .469/.000 .730/.000 .379/.008 .381/.000 .246/.000 .420/.000 .527/.000 .256/.012 -.185/.000 .071/.000 -.064/.000 .359/.000

ETH-Bahnhof .409/.005 .243/.000 -.075/.000 .465/.000 .203/.000 .317/.000 .204/.027 .076/.000 .403/.000 .291/.000 .129/.012 -.007/.027 -.653/.000 .221/.000 .201/.000

ETH-Jelmoli .254/.010 .304/.000 .012/.000 .235/.000 .421/.000 .266/.006 .159/.025 .045/.000 .345/.000 .307/.000 .136/.010 -.398/.024 -.352/.000 .234/.000 .194/.000

ETH-Sunnyday .318/.017 .373/.000 .146/.000 .229/.000 .781/.000 .539/.007 .329/.015 .146/.000 .591/.000 .731/.000 .344/.010 -.152/.077 -.682/.000 .212/.000 .423/.000

Average .460/.149 .394/.117 .156/.243 .440/.205 .415/.291 .444/.149 .347/.120 .285/.220 .503/.124 .527/.195 .324/.159 .008/.264 -.135/.480 .309/.229 .396/.198

TABLE VI: Tracking-by-detection average precision (MOTP↑ µ/σ) on the public datasets. The best and second best results

are highlighted.

Dataset
RCNN DeepPed LDCF

DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP

CAVIAR-EnterExit .750/.002 .674/.004 .744/.000 .780/.000 .777/.000 .679/.002 .680/.002 .684/.000 .658/.000 .659/.000 .760/.003 .728/.000 .571/.000 .778/.000 .786/.000

CAVIAR-OneShop .733/.002 .615/.001 .695/.000 .770/.000 .760/.000 .684/.002 .653/.002 .674/.000 .664/.000 .669/.000 .718/.001 .654/.000 .576/.000 .727/.000 .728/.000

PETS-S2L1 .664/.001 .622/.003 .670/.000 .678/.000 .683/.000 .694/.001 .633/.004 .680/.000 .698/.000 .702/.000 .728/.000 .676/.000 .705/.000 .748/.000 .752/.000

TUD-Crossing .721/.002 .604/.004 .704/.000 .746/.000 .753/.000 .679/.002 .636/.003 .660/.000 .672/.000 .680/.000 .664/.001 .696/.000 .558/.000 .766/.000 .770/.000

ETH-Bahnhof .724/.000 .607/.000 .695/.000 .751/.000 .745/.000 .726/.000 .646/.000 .726/.000 .754/.000 .754/.000 .753/.000 .652/.000 .591/.000 .777/.000 .780/.000

ETH-Jelmoli .717/.001 .599/.000 .655/.000 .765/.000 .742/.000 .729/.000 .629/.000 .700/.000 .747/.000 .773/.000 .756/.000 .638/.000 .606/.000 .780/.000 .777/.000

ETH-Sunnyday .723/.002 .606/.006 .708/.000 .747/.000 .743/.000 .748/.004 .663/.002 .733/.000 .784/.000 .781/.000 .787/.001 .709/.000 .572/.000 .805/.000 .809/.000

Average .719/.025 .618/.025 .696/.027 .746/.031 .743/.028 .705/.027 .648/.017 .694/.026 .714/.050 .717/.050 .738/.034 .679/.031 .597/.047 .768/.024 .772/.024

Dataset
ACF DPM HOG-SVM

DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP DPF RJMCMC Hierarchy SORT MDP

CAVIAR-EnterExit .758/.001 .737/.000 .755/.000 .790/.000 .790/.000 .764/.003 .694/.000 .780/.000 .792/.000 .801/.000 .758/.003 .702/.000 .730/.000 .780/.000 .769/.000

CAVIAR-OneShop .720/.000 .646/.000 .679/.000 .733/.000 .731/.000 .743/.001 .638/.000 .684/.000 .764/.000 .756/.000 .721/.001 .571/.000 .686/.000 .743/.000 .736/.000

PETS-S2L1 .729/.001 .680/.000 .702/.000 .755/.000 .753/.000 .728/.001 .654/.000 .707/.000 .756/.000 .757/.000 .735/.002 .583/.000 .689/.000 .756/.000 .762/.000

TUD-Crossing .664/.001 .685/.000 .779/.000 .782/.000 .773/.000 .727/.003 .646/.000 .752/.000 .750/.000 .748/.000 .714/.004 .572/.000 .716/.000 .557/.000 .719/.000

ETH-Bahnhof .751/.000 .637/.000 .691/.000 .780/.000 .766/.000 .744/.001 .622/.002 .706/.000 .779/.000 .775/.000 .696/.002 .558/.005 .643/.000 .711/.000 .719/.000

ETH-Jelmoli .762/.000 .643/.000 .694/.000 .791/.000 .776/.000 .737/.003 .606/.001 .699/.000 .775/.000 .775/.000 .675/.002 .558/.002 .629/.000 .686/.000 .698/.000

ETH-Sunnyday .781/.003 .706/.000 .721/.000 .813/.000 .805/.000 .768/.001 .651/.000 .752/.000 .802/.000 .793/.000 .720/.000 .522/.000 .632/.000 .706/.000 .732/.000

Average .734/.038 .676/.035 .726/.035 .778/.024 .771/.024 .727/.032 .646/.026 .675/.033 .774/.018 .772/.019 .715/.025 .581/.054 .717/.039 .706/.069 .734/.024

TABLE VII: Tracker performance comparison, reported as µ/σ, on each dataset averaged across the different detectors. The

best and second best MOTP and MOTA results are indicated.

Dataset DPF RJMCMC Hierarchy SORT MDP

MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑

CAVIAR-EnterExit .745/.030 .593/.118 .703/.024 .509/.195 .711/.070 .396/.276 .763/.048 .632/.141 .764/.049 .521/.092

CAVIAR-OneShop .720/.019 .323/.080 .630/.030 .258/.288 .666/.041 -.114/.130 .734/.035 .347/.108 .730/.030 .205/.093

PETS-S2L1 .713/.026 .570/.168 .641/.034 .247/.274 .692/.014 .564/.338 .732/.032 .719/.231 .735/.031 .730/.214

TUD-Crossing .695/.027 .374/.117 .640/.044 .260/.258 .695/.073 .059/.080 .712/.079 .459/.079 .741/.033 .619/.078

ETH-Bahnhof .732/.020 .285/.078 .621/.033 .074/.256 .675/.046 -.101/.202 .759/.025 .409/.257 .757/.021 .292/.141

ETH-Jelmoli .729/.029 .249/.131 .612/.030 -.005/.139 .664/.037 -.097/.212 .757/.035 .316/.132 .757/.029 .350/.199

ETH-Sunnyday .754/.027 .386/.095 .643/.065 .126/.070 .686/.065 -.037/.485 .776/.039 .397/.075 .777/.030 .603/.190

Overall Average .727/.032 .397/.170 .641/.047 .210/.271 .684/.055 .096/.373 .747/.049 .469/.211 .751/.036 .474/.236

TABLE VIII: Tracking results per detector on the public datasets averaged across the different trackers (DPF, RJMCMC,

Hierarchy, SORT, and MDP). MOTA is tabulated as µ/σ, R/P stands for the detector Recall/Precision. Best and second best

Recall, Precision, and MOTA are highlighted.

Dataset RCNN DeepPed LDCF ACF DPM HOG-SVM

R/P↑ MOTA↑ R/P↑ MOTA↑ R/P↑ MOTA↑ R/P↑ MOTA↑ R/P↑ MOTA↑ R/P↑ MOTA↑

CAVIAR-EnterExit .73/.91 .724/.133 .60/.93 .542/.056 .71/.97 .323/.497 .69/.94 .476/.165 .69/.89 .588/.043 .62/.84 .480/.309

CAVIAR-OneShop .57/.82 .326/.213 .21/.73 .092/.021 .45/.93 .139/.311 .43/.95 .160/.225 .51/.88 .359/.122 .37/.76 .147/.263

PETS-S2L1 .70/.79 .411/.285 .85/.88 .530/.295 .92/.95 .673/.102 .92/.94 .631/.139 .85/.95 .624/.136 .81/.89 .526/.212

TUD-Crossing .70/.92 .386/.299 .69/.92 .440/.179 .75/.93 .381/.407 .74/.93 .439/.178 .63/.87 .391/.092 .53/.68 .087/.204

ETH-Bahnhof .58/.75 .198/.288 .49/.57 .163/.091 .70/.83 .305/.273 .63/.78 .249/.193 .57/.73 .258/.113 .52/.47 -.022/.332

ETH-Jelmoli .69/.81 .140/.313 .19/.79 .106/.150 .70/.91 .298/.218 .62/.91 .245/.136 .76/.85 .224/.112 .67/.60 -.037/.284

ETH-Sunnyday .52/.76 .304/.332 .39/.71 .110/.072 .54/.90 .459/.382 .52/.87 .369/.225 .56/.79 .498/.166 .43/.52 .029/.415

Overall Average .64/.82 .356/.321 .49/.79 .283/.245 .68/.92 .368/.364 .65/.90 .370/.238 .65/.85 .421/.185 .56/.68 .180/.352
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TABLE IX: Tracking-by-detection performance comparison on mobile and static camera based datasets (averaged across each

dataset category). Best and second best results in each category are shown; each result is reported as µ/σ.

Datasets
RCNN DeepPed LDCF ACF DPM HOG-SVM Average

MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑ MOTP↑ MOTA↑

Static

Camera

DPF .717/.033 .520/.162 .656/.044 .395/.198 .718/.036 .460/.165 .724/.035 .508/.160 .741/.016 .490/.095 .732/.017 .416/.132 .718/.039 .465/.159

RJMCMC .629/.028 .123/.218 .656/.019 .237/.214 .688/.028 .503/.092 .641/.049 .460/.108 .658/.022 .435/.052 .607/.057 .153/.229 .644/.047 .319/.224

Hierarchy .703/.027 .352/.327 .673/.010 .363/.269 .603/.061 -.188/.507 .691/.061 .252/.277 .731/.039 .393/.220 .705/.019 .186/.377 .687/.060 .226/.390

SORT .744/.041 .641/.093 .665/.006 .485/.222 .755/.020 .653/.155 .750/.055 .538/.205 .766/.017 .545/.120 .709/.091 .374/.289 .741/.057 .539/.211

MDP .743/.037 .673/.119 .669/.009 .524/.267 .759/.022 .467/.293 .757/.031 .376/.320 .766/.021 .590/.161 .747/.021 .483/.205 .749/.036 .519/.252

Average .707/.055 .462/.290 .666/.027 .401/.257 .704/.069 .379/.413 .732/.044 .427/.248 .732/.047 .491/.159 .700/.071 .322/.291

Mobile

Camera

DPF .721/.003 .340/.071 .734/.010 .133/.036 .765/.016 .464/.097 .765/.013 .327/.066 .750/.014 .374/.123 .697/.019 .203/.104 .739/.028 .307/.139

RJMCMC .604/.006 -.289/.059 .646/.015 -.007/.040 .666/.032 .335/.075 .662/.032 .307/.057 .627/.019 .231/.076 .546/.018 -.186/.168 .625/.047 .065/.259

Hierarchy .686/.023 .032/.105 .720/.015 .071/.112 .590/.014 -.178/.057 .702/.014 .028/.094 .719/.024 .141/.119 .635/.006 -.562/.154 .675/.051 -.078/.262

SORT .748/.002 .494/.066 .768/.013 .176/.070 .787/.013 .595/.090 .795/.014 .310/.114 .785/.012 .446/.109 .701/.011 .222/.009 .764/.034 .374/.172

MDP .743/.001 .493/.090 .769/.012 .258/.032 .789/.015 .554/.203 .782/.017 .468/.247 .781/.009 .443/.211 .716/.014 .273/.110 .764/.029 .415/.197

Average .701/.056 .214/.323 .683/.172 .126/.114 .719/.084 .354/.313 .741/.056 .288/.200 .732/.062 .327/.184 .659/.067 -.010/.354

On these datasets, SORT-LDCF and MDP-LDCF result in the

best tracking accuracies. From the obtained results, it can be

argued that no one tracking-by-detection approach exhibits the

best performance on all datasets. Depending on the nature of

the dataset, a prudent detector or tracker selection leads to

better results.

Looking into which tracker, irrespective of the utilized de-

tector, performs better (Cf. Q2), the tracker choice evidently

affects the performance of a given tracking-by-detection algo-

rithm. This can easily be corroborated by looking at Table VII.

Overall, based on average MOTA and MOTP, MDP stands out

as the best tracker, irrespective of detector choice and context.

It is followed by SORT and then DPF. This ranking is in

line with the public results reported in the MOT-Challenge

website [8]. In short, if one needs a good generic tracker, i.e.,

reliable whatever the context, MDP must be privileged. But if

one wants a tracker that is not very sensitive to the choice of

the detector, then it is necessary to privilege DPF (Cf. low σ
of .170 across detector and dataset variations).

Like the tracker, the detector choice is very important (i.e.,

Q3). Even a small difference in detector recall rate can lead

to a significant difference in tracking accuracy. For example,

on TUD-Crossing, the best tracking accuracy is obtained with

MDP-LDCF (76.3%) and second best with MDP-ACF (73%)

– a 3.3% difference in accuracy even though there is only

a 1% difference in recall between the two detectors (with the

same precision). Based on Table VIII, we see that surprisingly

the DPM detector results in the best average (across datasets

and trackers) tracking accuracy. The worst accuracies for all

the trackers, mostly due to the high number of id switches, are

obtained when using HOG-SVM. Even though LDCF exhibits

the best average recall and precision on the datasets, DPM

exhibits a 5.3% average tracking accuracy improvement over

it. Hence, a better detector in detector benchmarking does not

directly imply a better tracking accuracy. Depending on where

and when false positives and missed detections occur, and the

number and dynamics of targets in the dataset, trackers can

either improve detector performance (temporaly linking targets

and thus filling in missed detections) or deteriorate it.

HOG-SVM on average has a tracking accuracy that is less

than all the other detectors. Given that most state-of-the-art

works report based on HOG-SVM like detectors [9], [1], it

is possible to significantly improve those results by using

any of the other detectors. The results also highlight that

deep learning based detectors like RCNN and DeepPed, which

are quite powerful and amongst the best detectors in the

state-of-art in detection benchmarks [15], do not necessarily

result in the best performance when coupled with trackers.

Our results indicate better tracking accuracies are obtained

when using DPM and LDCF detectors. Additionally, DPM

is the least sensitive to the choice of the tracker (see its

standard deviation). LDCF is more sensitive to the choice of

the associated tracker (see Table III) – it leads to the best

tracking accuracy only when paired with the right trackers,

i.e., SORT or MDP.

Looking at the performance of tracking-by-detection ap-

proaches on static and mobile datasets/contexts, i.e., Q4,

it is evident that the performance varies depending on the

dataset/context (Table IX). Generally, a better average tracking

accuracy is observed when dealing with fixed or static cameras

than mobile ones. This is intuitive as the combined camera and

target motion poses more challenge for trackers. In both static

and mobile camera datasets, SORT and MDP, on average,

stand out as the best trackers. DPM and LDCF detectors, on

average, result in the best tracking accuracies on static and

mobile camera datasets, respectively. Looking at individual

tracking-by-detection approaches, on static datasets, MDP-

RCNN and SORT-LDCF result in the best and second best

tracking accuracies. On mobile datasets, this becomes SORT-

LDCF and MDP-LDCF, respectively. As highlighted in the

results section, the chosen detector type has more impact on

tracking accuracy on mobile datasets than on static datasets.

Even though the best performing trackers are MDP and SORT,

DPF shows the least variability across the different detectors.

It is more resilient to the detector choice. This is seconded by

SORT.

The above discussions focus on tracking accuracy as this

is the metric most affected by detector choice. The tracker

precision shows less variation. If we look at the trackers,

when averaged over all datasets and detectors, on average

there is an 11% difference between the best (MDP) and worst

(RJMCMC) tracking precision results. The results also show

small standard deviations, indicating less variability across

datasets and detectors. If we look at the detectors, when

averaged over all datasets and trackers, there is only a 9.7%
and 8.1% average tracking precision loss between the best and

worst detectors on static and mobile datasets respectively. On

static datasets, the best precision is obtained when using DPM
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and worst when using DeepPed, on mobile datasets they are

ACF and DeepPed for best and worst.

Based on the results and the above highlighted discussions,

it is possible to outline the following important observations

and corresponding guidelines.

• MDP and SORT prove to be the best trackers (tracking

performance and repeatability) on the seven datasets (Cf. Q1

and Q2). But, on the other hand, the ranking of the detectors

is less clear and distributed over the different detectors:

LDCF on three, DPM on two, and RCNN and ACF each on

one datasets. Hence, detector choice should be made more

carefully specific to the application context.

• The stochastic trackers (DPF and RJMCMC) inherently give

less repeatable performance (Cf. Q2). If there is a strong

need for repeatability, privilege non-stochastic trackers.

• As demonstrated, and corroborated in the literature, e.g., [8],

SORT shows very good performance on our evaluation

datasets. This indicates a tracker with simple formulation

can be sufficient for different application contexts. Hence,

more investigation efforts should be put on the development

of a detector adapted to the application context.

• Our experimental results demonstrate that a 1% difference

in detector recall could lead to as much as a 10% drop in

MOTA (Table VIII). Hence, the detector plays a key role

in the global performance and more attention should be

devoted to it.

• Some of the detectors, i.e., LDCF and DPM, are more

resilient to the tracker choice (Cf. Q3). If there is no control

over the choice of a tracker, privilege these detectors.

• LDCF and DPM detector coupled with either SORT or MDP

are more robust to the diversity and variability of treated

datasets. Hence, privilege these detectors and trackers for

a generic tracking-by-detection application, without any a-

priori information about the nature of the scene.

• Tracking-by-detection performance on mobile datasets is

inferior to the ones on static datasets. This is due to

the lower R/P detector performance (Cf. Q4) and coupled

camera and targets’ motions. The detector choice has more

impact on tracking accuracy on mobile datasets than on

static datasets. Hence, extra efforts should be taken to obtain

better tracking results on mobile datasets, for example, by

carefully selecting/tuning detectors for the application, and

providing compensation for camera motion during tracking.

• As discussed, tracking accuracy (MOTA) is a more relevant

metric than tracking precision (MOTP). This is also iterated

in the literature [8]. Additionally, our evaluations highlight

the key role of detector in tracking-by-detection. Since

detectors are characterized by Recall/Precision (R/P), these

metrics can also be considered as tracking-by-detection

performance indicators and more importantly should be

used during tracking-by-detection system prototyping.

• Our evaluation on these diverse set of datasets demon-

strate Deep Learning (DL) based detectors under-perform

when coupled with trackers. This is due to the inferior

recall (missed targets) and precision (higher false positives),

compared to LDCF and DPM, on most of our evaluation

datasets – they are less generic. Hence, even though DL

detectors are powerful, the need for application specific

training that entails (i) a large training dataset (tedious

learning), and (ii) often dedicated hardware (GPU), makes

them less appealing choices for tracking-by-detection. The

hardware requirements induce specific, cumbersome, and

expensive GPU architectures. This limits drastically their

use for embedded applications.

VIII. CONCLUSIONS

In this work, we have presented several tracking-by-detection

comparative evaluations using a combination of five selected

trackers and six detectors on seven public datasets. Our objec-

tive is not to develop a tracking-by-detection approach with

the best absolute performance, but rather, to study (in terms

of relative performances) the influence detector and tracker

choices have on overall tracking performance. The results

show that the overall performance depends on how challenging

the dataset is, the performance of the detector on the specific

dataset, and the tracker-detector combination. Some trackers

are more sensitive to the choice of detector and, reciprocating

this, some detectors are also more sensitive to the choice of

a tracker than others. The choice of the exact detector to use

in tracking-by-detection should be carefully investigated, and

if possible verified on a validation set before plugging into a

tracker – state-of-the-art detector does not necessary lead to

better tracking performance in all contexts. Careful evaluation

needs to be further underscored given the recent advances

in machine learning that are resulting in improved and very

dynamic detection algorithms by the year.
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