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Abstract

Informal validation techniques such as simulatioa extensively used in the development of
embedded systems. Formal approaches such as niebdding and testing are important means to
carry out Verification and Validation (V&V) activés. Model-checking consists in exploring all
possible behaviours of a model in order to perfarqualitative and quantitative analysis. Howeuas t
method remains of limited use as it runs into thebfem of combinatorial explosion. Testing and
model-checking do not take into account the contExuse objectives of the model. Simulation
overcomes these problems but it is not exhausBudbmitted to simulation scenarios which are an
operational formulation of the V&V activity consiaal, simulation consists in exploring a subsetef t
state space of the model. This paper proposesn@afapproach to assess simulation scenarios. The
formal specification of a model and the simulatsmenarios applied to that model serve to compute th
effective evolutions taken by the simulation. Ithen possible to check whether a simulation f&uifi
intended purpose. To illustrate this approach aygication study of an intelligent cruise conteolis
presented. The main contribution of this paperhet ttombining simulation objectives and formal
methods leads to define a qualitative metric feinaulation evaluation without running a simulation.
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1. Introduction

1.1. Context

In [1] it is stated that a model abstraction isicval it maintains the validity of the simulation
results with respect to the questions the simulatiosupposed to address. Hence, the validity of a
model should never be assessed in isolation buildfadwvays be envisaged in relation to the coni@xt
which the model is experimented, i.e. the purpoSehe simulation. Traditional Modeling and
Simulation (M&S) practices describe abstraction ick® when building up a model to provide
documentation of its "domain of use" as suggestd@,i 1, 3]. These practices do not follow the same
process for the intended purpose of the simulatibtowever, simultaneously conducting the same
process for the model and its context would makpogsible to define a priori the sufficient and
necessary model required to reach an intended peirgod to check a posteriori whether a model can
be used in various contexts. Thus, challenging essin M&S are mostly related to their
specification/documentation, the capabilities & thodel and the properties expected from this model
to achieve the simulation purpose.

1.2. Framework

We retained the Theory of Modeling and SimulatibM§) developed in [4]. Zeigler established
a framework which provides a precise definitiortt@ entities involved in the process of modelind an
simulation. We consider this framework as an ercelbase for structuring modeling and simulation
applications. It highlights relationships betweée intended purpose of the simulation, the system
which is represented and the simulations themselMdS is not the only existing framework available
to describe dynamic system modeling. It can be ey with other work which has been published
concerning the community of Verification, Validati@and Accreditation (VV&A) of simulations as in
[5, 6]. The experimental frame is one of the entities tiaate been introduced in the TMS to make a
distinction between the model and the experimehé &xperimental frame can be viewed as a system
which interacts with the model in order to answer uestions raised by the simulation purpose. Then
it consists in stimuli injected into the model itguobservation of the model outputs and conssdmt
determine whether the model outputs "fit" some ptaogce conditions. The experimental frame concept
has been used for the simulation of embedded sgst@gineering in [7], for ecology systems in [8, 9]
and for environmental processes in [10]. In [8]adné and Muzy pioneered a formal definition of the
experimental frame. Our approach relies on thisndiefn. However, this definition does not allow
formal verification of the behavioural compatibyjlienalysis between an experimental frame and a
model. Such an issue is of paramount importancerder to know whether a model within an
experimental frame can address the questions rhiséte simulation purpose. Our approach is model-
based. Therefore the experimental frame and tltkestisystem are represented by their models. # thi
paper to avoid repeating the model word for bothdfistem and the experimental frame, we are going
to use a model for the system under test and expatal frame for its model.

1.3. Novel concept and its benefits

The novel concept relies on building a simulatioadel which specifies the model behaviour
under the conditions of the experiment. This moesl@btained bycomposition of the system model of
interest and the model of the context within whicht system is studied, i.e. its experimental fraime
a simulation-based development methodology, trended purpose of the simulation would usually be
to check that some requirements on the real syatenmet. The simulation model and the simulation
intended purpose can then be input into a modetkarefor quantitative analysis. This idea is
illustrated in Figure 1.
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Figure 1. Novelty of the concept

A simulation scenario consists of a trajectorydtgel into the model inputs and a path of interest
observed on the model outputs. Typically a simafats not comprehensive in the sense that it does n
explore all possible trajectories of the model.iddation scenario restricts the model to a sub$et
evolutions the model may produce. Then the sinmafatiequires metrics which capture (1) the
applicability of a scenario to a model, i.e. aafestimuli can be accepted by the model and theehod
produces expected outputs, (2) the reliabilityhef simulation results, i.e. to what extent theessgpiace
of the model has been explored by the simulatio, @) whether certain requirements of the real
system are met by the simulation model.

Metrics (1) and (2) can be measured by compositiothe system model of interest and the
model of the experimental frame, and metric (3) banrmeasured by checking the simulation model
against the specification of the system of interest

1.4. Formal specification languages

TMS also offers a specification language for modelted Discrete Event System Specification
(DEVS) using precise operational semantics thaakant abstract simulator which establishes formal
rules for executing a DEVS model. It is importamthighlight that TMS is based on a general system
theory. In this way, many types of systems can bdeated within TMS. TMS has given rise to many
subclasses such as Cell-DEVS for cellular autonfae&S for discrete-time systems and DESS for
differential equation systems. However, DEVS is ne¢d here as it does not support model checking
because the state space of a DEVS model is infiitete space exploration techniques and quaktativ
properties analysis can be supported by Finiteetdrministic DEVS (FD-DEVS). However as far as
we know, there are no tools supporting FD-DEVS n®dad temporal logic.

Automata are a subset of DEVS. Automata theoryuitalsle for state space exploration and
quantitative properties analysis with temporal dognd it supports well the composition of automata.
With Input/Output Automata (IOA) we capture the fral I/O behaviour of the model and the
experimental frame. By composition we check whether automaton which describes the trajectory
injected into the model inputs can be acceptechbyautomaton describing the model of the system of
interest and whether this set provides a path tefréist observed on the model outputs. In [11], the
authors use synchronous products of automata fapaosition. Behavioural incompatibility is detected
if the product is zero. However this approach doesallow the cause of that incompatibility to be
detected. Our synchronous product is based on dhle @V [12] which relies on an "optimistic" view of
composition and offers the possibility to detdtdgal states leading to possible incompatibility. Our
composition adds another dimension, i.e. while temponents can be synchronized and therefore
compatible, we can highlight which part of the mladeoverlooked thanks to the synchonous product.
Composition results in a new automaton which dbssrthe behaviour of the simulation model which
Is checked against the requirements that the systetar study must fulfil. The latter are described
with Linear Temporal Logic (LTL) [13] properties.nALTL formula is interpreted on infinite words
which do not include time as a first-class varial8tate space exploration with linear temporaldogi
based on automata theory can be solved using UPPABL Moreover, UPPAAL supports timed
automata and event-clock automata specifications.

This paper is organized as follows. Section 2 gigasoverview of related work. Section 3
includes a description of the M&S framework, expemntal frame and IOA. Section 4 states the main
contribution, defining a trace inclusion propertithwinput/Output automata. Section 5 describessstep



and an algorithm to conduct compatibility checkscthn 6 introduces an example of use of this
approach. Section 7 gives a conclusion and antesgature work.

2. Related work

Combining simulation with formal methods has begtemsively investigated. We present our
contribution in this context.

In [17], a model checker is used to automaticaltivel the SIMSAT simulator to check
operational plans. In contrast to the verificatminoperational plans, our proposed approach has a
general scope, being applicable to simulation nodélany system and a set of requirements to be
verified.

In [25] the authors use a model checker to genetifiteossible simulation scenarios and then
optimise the simulation of such scenarios by efipigithe ability of simulators to save and restore
visited states. Our approach is quite differentabbse we have defined some metrics for evaluating
simulation without running it.

In [18], the authors make the following observasiofunctional errors are not eliminated by
synthesis and not detected by a formal verificabased on test equivalence. These errors resutt fro
incorrect specifications, a misinterpretation oédafications, etc. They highlight the limits of foal
verification (equivalence checking, model checkitngorem proving) in the context of validation. Yhe
use a semi-formal approach, initially proposed 18], based on the notion of metric coverage coupled
with simulation. The objective is to achieve untimgable validation without duplication of effofte
approach combines symbolic simulation, model-chregkind the generation of test vectors based on
coverage analysis to minimize unwanted portionthefsystem. The authors advocate the definition of
metrics at different levels of abstraction: on tloele, the system structure, its state space, amatily
and specifications.

In [20], the authors propose model checking to guibde simulation process and improve
coverage. Coverage metrics are measured duringatitiation session and model checking is invoked
when coverage is insufficient to reach uncoveratspa the state space more quickly. Invoking model
checking is dynamically controlled during run-time.

We positioned ourselves relative to these workednsidering two key differences:

* In current practice simulation, runs are actupgkyformed: in contrast, our approach aims to
verify before simulation whether a simulation bebav (i.e. model + experimental frame) can
be used for the intended purpose of the simulatibith is derived from requirements on the
real system.

* Using formal methods, all possible simulation sc@s are exhaustively explored: our
approach makes use of the intended purpose ofirthdagion to investigate only that part of
the behaviour of the simulation (that portion of tetate space) which is of interest for the
intended purpose.

3. Framework for the preparation of models and simulations

3.1. TMS

In [4], a new way of providing a model descriptimnproposed and the question of knowing
whether this model is a true representation of dixeamic behaviour of the system from a given
perspective is asked. The basic principle of the SVirocess described by Zeigler involves the
separation of the model and the simulator. Thecbasiities of the M&S process are the system, the
model and the simulator (Figure 2).

The system is the real or virtual element used aswice of observable data and subject to
modeling. The model, also called system substitata,representation of the system. It usually ists1s
of a set of instructions, controls, equations onst@ints designed to generate its behaviour. The
simulator is a computer system executing the maahel generating its behaviour based on model
instructions and injected inputs. This set is raaiged to integrate the experimental frame (EFg Th

4



latter is a specification of the conditions unddiick a system can be observed or experimenteslalt i
operational formulation of the objectives which tthevelopment of the M&S application supports.
There may be several experimental frames for theessystem and the same experimental frame may
be applied to several systems.

Experimertal Frame

Real
System

'\

il ad &ling Simul ation

Figure 2. M&S process and its entities

It should be pointed out that the experimental fammansforms the objectives used to focus
model development on a particular point of viewgispecific experimental conditions. A model must
be valid for a system in such an experimental frafre operational formulation of the objectives is
produced by matching theutput variables with measurements of the system’s effectiveness in
accomplishing its function. These measurementsaltedoutcome measures.

Modeling is the relationship between a model, desysand an experimental frame. The validity
of a model is the basic concept of the modelingti@hship. Validity refers to the degree to which a
model faithfully represents a system in an expentadeframe of interest. The relation between a rhode
and a simulator is simulation. The correctnesshefdimulator is the basic concept of this relatian.
simulator correctly simulates a model if it guaes# a faithful generation of model output valueegi
the model state and the input values. This relatiders to the principle of separating concernsuabo
model design and its implementation.

3.2. Experimental frame
An experimental frame features three componentshasvn in Fig. 3: agenerator, which

generates a set of input segments for the systemacceptor, which selects the data of interest to the
system while monitoring whether the desired expenial conditions are complied with, and a
transducer, which observes and analyses the output of thiersydMapping between output variables
and outcome measures is carried out by the trapsduc

An experimental frame is given in [8] as a struetwhere:

EF = (T, Iu, le Om, Ok, Qum, Qg, Qc, SU

* T is a time base,

* Imis the set of Frame-to-Model input variables, tiieas model stimulation ports,

« |eis the set of Frame input variables, the contrplirset,

« Owmis the set of Model-to-Frame output variables,gbieof model observation ports,

« Ceis the set of Frame output variables, the summetry s



* Qu O (Im, T) is the set of segments injected into the maogaits,
* Qe (I T) is the set of admissible input segments fergkperiment,
* Qc O (Om, T) the set of segments observed on the modeltsytp

« SU is a set of conditions, also referred to asmsang mappings, which establishes relationships
between inputs and outputs within the frame.

Generator Iy 0 Transductor
Weto.t,> € NP> Model M i € Qc
Acceptor

to tn
I -
A Experimental Frame

Figure 3. The experimental frame and its components

Typical experimental frame components can be fdarjd] in chapter 14. For example, typical
generator functions are sine wave, square wawve ratap, periodic arrivals.Typical acceptor function
are steady state, transient. Typical transduceatifums are throughput, turnaround times, elapsedd;j
rates, averages.

It has been seen that the experimental frame fesmtdata gathering (statistics, performance
measurements, etc.) and behavioural control (iiziéiton, termination, transient state removal )etc.
Again, an experimental frame can be seen as amsytsi@ interacts with the system or the model to
obtain data of interest under certain conditionen¢¢, defining boundaries between the experimental
frame and the model is essential to clearly disfisty between what drives the model, what can be
observed as output, and the model itself. Thideas illustrated in [3].

3.3. Input/Output Automata

We use input/output automata (I0A) [21] to desctibe dynamics of models at a quite abstract
level that is independent from an encoding language

Definition 1 (IOA). It consists of the following structure:
A=(D, X, Y,dom, Sg, Z, 3, ) Where
« D is a set of data types (integer, real, string)e
» X is a finite set of names representing the saimit variables,
Y is a finite set of names representing the seugbut variables,
» dom: XO Y - Dis the typing function which allocates a typedata to each variable,
* S is the set of states,

«0:S- (XOY) - dom(X 0O Y)) is the configuration function, i.e. mappingalues with
the typed input/output variables for each state.

* > is the set of event names. These names are tieetiasition labels. e is the set of non-
observable events.



* 0 [0 Sx X x S is the transition relation, a transition ideasfa change to the inputs, the outputs
or the states.

*s [ S is the set of possible initial states, the statewvhich the automaton can be if no inputs
have yet been transformed.

X 0OY O X is the vocabulary used to define the automaton.tik® sake of simplicity, we will
assume that the names used in the vocabulary apgeun

Example. Let us consider a communication system with aeshanemory which implements a FIFO
(First In First Out) scheme, the behaviour of whiedescribed by the reachability graph in Figuran4
this example, a variable queue is defined to desaisequence of messages. This variable is déclare
as a table of length 2. Each place of the buffeseisto 1 if there is a message, or 0 if not. This
automaton has an initial state where the sequence is empty (@ds) = (0, 0)). The set of state S is
{(0,0), (0,1), (1,0), (1,1) }. These states are mected by transition relations. These transitiores a
labeled by the eventgcv andsend which respectively add a message to the headeo$eéfjuence and
remove a message from the sequence.

s

sl

Figure 4. Reachability graph of a shared memory communinaicstem

Definition 2 (Run (or trace)). An IOA run is a sequence (fimtenot)o () —lo ... 0 (3) -1 ...
where sis a state (g8s an initial state) andik an event name such that any (sl; s«;) of arun is a
transition of the automaton. A run can also bergefiby a path taken from the computation tree of an
automaton. "Run” can also be called "trace".

4. Our contribution on verifying trace inclusion

4.1. Objective of trace inclusion

Qe are the simulation results that the experimentish&s to observe, where@oer are the
stimuli injected into the simulation. Similarl2iv are allowable inputs of the model afxwv are the
possible simulation results.

Definition 3 (EF-Model behavioural compatibility). We state ttten experimental frame can be
applicable to a model if their behaviours are cotibpes i.e.:

Qoer U Qim
Qom U Qer

The next section introduces a formal way for ud®@4 in order to check EF-Model behavioural
compatibility.



4.2. Behavioural compatibility

A Temporal Interfacing Constraint (TIC) is an exion property defined with respect to a given
vocabulary (names of events and input/output viegb

The properties of invariants are constraints ondbefiguration function. For example, let us
consideraltitude as an input variable of the automaton’s vocabul@hg constraintvariable altitude is
positive or zero" is an example of an invariante Butomaton that satisfies this invariant includes
integer input variable called altitude and a camfigion functionc such that, for any state s,
o(s)(altitude)< O.

The temporal properties are constraints which tiekconfiguration and the transitions. There are
two separate types of time-dependent properties:

« linear versus computation tree: refers to the twaims on all executions of the automaton
versus those on the computation tree taken fromagb@maton,

* past versus future.

For example, consider the Boolean output varialaerain the vocabulary of an automaton:
"If the value of alarm is true in one state of éxecution, then there is a previous state in tlee@tion
where altitude< 10" is a linear time and past property.
"If altitude < 10 in one node of the computation tree of an aatom then we should be able to find a
path and a subsequent node in the path whichisatafrm = true" is an example of a computaties tr
and future property.

Definition 4 (Runs set satisfied by a TIC). Let TIC be a canstrexpressed on the vocabulary V and
let A be an automaton that generates all the ru@isdan be constructed with the vocabulary V. Then

we note|TIC||» the set of runs of A which satisfies the TIC.

Let us define a set of restrictions to reduce #teo§ execution traces of the model to the set of
execution traces required by the experimental frame

Definition 5 (Restriction of an automaton).
The restriction of an automatéB, X, Y, dom, So, Z, 8, $) to a subset X1 Y' O X' of its vocabulary

is an automatotD, X', Y', dom, So/ X' O Y', 2', 8/ %', g in which the restricted configurations and
the restricted transitions are defined below.

Definition 6 (Restriction of a configuration).

The restrictiono / X' O Y' of a configurationo : S - ((X OY) - dom(X 0Y)) restricted to a
vocabulary XT Y'such that XO Y' O X OY is the configuratioro' / X'O YY) : S (X' OY") -
dom(X'00Y") such thats / X' Y' (s)(v) =0 (s)(v) for all v X' O Y".

The restriction of a configuration keeps for eatettesthe value of a subset of variables of interest
and puts aside the values of all other variables.

Definition 7 (Restriction of a transition).
The restrictiond / X' of a transition relatiod® 0 S x 2 x S restricted to a vocabula®y [0 X is the
transition relationd /%' 00 Sx %' {€} xS such that:

o foralled 2, forall (s,90SxS,if(s,e,30dthen (s, e,BUd/Z',
o foralledZ-%' forall (s,90SxS,if(s,e,30dthen (s, e,BUd/Z".
The restriction of a transition relation keeps streicture of a transition relation unchanged, but

identifies the names of a subset of events of ésteand masks the other names with non-observable
events e.



Definition 8 (Restriction of a run).
A run restricted to a vocabulary is the initial rimwhich the initial configuration function andeth
initial function relation are replaced by theirpestive restrictions.

Let us define an EF by a TIC on the vocabulaeg X Yer [0 Zer. Also, define a model of a
system of interest by a TIC on a vocabulary XYwm [ 3m.

Definition 9 (Compatibility of vocabularies).
The model and experimental frame can be connettkdyi have compatible vocabularies:

* Xer [0 Ywm: all the results of interest required by the ekpental frame are supplied by the
model and the model may supply more results thaassary.

« Yer= Xwm: all stimulations planned by the experimental feacan be performed and all inputs
necessary to perform simulation are defined byekgerimental frame. Particular attention must be
paid to the case ¢ [0 Xwm. It is assumed that EF and M can be connected.eMenyin that case it is
necessary to make sure that there is no dependetareen a non-assigned input of the model and an
observed output. In that case the simulation resaltild be biased. Dependency between inputs/@utput
of a component may be a specific condition whidbeigond the scope of this paper.

» 2er U 2m: all events of interest in the experimentation bamobserved during simulation, but
the latter produces more events.

For simplicity it is assumed that the names useddsignate EF and M inputs/outputs are
identical.

Compatibility of vocabularies is a prerequisite fasing simulation with respect to an
experimental frame. We will now clarify how to clkabe behavioural compatibility of an experimental
frame with a model by comparing traces fulfilledtbg corresponding TICs.

If we have EF and M, two TICs for the respectivealoularies ¥r= Xer [0 YerO Zerand W =
Xwm O Ywm O Zm such that these vocabularies are compatible.

Definition 10 (Full compatibility).
EF and M are fully compatible if all traces of Mstected to the vocabulary of EF are traces of EF:

IM||vwver = |[EF|ver (case 1 in Figure 5).

Definition 11 (Relaxed compatibility).
Exact matching not being required, this means that:

* |M|vmver O|EF|ver : the behaviours of the model are in the envelopesignificant
behaviours with respect to the EF (case 2 in Big. 5

* |EF| ver O|M| viver: all experimentations planned by the EF can béopeed on the model
(case 3 in Fig. 5).

When |M|vwver O EF|ver is false, there are model executions which areBfoexecutions.
We identify two cases (Fig. 5):



* (case 2.1 in Fig. 5). There is a test coverade Tikis may be the case if the model considers
input variables with other values than those pldnbg the EF. The EF does not therefore
explore all executions of the simulation. This me#mt either the unexplored executions are
not relevant for the experimentation, or that titeisnot comprehensive enough.

 (case 2.2 in Fig. 5). There is a bias in the satioth or in the reference definition. This may be
the case as the model considers output variablésather values than those expected by the
EF. This means either that the simulation resuktsi@correct or that the EF assumptions are
false.

When |EF|ver O|M|vwver is false, executions are envisaged by the EF beitnat model
executions. Here again, two cases can be consi@igpde. 5):

e (case 3.1 in Figure. 5). Some experiments areideuthe usage domain of the simulation
model. This may be the case if the EF considernsubwtariables with more values than those
accepted by the model. The EF therefore plans pdoex simulation executions outside the
scope recommended by the model and the simulagiguits can no longer be guaranteed. The
model or EF must be modified.

 (case 3.2 in Figure. 5).There is a risk concertiigcompleteness of the model. This may be
the case if the EF considers the input variablgh wiore values than those supplied by the
simulation results. Thus, either there is somethinige learnt from the simulation if we reduce
the uncertainties of the EF, or the simulation ks the implementation of some cases.

Figure 5 below illustrates these four cases.

2. ||M ||1-'_1,r,-'1-}.;;.- - ||51'1||1-}.;;.-

2.1 ”_\'_\.r = Q‘}}-:r

LMy, v

2.2 Qy,, # Oxpp IEFly

3. ||4’51||1; e | M ”1-1;,;‘1-}._—;.-

Figure5. Level of EF/Model behavioural compatibility
5. Computing compatibility

A key step in our methodology is to ensure thatagleh provides meaningful input and output
ports for a given experimental frame, i.e. a sestohulation and observation points [22]. In other
words, we focus on the boundaries between the naodkthe experimental frame. Thus, we can clearly
perceive what drives the model, what is observeitkasutput, and the model itself. It is worth mofi
that incorporating data-gathering facilities inb@ tmodel must be avoided, since this would make the
model not only more complex but also unsuitable feuse or for association with different
experimental frames.

D.S. Weld [2] defines the scope of a model as #mge of the system the model describes. A
model has a larger scope than another if it givésoader description of the system. Changing the
scope of a model is equivalent to redefining theroaries between the system (described by the
model) and its environment. So, selecting the saofpthe model implicitly includes selecting the
exogenous parameters and determining their values.
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Then consider a system A which has a set of endngeparameters and a set of exogenous
parameters. By reducing the scope of the modeysiEm A, we get a system B with a new (smaller)
set of endogenous parameters and a new (largegf setogenous parameters. The new exogenous
parameters then become parameters that can belthtand/or observed by the simulation user to
properly carry out his/her experimentation. Theywnbelong to the experimental frame. New
boundaries between the experimental frame and thdehof the system of interest are defined. We
thus define the scope of a simulation by the setxofyenous parameters of the system of interest.

In industrial practice, a simulation is developedverify and validate a given set of system
requirements. Therefore a test plan associatedthatbe requirements is elaborated. We assume that a
test plan requiring user specification leads t@gmerimental frame component annotated with specifi
constraints, i.e. a signature. We equally assuraettie component model of that system is annotated
with those constraints. We can then analyse afsmiropatibility properties between the experimental
frame and the model. There exist static and dyngnaperties. Hence simple properties (scope, values
domain...) have been found to be correct and thdeteo can therefore go further to include more
complex properties (e.g. a minimum user specificais required for static properties). An incorrect
property informs us that the simulation cannotkecated in the given situation, i.e. either the el
the experimental frame must be modified.

5.1. Seps of compatibility computation

A component-based approach is proposed to deseritmmulation. We assume that an
experimental frame and a system model of interesttaro components as defined by [23]. A
component features a set of ports and is coupleshtdher component through connectors via their
respective ports. A component can either be coupled it is the result of a composition of
components, or it is atomic, i.e. it cannot be degpased any further.

Then we assume that both the experimental framelandnodel are specified and can be built
using a component-based approach. The experimigataé successively affects values to the model
inputs (generator), triggers events and obsenasntbdel outputs (transducer). Temporal logic may be
used to specify the acceptor, i.e. a set of relatipps between inputs and outputs within the frame.

Consider two components EF and M defined by two3d0A

EF =(Der, Xer Yer dOMtr, Stk Ocr Zer Oer Soer and

M =(Dwm, Xu, Ym, domy, Su, Oum, Zm, O, Som)-
Computing the compatibility of the experimentainfierelative to a model involves several steps:

e Step 1: Verifying scope compatibility

The ports of a component are defined by its automabcabulary (X, Y and S). Then an EF
and M can be connected if (definition 9rX] Ym, YEF=XMm, ZEF[] Zwm.

e Step 2: Computing thetargeted state

A simulation achieves its intended purpose if teé af summary mappings given by the
acceptor are satisfied by the interaction of thedehavith the generator and the transducer.
Remember that a summary mapping can be seen a$ af s®nstraints which links a
configurationo(v) with v [0 Serand a transitioh [0 der. v is a targeted state of the acceptor. We
denote the set of targeted states given by thepsmdey Sccll SeF.

This step consists in verifying that for all targgtstates there exists a state in the model such
that:

Ov O Saccu 0 Sv | o(v) = o(u)
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 Step 3: Computing the synchronous product of the generator, transducer and model.

The generator, transducer and model share a ssteots to satisfy the properties expected by
the acceptor. The product allows an IOA to be bugtfrom two IOAs. The synchronous

product A of EF and M, denoted A = PT/I is defined by:

(SeFx Swu, ZeF [0 2™, OeF x OM, Soer X Som) Where

— SFx Su is the set of states,

—2eF [J Zwm is the set of event names,

— Ser x Sou IS the set of initial states,

— OeF x OM is the transition relation defined by:
*((v;u), |, (v, u) [ (v, |, v)OSerO(u, |, u)Odm Ol O Zera Im
*((vzu), L v, u) (v, L vy O serOud Su Ol O Zer\Im
*((vzu), L (v, u)) [ (u, L, uyOdmOv O SerOl O Zer) Sm

* Step 4
Verifying that EF|| M satisfiesthe set of properties P expected the acceptor: EF| M |=P.

e Step 5: Computing the IOA of the model restricted to the IOA of the experimental frame
(definitions 7 and 8).

e Step 6: Comparing execution traces (definition 12).

5.2. How to usetraceinclusion

Using trace inclusion consists of evaluating a &tion based on the experimental frame
approach and the steps of compatibility computaa®shown in figure 6.

| — ———— 7 evichrenoue Product | ——————— 1
| Generalflur Synchronous Product Transducer |
[7.) (10A)
| ( |
| Simulation Meonitors |
| Diriver ﬂ%d'f:: > |
: 7y :
| Vector |
| Generation |
| |
l |

i Diagnosis Coverage |
1 of unverified analysis |
| portions

Figure 6. Simulation with trace inclusion approach
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We assume that an evaluation of simulation is deffiby the model of the system under test and de
requirements to evaluate. We recall that our ambraa model-based. Therefore the modeling of the
experimental frame is built from the simulationuggments to obtain the following models: generator
transducer and acceptor as seen in Figure 6. Eseth mmodel in this approach has to be formally
checked. It is worth remembering that an experiadeiname successively affects values to the model
inputs (generator), triggers events and obsenemtidel’s outputs (transducer).

As mentioned in related work, errors not detected fiwrmal verification are due to incorrect
specifications or misinterpretation of specificago In our approach specifications are taken into
account and modeled as IOA that leads to test ggarr The I0A can be checked by model checking
to ensure its correctness in relation to specificatind to detect different kinds of errors such as
misinterpretation.

For the compatibility computation we assume thevabmentioned models are formally checked and
available. Compatibility can be splitted in typenaétrics:

» Step 1: allows computation stope metrics between the EF (i.e. its models) and the mode&und
test. Scope metrics identify expected and requirgnit/output ports of the model and the EF,
respectively. These metrics are computed usin¢Qheof connected models.

» Steps 2 and 3: lead to the computation ¢bmpatibility metrics between model, generator and
transducer thanks to synchronous product of IOANnQatibility metrics are achieved by synchronous
product between EF models and model under testlgotify the applicability of event sequences
between EF and model and verify the reachabilityeafrched states given by the acceptor.

» Steps 4, 5 and 6: help to compute ¢beer age metrics. Coverage analysis is performed by the
acceptor which provides acceptance criteria faretiaclusion. This analysis is based on the restilés
verification tool as UPAAL. We compare the set ajdal traces, which meets the properties given by
the acceptor, with the set of traces given by tmeegator and the transducer. With the trace inmtusi
approach, we can identify a priori (before simaatexecution) whether a simulation can be executed
indicating to the modeler whether the guaranteesiged by the model will satisfy its simulation
objectives of use. Coverage metrics can be defiised five quantities (figure 5): exact matchingge
1), test coverage risk (case 2.1), bias in the lsinan (case 2.2), wrong usage of the model (cakg 3
and model completeness risk (case 3.2).

6. An example: Adaptive cruise controller

Our approach can be illustrated with the desigaroembedded system, the control unit of an
autonomous intelligent cruise controller (AICC) [24. The AICC is more than just a regular cruise
controller which maintains speed as required byiaed it adapts it according to the distance goeksl
of the vehicle in front. A safe speed is the maximapeed required to maintain the vehicle safelyyawa
from the other vehicles in front of the vehicle.eTéxpected speed is the one requested by the .driver
The control unit must keep the speed withitkm/h of the safe speed or expected speed, whicleve
lower.

6.1. Adaptive cruise controller simulation

The structural definition of the simulation is given Figure 7 below. Remember that it is an
important step since it allows to define the bouredabetween the model and the experimental frame.
Selecting the scope of the model implicitly incladselecting exogenous parameters. All other
components of the global system (e.g. AICC vehiota)y belong to the experimental frame needed to
represent the environment of the cruise control&sme of these elements can be abstracted or
simplified if their contributions are not relevantthe experiment.

The system of interest consists of the cruise odiatr calculation module which computes a
throttle setting according to data from the drisad sensors. Those data include brake command, coas
and acc controls to respectively decrease anddseréhe required speed. The safe speed and actual
speed are retrieved from speed sensors.
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In this context, the experimental frame consistsagiarios for brake, and required speed and a
function to compute the safe speed according taiftance and speed of the leading vehicle. This is
accomplished by the generator. The transducer orsnthe throttle setting and updates the vehicle
speed accordingly. The acceptor continually téstgtin control segments to satisfy a set of coinra
e.g. the speed of the vehicle must remain wittakm/hof the safe speed or expected speed.

Throfile_Seting Throftle_Setting
Safe_speed Safe_speed _
Speed Speed adel ransducer
Erake Brake Al
Coast Coasl Compuiation Unit Sweed
ACC = A Modsl under fest

Expected_speed

'
1

]

Generator [

Experirmental Frame

Figure 7. Adaptive cruise controller simulation

6.2. Adaptive cruise controller model

Consider a model of the AICC for which Figure 8agivall possible executions. This model has
several variables: s, ws, ss, which are the spk#tkorehicle, the expected speed given by theedriv
and the safe speed given by a sensor, respectiMadge variables can only take the values 10 0A20.
variable status indicates whether the cruise cietris OFF or ON. A variable cs is employed to wno
whether the controller must maintain the safe spwettie expected speed, whichever is lower. incTh
and decTh are used to adjust the throttle valvéearidpe set of states S is then given by S = {statu
{ON, OFF}, csO {ws, ss}, s {10, 20}, ws {10, 20}, s {10, 20}}.

The set of events is given Ry= {acc, coast, brake, s < ws, wsss, incDst, decDst}. When the
cruise controller is OFF, if a coast event occitrsyitches to the ON state and the speed is nmagda
In this state, having a coast event leads to dsicrgdhe driver expected speed, while having an acc
event results in increasing the driver's expecteekd. A brake event turns the cruise controller OFF
The s < ws event will occur when the speed (s)edsas below the wanted speed (ws). The\ws
event will occur if the wanted speed decreasebdastife speed or a speed lower than the safe speed.
The incDst and decDst events respectively increaseamrdse the safe speed value.

Y decTh G i
e b =Y T e G
" OFF s L - e
CS=W5 coasl c::\QsN o cs:\(:.')sN 1 | csWE
1o V= ws=10 | decDst incDst - k’hra.l\g o W10
= - g =2 3 . =2
| =0 \E‘F“-k_‘f,-\s‘tm =10 =~ == =20 =10 \{fn“_‘iln\&_ =10 )
3 S g =—s A B el S P
) ,  doc
5, ws<=ss | It/ ; o 1S ‘du.l h
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T OFF eoast 1 oN ) I oN ¥ e ak:""/ OFF 1\
C5=85 —~—=3,| C5=83 /| cs=ws | csmws
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=20 beake | ss=20 J | =10 feoast J ein T
. =0 04 =0, /o =10 \ =y ot
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=S| =4 S=S ! >~ o
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| =g peemt | == T e =20 {S— =20
=t Ll " o "--..\\ b 2 o -
{;chest \ decTh | N de'cD«N'mrDsl / \"".
bkl ) s il \braks
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Figure 8. Reachability graph of the cruise controller
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Let us now formally describe the "observable" varsof the model. The state variables which
are not controllable and/or observable are maskiid. causes state aggregation over the model's stat
space. Fig. 9 shows an abstraction of the previeashability graph. The cs variable is hidden dmed t
states which share the same combination of valrestditus, ws, s and ss are aggregated. The toansit
relations are kept.

decDst
S’IK_\/\MQ ace )cousl

ON incDst ON
0 ws=20 % ws=20
S = §s=2I
SSEWS | S8 =10 §8 =10
decTh decDst incTh Wa=ss
S4 S5We W<=Ss

oN ¥ s N

incDst ,
\( e
2

ws=2
ss<ws | ss=100 $5=20
=)l \u//
— 1\ decDst WS<=5§ i
S i cousl) ¢
Coast NYA S
oN Vs 0N
o incDst
ss=10 ss=20
ss=10 =20 \_/ s5=20 0

decDst

WS<=588 ws=10 incDst WS<=88
88 §5=2

decTh

153

WS<=58 ws=10 Ws<=8s

Figure 9. Abstract version of the previous reachability drap

6.3. Adaptive cruise controller experimental frame

Consider then the following intended purpose: wtien safe speed is lower than the expected
speed, the controller must keep the speed of thieleeat the safe speed.
There are two scenarios for which the safe speednbes lower than the expected speed:

1. the safe speed is greater than or equal toxpected speed and an acc event increases the
expected speed which becomes greater than thezade.

2. the safe speed is greater than or equal toxjpeceed speed and a decDst event decreases the
safe speed which becomes lower than the expecésdisp

6.4. Behavioural compatibility

Given below are examples of relaxed compatibilgygeven in definition 11.
Case 1:
Consider the model given in Figure. 9 and an exrpamial frame scenario which simply
stimulates an acc event, then it observes ss nd/$irally s=ss.
The set of targeted states are all states whesss Scc= {s2, s5, s7}

The product EH:M satisfies the property] BT s=ss. The algorithm used to verify that

an automaton satisfies a temporal property is ivethghere. It can be found in [12].
In the model given in Figure 9, three executiondrasatisfy this property:

[M]l v =

1.s00 8. s2 0H - 2

2.s0 0 PFRA'. s1 OBF_ s3 OPFH L 55 0 BP9 sa OB TIP sa 0P 52
3.s00 8fF s1 OB - s3 0P E . 55 0 BPERFL. 54 OFTIP . sa 0 FT- 52
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Result:
The experimental frame covers the first model'scekien trace but does not explore traces 2
and 3. This corresponds to case 2.1 in Figure 5.

Thereisatest coveragerisk.

Case 2:
Consider a model which overlooks the implementatibexecution traces 2 and 3 shown above.
Consider an experimental frame which stimulategeDdt event, then it observes ss < ws and
finally s=ss.

The product EH:M does not satisfy the property TP s =ss, i.e. the event decDst of the

experimental frame is not synchronizable with MeBynchronous product step failed. Therefore
we don’t need to compare execution traces.

Result:
The experimental frame plans to explore simulatiexecutions are outside the scope
recommended by the model. This corresponds toZade Figure 5.

The experimental frame and model are not compatible.

6.5 Verifying trace inclusion with UPPAAL

UPPAAL is a tool environment for the modeling aretification of real-time systems modeled
with timed automata. It uses Linear Temporal Lo¢lidL) to encode requirements and analyse
qualitative properties of models.

The behaviour of the AICC calculation module isegivby the automaton in Figure 10. The
second automaton in Figure 11 implements a modailect UpdateSpeed used to continually check
which speed must be used for cruise control, aée speed or expected speed. Observe that we have
used the synchronization mechanism offered by UPP#&Aensure that the product of the model and
experimental frame satisfy the properties givenhayacceptor.

OFF

wanted speed++

wanted _speed--

Figure 10. IOA 1 of the model: calculation module

The intended purpose consists in validating thedselection process (module UpdateData): if
the safe speed is lower than the required speed;rthse controller must maintain the speed equal t
the safe speed. Otherwise, it must maintain thedsjegual to the required speed. The transducer, as
illustrated by the IOA Figure 12, updates the viehispeed according to the throttle setting, and
continually checks the property curr_speed == etgquecspeed, i.e. the cruise controller maintains the
speed equal to the required speed.
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sdie speed>=wdnes

cur_speed=wanted speed

ife speed<cur

curr_speed=safe spead

o o
(u B é‘_-c

SpEEeC=CUIr_-speed

'|:. speed<wanted s peed

curm_spesd=safe speed

speed &&
ted speed safe

Figure 11. IOA 2 of the model: UpdateSpeed

curr speed==wanted speed

OK

Figure 12. IOA of the transducer

cThre
speed+=

(4 Ty

Let us assign three different scenarios (Figuretd3)ustrate the different cases. We have used
the UPPAAL model checker to verify the propertiexaded in LTL. Figures 14, 15 and 16 show
snhapshots of the results.

If properties A speed> curr_speed-2 andAspeeds curr_speed+2 are true, the speed of the
vehicle always remains withte2km/hof the current speed.

If the property B curr_speed==expected_speed is true, there isueeg of alternating delay
transitions and action transitions where the curspred equals the required speed.

C

brake!

Figure 13. Left to right: generator for scenarios 1, 2 and 3

end

wanted_speed<=80 (

brake!

N
J

coast!

\<} acc!

Oend

coast!

brake!

©

speed=40,
safe speed=45,
| wa nfed speed=85

O

3
()Q coast!

Oend

Scenario 1. Qym# Qxer andQxm < Qver(Fig. 14) This scenario occurs when the executiacet of the
experimental frame is not an execution trace ofntloglel (case 3.1 in Figure 5). Some experiments lie
outside the usage domain of the model, i.e. theetnocginnot reach the ON state from the OFF state
with the event brake. Indeed, the transducer S&tevill never be reached (case 2.2 in Figure 5).
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E<> Gen_cas_l.end

E<> curr_speed==wanted speed
E<= Trans_cas_1.0K

A<= speed>=curr_speed-2

A<= speed==curr_speed+2

Figure 14. Temporal logic verification for scenario 1

Scenario 2: Qvm# Qxerand Qxv >Qver (Figure 15 This scenario occurs when the experiatdrame
does not explore all execution traces of the méehkse 2.1 in Figure 5). The generator is applictble
the model, i.e. the end state is reached but doeallow to support the simulation intended purpose
i.e. the transducer state OK will never be readleade 2.2 in Figure 5). Indeed, the left side itemms

of the UpdateData module is never fired.

E<> Gen_cas_2.end

E<> curr_speed==wanted speed
E<> Trans_cas_1.0K

A<= speed>=curr_speed-2

A== speed==curr_speed+2

Figure 15. Temporal logic verification for scenario 2

Scenario 3: |M|wwver = |[EF|ver (Figure 16) This scenario occurs when the experiateitame

execution traces are also execution traces of ttiemThe generator is applicable to the modelthe
end state is reached and the simulation intendgabpea is met, i.e. there is an execution tracehithv
the transducer state OK will be reached.

E<> Gen_case 3.end

E<> curr_speed==wanted speed
E<= Trans_cas_1.0K

A<= speed>=curr_speed-2

A== speed<=curr_speed+2

Figure 16 Temporal logic verification for scenario 3
7. Conclusion and future work
This paper has introduced an approach to formadlydate and define a context of ongoing

simulation using behavioural compatibility betweemodel and its intended purpose. The concept of
experimental frame, proposed in the M&S theory, Ibesn employed to address the problem within a
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well-founded methodological framework. It has addlowed us to treat a recurring problem in that the
intended purpose of the simulation is often notladefined. We have shown that the model is not the
only cause of bias to simulation, but that the expentation performed with this model may also have
been poorly defined.

The issue of matching relies on the principle thatintended purpose and a model are two
components, in the formal meaning of the term mieracting through their interfaces and only tigio
them. We turned to component-based engineeringquigebs to iteratively enhance the concept of an
experimental frame of "symbolic concepts" and detee the system behaviours to be included in the
model.

The generator defines the logical order of the diimjected into the simulation. The transducer
defines the logical order of the observations. \fecHied these two components using input/output
automata. The acceptor, specified using tempogit l@onsists in verifying whether a requiremerd ha
been verified based on stimulus/observation passfor properties related to the applicability ckec
between the experimental frame and the model, s defined temporal logic properties for EF states
to determine which applicability case we found elwss in. While this approach is consistent, aareff
remains to be made to find more systematic applibalproperties.We have defined and compute
three types of metrics: scope metrics between Ehartel the model, compatibility metrics and coverage
metrics within the state spaceurthermore, with this approach, coverage analgais be performed
either from scratch with the development of a satiah necessary and sufficient to satisfy an ineeind
purpose, or with the reuse of an already existingukstion model to satisfy an intended purpose.
Developers are free to associate a model with rdiffeexperimental frames, each corresponding to a
particular simulation objective of use.

We have two directions for the future work:

* we would refine coverage quantities and explateeno gauges for metrics.The latter are
ordered, i.e. measuring trace inclusion implies$ pwats and event sequences are compatible,

» we would like to focus on establishing equivalemt@sses between execution traces, e.g.
traces that rise to the same conclusion can beeggtgd. This would allow to reduce the
number of simulation scenarios and to avoid thdidafon of tests.
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