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∗ LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse,
France (e-mail: {asahugue, elecorro, mvlelann}@laas.fr)

Abstract: Chronicles are temporal patterns well suited for an abstract representation of
the behavior of dynamic systems. For fault diagnosis, chronicles describe the nominal and
faulty behaviors of the process. Powerful algorithms allow the recognition of chronicles in
the flow of observations of the system and appropriate actions can be taken when a faulty
situation is recognized. However, designing chronicles is not a trivial thing to do. The increasing
complexity and capacity of data generation of highly-advanced processes cause the acquisition
of a complete model difficult. This paper focuses on the problem of discovering chronicles that
are representative of a system behavior from direct observations. A clustering approach to
this problem is considered. The chronicle discovery algorithm proposed here designs chronicles
with minimal knowledge of the system to diagnose. Furthermore, unprocessed data obtained
directly from the system can be used in this clustering algorithm. Finally, the chronicle discovery
algorithm proposed in this paper is illustrated on a sport performance monitoring device for
a diagnosis of movement deviations in the temporal domain, in the event domain, or both,
considered as faults for the athlete.

Keywords: Fault Diagnosis, Machine Learning, Clustering, Temporal Pattern Mining,
Chronicle Discovery.

1. INTRODUCTION

This paper focuses on the fault diagnosis of dynamic com-
plex systems problem. The problem consists in producing
a temporal model well suited for fault diagnosis from a
set of observations of a complex process. The increasing
complexity of modern systems and the development of
data generation and storage capacities greatly increase the
number of observations. This large number of observations
should be processed by some automatic method in order
to assist the expert in the design of such a temporal model.

The studied models are timed discrete event models called
chronicles (Dousson and Le Maigat, 2007). They are tem-
poral patterns well suited to capture the behavior of a
dynamic process. Chronicles describe behaviors by means
of an event abstraction of the information of interest.
Within this formalism, events are partially ordered and
temporally constrained one to another. Figure 1 describes
such a chronicle where events of interest are a, b and c.
The illustrated process is such that an event of type c
must occur between 3 and 4 time units (t.u.) after an
event of type b. This event must appear between 1 and
2 t.u. later than an event of type a. Another event of type
c must follow a anytime bounded by 8 and 10 t.u.. In
the diagnosis domain, each chronicle represents a specific
behavior of the system. This behavior can be nominal
or typical when a fault is present. This faulty behavior
can be recognized in a temporal sequence made of timed
observations generated by the system. The recognition of
this specific temporal pattern leads to establish that the
system is in that faulty situation (Dousson and Le Maigat,

2007). Various diagnosis applications use the chronicle
approach. A chronicle based diagnosis in web services is
presented in (Pencolé and Subias, 2009). A multi-alarm
misuse correlation component that allows the user to sig-
nificantly reduce the number of alarms uses a chronicle
approach in (Morin and Debar, 2003). Chronicles could be
used in the medical field as for instance in (Carrault et al.,
1999) where they allow identification of cardiac arrhythmia
and in (Dauxais et al., 2017) where possible associations
between hospitalizations for seizure and anti-epileptic drug
switches are identified. However, as efficient a diagnosis
with chronicles can be, designing chronicles is not a trivial
thing to do. The design of such a complex model often
requires the knowledge of an expert of the process to be
diagnosed. Unfortunately, this knowledge is frequently not
enough to build pertinent chronicles for diagnosis.
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Fig. 1. A chronicle where events of interest are a, b and c.

The Apriori algorithm (Agrawal and Srikant, 1994) is a
commonly used approach to try and tackle this problem.
Apriori is a data mining algorithm that find frequent
collections of items in sale transactions. It finds iteratively



larger and larger itemsets. An itemset found to be frequent
in size k will be discarded if a sub-itemset of size k −
1 is not frequent. This Apriori algorithm can be used
for sequential pattern mining (Mannila et al., 1995) as
well as temporal pattern mining (Guyet and Quiniou,
2011). Several chronicle discovery algorithms are based
on the Apriori algorithm as in (Cram et al., 2012). In
his paper, Cram presents a chronicle discovery algorithm
from a temporal sequence. This algorithm is extended to
the multi-sequences case by (Subias et al., 2014). First, it
builds a database of time constraints. Then, it generates a
set of candidate chronicles starting with a set of chronicles
that were proved to be frequent. A temporal constraint
network discovery algorithm is presented in (Álvarez et al.,
2013) and uses a clustering algorithm reducing the set
of candidates. This algorithm could be convenient for
chronicle discovery as temporal constraint networks are
similar to chronicles.

The main limitation of these Apriori -based approaches
lies in the fact that a minimum frequency parameter is
necessary. The choice of this parameter is not trivial and
requires a good amount of knowledge of the system to
obtain good results. Another limitation is that these algo-
rithms are done from one, or several, temporal sequences,
meaning that only observations of the system made of
events can be used. Unfortunately, very often observations
of the dynamic process behaviors are composed of sampled
continuous signals obtained from sensor measurements,
logs from communication networks or healthcare data.

This paper tries to offer another solution with a clustering
approach applied directly to raw data. Machine learning
techniques and more specifically clustering, based on the
density of the data such as DBSCAN (Density Based Spa-
tial Clustering and Application with Noise (Ester et al.,
1996)) or on the fuzzy logic such as LAMDA (Learning
Algorithm for Multivariate Data Analysis (Carreté and
Aguilar-Martin, 1991)), are applied to discover chronicles.
First, a temporal sequence is extracted from the raw data
provided by the system observations. Then, clustering
techniques are used to regroup some patterns by similarity.
A strong advantage of this method is that the frequency of
the pattern found is deduced from the data. Clusters found
are considered as the most representative patterns of the
system. Chronicles discovered by the proposed algorithm
are various in length (the number of events of a chronicle)
and in frequency. They can be recognized on-line by a
chronicle recognition algorithm. Chronicles obtained are
an abstract representation of the dynamic system behavior
which describes either the nominal or a faulty behavior.
Contrary to the exponential algorithmic complexity of the
Apriori approach, the proposed method can be done with
a polynomial algorithmic complexity.

The rest of this paper is organized as follows. In Section 2,
definitions of required concepts are explained. Section 3
presents the algorithm that discovers chronicles from raw
data. Section 4 introduces an example with a swimming
performance monitoring equipment for a health monitor-
ing of the athlete movements. Section 5 concludes this
work.

2. CONCEPTS AND DEFINITIONS

2.1 Chronicles

This section explains the chronicle concepts used in this
work. Chronicles are ways of expressing relevant temporal
patterns about a process (Dousson and Le Maigat, 2007).

Definition 1. (Event). An event is defined by x = (e, t)
with an event type e ∈ E, and a time instant t ∈ N.

Definition 2. (Temporal sequence). A temporal sequence
is a time-ordered set of events denoted S = {xi} where
i ∈ N, i = 1, . . . , n with n a finite number of events, and
tj < tj+1, j = 1, . . . , n − 1. The set of all event types
occurring in S is called ES .

Example 1. The temporal sequence S = {x1, x2, x3, x4, x5}
where x1 = (a, 1), x2 = (b, 2), x3 = (a, 12), x4 = (a, 18),
and x5 = (b, 20), graphically represented in Figure 2,
points out the difference between event and event type.
That is several events can share the same event type. For
instance, events x1, x3 and x4 are different occurrences of
event type a.

0 1 2 4 6 8 10 12 14 16 18 20

a b a a b
t

Fig. 2. A temporal sequence S =
{(a, 1), (b, 2), (a, 12), (a, 18), (b, 20)} with ES = {a, b}
the set of all event types in S.

Definition 3. (Temporal constraint). A temporal
constraint is a tuple τij = (xi, xj , t

−, t+), also noted
τij = xi[t

−, t+]xj , where 0 < t− ≤ t+. A temporal
constraint τij = xi[t

−, t+]xj is said satisfied by a couple
of events xi = (ei, ti), xj = (ej , tj) if and only if
(tj − ti) ∈ [t−, t+].

Definition 4. (Chronicle). A chronicle C is a pair (X , T )
where X = {xi} is a set of partially ordered events with
i ∈ N, i = 1, . . . , n, and n a finite number of events, and
T = {τij}1≤i<j≤n is a set of temporal constraints on X . EC
denotes the set of all event types of C. A n-length chronicle
is a chronicle with n events.

Example 2. Let C = (X , T ) be a 4-length chronicle with
X = {x1 = (a, t1), x2 = (b, t2), x3 = (c, t3), x4 =
(c, t4)}, and T = {τ12 = x1[1, 2]x2, τ23 = x2[3, 4]x3, τ14 =
x1[8, 10]x4}. The set of all event types of C is EC = {a, b, c}.
Graphically, a chronicle is a directed graph where the
nodes represent the events of X and the transitions rep-
resent the temporal constraints of T . In each temporal
constraint τij , xi is the starting node and xj is the ending
node. For instance, Figure 1 is the graphical representation
of the chronicle described in Example 2.

The frequency criterion is chosen to define the relevance of
a pattern required for the learning chronicle process. Such
criterion needs definitions in this domain.

Definition 5. (Chronicle instance). Given a chronicle C =
(X , T ) and a temporal sequence S, a chronicle instance is
a subset of events of S denoted IC(S) such that their event
types are those of X and their time occurrences satisfy all
the temporal constraints T of C.
Definition 6. (Frequency of a chronicle). The frequency of
a chronicle C in a temporal sequence S is the number of
instances of C in S and is named fC(S).



Definition 7. (Coherent chronicle). A chronicle C is called
coherent if there exists a temporal sequence S such that
fC(S) > 0. A coherent chronicle has at least one chronicle
instance IC(S).

Example 3. Let us define a chronicle C = (X , T ) with X =
{x1 = (a, t1), x2 = (b, t2)}, and T = {τ12 = x1[1, 2]x2}.
Given the temporal sequence S seen in Figure 2, two
instances of the chronicle C appear: I1C(S) = {x1, x2} =
{(a, 1), (b, 2)}, and I2C(S) = {x4, x5} = {(a, 18), (b, 20)}.
The frequency of the chronicle C in S is fC(S) = 2
and corresponds to the total number of instances. This
chronicle is coherent since there exists a temporal sequence
S such that fC(S) = 2 > 0.

Definition 8. (Occurrences of a pair). Let S be a tempo-
ral sequence and let (a, b) be a pair of event types such
that a, b ∈ ES . The set Oab is the set of all the occurrences
of (a, b) in S such that b follows a:

Oab = {〈(a, ti), (b, tj)〉 | ∀i, j, ti < tj , (a, ti), (b, tj) ∈ S}.
(1)

Definition 9. (Temporal distances of a pair). The set Dab

is all the temporal distances between each occurrence of
the pair (a, b):

Dab = {(tj − ti) | 〈(a, ti), (b, tj)〉 ∈ Oab}. (2)

Example 4. Given the temporal sequence S of Figure 2,
the set of all occurrences of each pair is determined:

Oaa ={〈(a, 1), (a, 12)〉,〈(a, 1), (a, 18)〉,〈(a, 12), (a, 18)〉},
Oab ={〈(a, 1), (b, 2)〉,〈(a, 1), (b, 20)〉,〈(a, 12), (b, 20)〉,

〈(a, 18), (b, 20)〉},
Oba ={〈(b, 2), (a, 12)〉,〈(b, 2), (a, 18)〉},
Obb ={〈(b, 2), (b, 20)〉}.

Additionally, Daa = {11, 17, 6}, Dab = {1, 19, 8, 2}, Dba =
{10, 16}, and Dbb = {18}.
Proposition 1. Let Dab be a set of temporal distances
for a pair (a, b). A 2-length chronicle C = (X , T ) which
can be obtained from Dab. X = {x1 = (a, t1), x2 =
(b, t2)} is given by the elements of the pair (a, b) and
T = {τ12 = x1[bDabc , dDabe]xj} is given by the lower and
upper bounds of Dab

1 .

Proof. Directly from Definitions 4 and 9.

All instances IC(S) of chronicles extracted from the set
of temporal distances Dab correspond to the set of their
occurrences Oab. The frequency fC(S) is the size of Dab.

Example 5. Let (a, b) be a pair of event types, the set
of temporal distances calculated in Example 4 is Dab =
{1, 19, 8, 2} and defines the following 2-length chronicle:
C = (X , T ) where X = {x1 = (a, t1), x2 = (b, t2)},
and T = {τ12 = x1[1, 19]x2}. Furthermore, the in-
stances of C in the original temporal sequence S are
I1C(T ) = {(a, 1), (b, 2)}, I2C(T ) = {(a, 1), (b, 20)}, I3C(T ) =
{(a, 12), (b, 20)}, and I4C(T ) = {(a, 18), (b, 20)}. These in-
stances correspond to the occurrences of the pair (a, b).

2.2 Clustering

This section presents the clustering algorithms required
in this work: LAMDA and DBSCAN. They group data
1 When Dab contains only one element, the lower and upper bounds
of Iij are identical.

samples based on the similarity or dissimilarity of the
measures. The distinctive characteristics of data samples
are called features while the specific pattern detected
in the data are called classes. In this paper, features
of interest are issued from on-line sensor measurements
of dynamic process, logs of networks communications or
healthcare data.

The fuzzy logic based algorithm called LAMDA 2 (Carreté
and Aguilar-Martin, 1991) takes as input a sample k made
up of N features. Its first step computes for each feature k
an adequacy degree to each class, indexed by 1 . . . J where
J is the total number of classes (not known in advance
but updated along the algorithm). With the help of a
fuzzy adequacy function, J vectors of N adequacy degrees
are computed. They are called Marginal Adequacy Degree
vectors (MAD) and can be calculated by different means
(Gaussian, fuzzy binomial, centered fuzzy binomial). In
a second step, a fuzzy aggregation function assembles all
the MADs for a specific class into one Global Adequancy
Degree (GAD). This fuzzy function has a parameter α,
called exigency index. α is given in the [0, 1] interval.
The α parameter has a direct impact on the number of
classes found: the bigger α is, the higher the number of
classes found. The J MAD vectors, composed of N MADs,
become J scalar GADs. The higher the GAD, the better
the adequacy to the class. The simplest way to assign the
sample k to a class is to keep as result the class with the
biggest GAD.

The density based clustering algorithm DBSCAN (Ester
et al., 1996) works in two steps. First, every density-
reachable points from each point of the dataset to be
classified are calculated. Second, a random starting point
is selected. If it is a core point, meaning that it has in
its neighborhood of radius ε at least the minimal number
of points minPts, a new cluster is created. Otherwise,
this point is determined as noise. This point and every
points density-reachable from it with ε is added in the
created cluster. This cluster is then expanded by selecting
the new density-reachable point from the core point and
determining if it is another core point. Then, its density-
reachable points are added in the cluster. When the cluster
is fully expanded, a new unvisited point is retrieved and
this step is repeated, leading to the discovery of new
clusters and noises.

3. CHRONICLE DISCOVERY FROM RAW DATA

As presented in Figure 3, the chronicle discovery algorithm
proposed in this paper works in several steps. First, tem-
poral patterns are discovered from time-ordered raw data.
These data are generated by the dynamic system we want
to diagnose. Data come from sensors measurements, alarm
logs, healthcare data... In a complex dynamic system,
unprocessed data can be corrupted by noises of various
origins. Those noises are dealt with by the fuzzy logic
based clusterer LAMDA. A temporal sequence is extracted
from classes by defining events as the changes of classes
over time. Next, 2-length chronicles are discovered by the

2 The LAMDA algorithm is implemented in the software called P3S
(Process Sensor Selection & Situation assessment) available in the
DIagnosis and Supervisory COntrol (DISCO) team of the LAAS-
CNRS.



density based clustering algorithm DBSCAN. It groups
them by similar temporal distances between events. This
clustering step allows to find the frequencies in the tempo-
ral sequence of those 2-length chronicles. Finally, a similar
frequency criterion is used on the 2-length chronicles found
in the previous step to unified them. This is done by
means of the computation of a Jaccard index on the events.
The algorithm provides chronicles of various lengths and
frequencies. Each chronicles representing time patterns
where events are abstraction of the most relevant elements
of the dynamic process. These elements are temporally
constrained to each other.

1. Temporal sequence extraction

2. 2-length chronicle discovery

3. Chronicle synthesis

Raw data R

Temporal sequence S

2-length chronicles Ci

Learned chronicles C

Fig. 3. An overview of the chronicle discovery from raw
data algorithm. Inputs are time-ordered raw data
taken from the dynamic system. Output is a set of
chronicles describing elements of its behavior.

3.1 Step 1: Temporal sequence extraction

The first step of the algorithm is the temporal sequence
extraction process given in Algorithm 1.

First, totally time-ordered raw data denoted R are clas-
sified by LAMDA. Since it is a clustering operation, the
number of classes is not known in advance and the choice
of the α parameter is left to the expert. Once each sample
of the raw data has been assigned to a class, a temporal
sequence S of this classification is obtained by conserving
the time-ordered information. Let us define δ, a threshold
that represents significant changes in the feature values
over time. An event x = (classi, ti) is created and added
to S when the class of the sample i is different than all the
previous samples i−δ. The set ES of event types of S cor-
responds to the name of the classes and the time instants
are the sample times. Classes with too few consecutive
samples are explained as noise and are discarded.

Example 6. Let us deal with a process with two recog-
nizable behaviors. They are accurately described by the
measurements of two sensors. An evolution of those sensors
over a duration of 1100 t.u. with a sampling rate of one
sample by t.u. is compiled in the dataset R. This dataset
has two features that are interpreted as the measurements
of the sensors. R is illustrated in Figure 4. The LAMDA
clusterer discriminates two behaviors in the dataset by
taking α = 0.2 and δ = 1. Each behavior corresponds to a
class: class e with feature 1 decreasing and feature 2 equal
to 0; class f with feature 1 increasing and feature 2 equal to

Algorithm 1. (Temporal sequence extraction).

1 INPUT: totally time−ordered raw data R
2 OUTPUT: temporal sequence S
3 INIT S at empty
4 COMPUTE classes of R with LAMDA algorithm
5 FOR each data sample i of R
6 IF the class of i is different than all the classes of i− 1 to

i− δ THEN
7 ADD event x = (classi, ti) in S
8 ENDIF
9 ENDFOR

1. The temporal sequence extracted from this classification
is S = {(e, 0), (f, 98), (e, 202), (f, 700), (e, 798)} with its set
of event types given by ES = {e, f}.

(e, 0) (f, 98) (e, 202) (f, 700) (e, 798)

1

t

Fig. 4. Dynamic dataset R with two features, feature 1
in black and feature 2 in gray, corresponding of two
sensors in a dynamic process.

3.2 Step 2: 2-length chronicle discovery

A temporal sequence S is then generated from the time-
ordered raw data R thanks to the previous step. One
would like to know if it is possible to gather events of S
according to some criterion by mean of another clustering
phase. Indeed, by calculating the temporal distances D
(see Definition 8 and Equation (2)) of all the pairs of events
of S, one can see that some distances of the same set are
close whereas others are further apart. Thus, this step of
the algorithm uses the density based algorithm DBSCAN
to group such similar distances in clusters. During this
clustering phase, D is interpreted as a dataset with one
dimension feature space.

Then, by using Proposition 1, the algorithm builds 2-
length chronicles C from the clusters found. This is done by
taking the minimum and the maximum distances of D for
the temporal constraint of C. The event types of C are the
event types of D. Since DBSCAN results are homogeneous
clusters, meaning that there is no temporal distance that
satisfies the temporal constraint that is not in D, the
frequency fC(S) of the 2-length chronicle is exactly the
number of temporal distances in D.

The minimum frequency of the created 2-length chronicles
depends on the minimum number of points minPts in the
neighborhood. More precisely, this minimal frequency is
equal to minPts + 1. The radius parameter ε defines the
dispersion of the temporal constraint, when ε grows, the
dispersion grows.

Proposition 2. A 2-length chronicle C designed from a set
of temporal distances D itself obtained from a temporal
sequence S is coherent.

Proof. Clusters found by DBSCAN are not empty, oth-
erwise, they would be considered as noise. As clusters are



not empty, the set of temporal distances D are also not
empty. The frequency of the designed chronicles fC(S) is
more than 1. The created 2-length chronicle is coherent.

Algorithm 2. (2-length chronicle discovery).

1 INPUT: temporal sequence S
2 OUTPUT: 2−length chronicles Ci
3 FOR each pair of event types a and b of ES
4 CALCULATE temporal distances Dab in S
5 CALCULATE clusters in Dab with DBSCAN

6 FOR each clusters found Dj
ab

7 TRANSFORM Dj
ab

in a 2−length chronicle
8 ENDFOR
9 ENDFOR

The 2-length chronicles discovery algorithm is presented
in Algorithm 2 given a temporal sequence S. First, for
each pair of event types from ES (called a and b for the
explanation of this algorithm, but pair a and a is also
taken), the set of temporal distances Dab is calculated by
Equation (2). A cluster analysis is performed on Dab with

the DBSCAN algorithm. Finally, each cluster Dj
ab found

defines a 2-length chronicle.

Example 7. Let the temporal sequence generated in Ex-
ample 6 be S = {(e, 0), (f, 98), (e, 202), (f, 700), (e, 798)}
with ES = {e, f}. First, let us see the pair (f, e), Algo-
rithm 2 provides Dfe = {104, 700, 98} as the set of all
temporal distances for this pair. The DBSCAN parameters
are set such that minPts = 1, and ε = 7. As a result,
only one cluster is found: D1

fe = {104, 98}. The remaining
temporal distance is in a low density area and is considered
irrelevant. For the other pairs ((e, e), (e, f), and (f, f)), the
clustering algorithm does not find temporal distances close
enough to group them. The chronicle C1 is obtained from
D1

fe using Proposition 1 and is illustrated in Figure 5. It is

a 2-length chronicle with X1 = {x1 = (f, t1), x2 = (e, t2)},
and T1 = {τ12 = x1[98, 104]x2}. The frequency of C1 in S
is fC1(S) = 2 and its two instances in S are: I1C1(S) =

{(f, 98), (e, 202)}, and I2C1(S) = {(f, 700), (e, 798)}. With
Proposition 2, C1 is coherent.

t1

f

t2

e
[98, 104]

Fig. 5. The 2 -length chronicle C1 = (X1, T1) obtained from
the set D1

fe with X1 = {x1 = (f, t1), x2 = (e, t2)},
and T1 = {τ12 = x1[98, 104]x2}.

Remark. The temporal sequence given as entry in this
algorithm can be either obtained by the algorithm seen
in Section 3.1 or directly given from observations of the
system.

3.3 Step 3: Chronicle synthesis

Previous step can find several 2-length chronicles with the
same frequency. One could consider that they represent
different parts of the same concept to be modeled and
want to group them. A systematic process is proposed in
this step to combine such chronicles generated from the
same temporal sequence S by a Jaccard index on events.

This index first needs instances of created chronicles to
find identical occurrences of events obtained by different
2-length chronicles of the same frequency.

Definition 10. (Time occurrences of an event). Let S be a
temporal sequence and C = (X , T ) be a chronicle. Oi is
the set of time occurrences of the event xi in all chronicles
instances IC(S). Oi is calculated by the following formula:

Oi = {ti | ∀IC(S), xi = (e, ti) ∈ X}. (3)

The size of Oi is given by fC(S) and is denoted |Oi|.
Example 8. Given the chronicle C and the temporal se-
quence S seen in Example 3, the two chronicles instances
I1C(S) and I2C(S) give the two occurrences of x1: (a, 1) and
(a, 18). The set of time occurrences of x1 is O1 = {1, 18}
(|O1| = 2). For x2, O2 = {2, 20} and |O2| = 2.

Definition 11. (Jaccard index). Let xi and xj be two
events with time occurrences Oi and Oj determined by
Equation (3). The Jaccard index between xi and xj is
calculated by the following formula:

S(xi, xj) =
|Oi ∩ Oj |
|Oi ∪ Oj |

. (4)

More precisely, the Jaccard index will quantify the fre-
quency at which the occurrence of two events appears at
an identical time. These are two identical events thanks to
Definition 2 where an occurrence of two different events xi
and xj in a temporal sequence S must be at two different
time instants. This index is on a scale from 0 to 1: 0
meaning no occurrences are identical; and 1 meaning all
of them are identical.

Example 9. Let x1 = (a, t1) and x3 = (b, t3) be two
events with O1 = {1, 18} and O3 = {1, 18}. Since their
time occurrences are identical, their Jaccard index is then

S(x1, x3) = |O1∩O3|
|O1∪O3| = 2

2 = 1.

Remark. The restriction to have a Jaccard index equals
to 1 is strong. However, there are some problems in
relaxing this constraint and is the subject of on-going
works. Naturally, for S(xi, xj) to be equals to 1, Oi and
Oj must be of the same size. Therefore, only chronicles of
the same frequency can be combined.

Algorithm 3. (Chronicle synthesis).

1 INPUT: all 2−length chronicles
2 OUTPUT: chronicles Cf
3 GET maximal frequency fmax from the 2−length chronicles
4 INIT frequency f at maximal frequency fmax

5 REPEAT
6 INIT Cf at empty
7 FOR all 2−length chronicles C of frequency f
8 MERGE Cf and C by similarity
9 ENDFOR

10 DECREMENT frequency f
11 UNTIL all 2−length chronicles have been treated

Algorithm 3 represents the synthesis of the 2-length chron-
icles of the same frequency generated by step 2. First,
the algorithm finds the maximal frequency fmax of the 2-
length chronicles. Next, a chronicle Cfmax is created with
the merging of all the 2-length chronicles of frequency
fmax. This merging step is explained by Algorithm 4 given
below. Then, operation is repeated for frequency fmax − i
until all the 2-length chronicles generated were processed.



Algorithm 4. (Merge by similarity operation).

1 INPUT: chronicles to merge C1 and C2
2 OUTPUT: merged chronicle Cres
3 INIT chronicle Cres with chronicles C1 and C2
4 FOR all events xi of events set X1

5 FOR all events xj of events set X2

6 IF xi and xj are similar events THEN
7 UPDATE chronicle Cres with xi equal to xj
8 ENDIF
9 ENDFOR

10 ENDFOR

Merge by similarity operation is presented in Algorithm 4
with this renaming operation: Cf becomes C1 and C be-
comes C2. First, C1 = (X1, T1) and C2 = (X2, T2) are
combined in chronicle Cres = (Xres, Tres) with Xres =
{X1,X2} and Tres = {T1, T2}. Then, the Jaccard index
of each events xi ∈ X1 and xj ∈ X2 are calculated with
Equation (4). When S(xi, xj) = 1, events xi and xj are
considered identical. In this case, Cres is updated, xj is
removed from Xres and temporal constraints on xj are now
on xi. This step is repeated for all events found similar.

Proposition 3. The merge by similarity of two chronicles
of the same frequency generated by the 2-length chronicle
discovery algorithm is a chronicle.

Proof. To prove that Cres is a chronicle, it is needed to
prove that Xres is a partially ordered set of events. In other
words, is it possible that the operation xi = xj does not
produce a partially ordered set of events? Let C = (X , T )
with X = {x1 = (e, t1), x2 = (f, t2)}, T = {τ12},
and C′ = (X ′, T ′) with X ′ = {x3 = (f, t3), x4 =
(e, t4)}, T ′ = {τ34}, be two 2-length chronicles of the
same frequency. Let S be a temporal sequence such that
IC(S) = {(e, δ1), (f, δ2)} and IC′(S) = {(f, δ3), (e, δ4)}
are instances of C and C′. With temporal constraints τ12
and τ34, inequality equations δ1 < δ2 and δ3 < δ4 are
known. Let x1 and x4, as well as x2 and x3, be identical,
therefore δ1 = δ4 and δ2 = δ3. However, this implies
that δ1 is both strictly superior and strictly inferior to
δ2. As a consequence, either x1 and x4, or x2 and x3 are
different. Xres is a partially ordered set of events and Cres
is a chronicle.

Proposition 4. The chronicle resulting from the merge
by similarity of two chronicles of the same frequency
generated by the 2-length chronicle discovery algorithm
is coherent.

Proof. Let C1 and C2 be two 2-length chronicles and Cres
the chronicle created by the merge by similarity of C1
and C2. Let S be a temporal sequence. For each couple
of instance IC1(S) and IC2(S), there exists an instance
ICres(S). Therefore, the frequency of Cres is identical to
the frequency of C1 and C2. As a consequence, the chronicle
Cres is coherent.

Example 10. Let C1 = (X1, T1) where X1 = {x1 =
(e, t1), x2 = (f, t2)}, T1 = {τ12 = x1[255, 261]x2},
C2 = (X2, T2) where X2 = {x1 = (f, t1), x2 = (e, t2)},
T2 = {τ12 = x1[98, 104]x2}, and C3 = (X3, T3) where X3 =
{x1 = (e, t1), x2 = (e, t2)}, T3 = {τ12 = x1[353, 365]x2} be
three 2-length chronicles. Their frequencies are fC1(S) = 4,
fC2(S) = 4, and fC3(S) = 6. After finding the maximal
frequency, in this case fmax = fC3(S) = 6, all the

chronicles of frequency equals to 6 are merged. Only C3
is of the required frequency so Cfmax

= C3. Repeating this
operation with fmax − 1 = 5 does not find any chronicle
of this given frequency. Two chronicles of frequency equals
to 4 are found, C1 and C2.

As seen in Figure 6, the first step is to merge them by
similarity in Cres = (Xres, Tres) where Xres = {x1 =
(e, t1), x2 = (f, t2), x3 = (f, t3), x4 = (e, t4)}, and
Tres = {τ12 = x1[255, 261]x2, τ34 = x3[98, 104]x4}. The
Jaccard index between each event is calculated: events x2
and x3 are found similar. They are considered identical
and the chronicle Cres is updated such that Xres = {x1 =
(e, t1), x2 = (f, t2), x3 = (e, t3)}, and Tres = {τ12 =
x1[255, 261]x2, τ23 = x2[98, 104]x3}.

C1 C2

x2 and x3 similar

Cres

t1

e

t2

f
[255, 261]

t1

f

t2

e[98, 104]

t1

e

t2

f

t3

e[255, 261] [98, 104]

Fig. 6. Merge by similarity of two chronicles C1 and C2 in
one chronicle Cres. The Jaccard index shows that x2
and x3 are similar and Cres is created.

From the three 2-length chronicles C1, C2 and C3 de-
fined previously, two chronicles of different frequencies are
generated: Cf=6 = (Xf=6, Tf=6) where Xf=6 = {x1 =
(e, t1), x2 = (e, t2)}, Tf=6 = {τ12 = x1[353, 365]x2}, and
Cf=4 = (Xf=4, Tf=4) where Xf=4 = {x1 = (e, t1), x2 =
(f, t2), x3 = (e, t3)}, Tf=4 = {τ12 = x1[255, 261]x2, τ23 =
x2[98, 104]x3}.

Remark. When all the 2-length chronicles found in the
previous step seen in Section 3.2 have different frequencies,
this step is not required. Only chronicles of the same
frequency can be combined.

3.4 Algorithmic complexity

In this section, the algorithmic complexity of the proposed
algorithm is analyzed. It is shown that with the clustering
algorithms used, a polynomial complexity can be done.

Let n be the number of samples in the raw data R. The
algorithmic complexity of LAMDA is O(n), the generation
of a temporal sequence from classes is also O(n) complex.
The algorithmic complexity of the temporal sequence ex-
traction step is O(n).

Let l(l−1)
2 be the number of temporal distances found

in the l-length temporal sequence S input in the 2-
length chronicle discovery. The number of discovered 2-

length chronicles is defined by c2 = l(l−1)
2 . The inputs of
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Fig. 7. Normalized values of the first 1000 samples of the features Pitch and Y aw of dataset R. R is a record of the
right arm movement of a professional athlete in a swimming scenario at a sampling rate of 50Hz.
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Fig. 8. Classes found by LAMDA on the first 1000 samples of dataset R. The under class represent the arm pulling
and pushing underwater, whereas in the above class, the arm is recovering above the water.

DBSCAN is c2, as such, its complexity is O(c2 log(c2))
that can be simplified by O(l2 log(l2)). So, the algorith-
mic complexity of the 2-length chronicle discovery step
is O(l2 log(l2)) and depends on the complexity of the
clustering algorithm used.

The algorithmic complexity of the merge by similarity
operation between a m-length chronicle C1 and a 2-length
chronicle C2 is given by O(m log(m)). The chronicle syn-
thesis step will process at most c2 merge by similarity op-
erations. So, the complexity of this step is O(c2m log(m)).

The overall algorithmic complexity of the chronicle discov-
ery from raw data algorithm is given by:

O(n2m log(m)),

with n the number of samples in the raw data R and
m the length of the longest discovered chronicle. The
complexity is highly dependent of the choice of the clus-
tering algorithm parameters implemented in step 2. Badly
chosen parameters can produce a high number of 2-length
chronicles c2. This problem shows the necessity to enforce a
quality check at the end of the 2-length chronicle discovery
step to limit the impact of c2 on the discovery time.

4. APPLICATION

In this section, an application about health monitoring
of an athlete movement is detailed. More precisely, data
from an instrumented glove for swimming performance
monitoring (Mangin et al., 2015) are captured when the
athlete performs a front crawl on a swimming pool.

The device consists in several sensors (accelerometers,
magnetometers, gyroscopes) that allow a precise descrip-
tion of the device movements with a sampling rate of
50Hz. This equipment is worn on the right hand in order
to record the right arm movements in a swimming situa-
tion. The dataset R is a recording of an athlete performing
a front crawl on a long course swimming pool (50m).

The time-ordered dataset R contains 2051 samples with
16 features. The normalized features in the [0, 1] interval

are divided as follows: Euler angles Roll, Pitch, and Y aw;
quaternions Q1, Q2, Q3, and Q4; accelerometers Accx,
Accy, and Accz; gyroscopes Gyrox, Gyroy, and Gyroz;
and magnetometers Magx, Magy, and Magz. Figure 7
gives the first 1000 samples of the Euler angle features
where we can see already a repetition of a pattern.

The temporal sequence extraction step is performed first
on the 16 features of R. The LAMDA algorithm is used
with the fuzzy centered binomial method to calculate the
MADs, the probabilistic method to calculate the GADs,
and the exigency level α sets to 1 and δ sets to 5. With
those parameters, LAMDA finds two classes in R. These
classes are interpreted as follow: in the first class, denoted
under, the arm is pulling and pushing under the water;
in the second class, denoted above, the arm is recovering
above the water. Figure 8 gives the class of the first 1000
samples of the dataset R.

Once the temporal sequence is extracted, the next step
is the 2-length chronicle discovery. With the DBSCAN
parameter minPts set to 1 and ε set to 12, a total of 62
2-length chronicles are discovered with their frequencies
ranging from fmin = 2 to fmax = 17.

Finally, the chronicle synthesis step is processed on all the
62 2-length chronicles. One of the chronicle generated by
this step called Cres = (Xres, Tres) with Xres = {x1 =
(above, t1), x2 = (under, t2), x3 = (above, t3)}, and
Tres = {τ12 = x1[48, 69]x2, τ13 = x1[106, 130]x3, τ23 =
x2[52, 62]x3} is graphically represented in Figure 9. This
chronicle has a frequency of fmax = 17.

Physically, this chronicle represents a complete arm move-
ment, called stroke cycle. Taking into account the sampling
rate of 50Hz of the raw data, one could discriminate
several informations: the recovering phase is done in the
interval of [0.96, 1.38] seconds, represented by the temporal
constraint τ12; the underwater phase is done in the in-
terval of [1.04, 1.24] seconds, represented by the temporal
constraint τ23; the complete stroke cycle is done in the
interval of [2.12, 2.6] seconds, represented by the temporal
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Fig. 9. The 3-length chronicle Cres = (Xres, Tres) with
Xres = {x1 = (above, t1), x2 = (under, t2), x3 =
(above, t3)}, and Tres = {τ12 = x1[48, 69]x2, τ13 =
x1[106, 130]x3, τ23 = x2[52, 62]x3}.

constraint τ13; finally, this professional athlete performed
a long course in 17 stroke cycles.

The discovered chronicle describes the nominal arm move-
ments of the athlete performing a front crawl and will be
recognized if no discrepancy between the optimal move-
ments of the athlete and the movements recorded in
another dataset R′ exist. Fault diagnosis of movement
deviations in the temporal domain, in the event domain,
or both, considered as faults for the athlete can be done
when the chronicle is not recognized when it should be.

5. CONCLUSION

This paper provides a clustering approach for designing
chronicles with minimal knowledge from the dynamic pro-
cess to diagnose. The algorithm presented uses a clustering
method based on the fuzzy logic to construct a temporal
sequence from raw data. Chronicles of different frequencies
are then learned from this temporal sequence as a result
of a density based clustering algorithm. The chronicle
discovery algorithm proposed in this paper is done with a
polynomial algorithmic complexity. An application of real
data from a swimming performance monitoring device for
a health monitoring of the athlete movements is detailed.

Further works need to be done to generalize the designed
chronicles. Presently, a limitation lies in the fact that only
one temporal sequence S is constructed, as a consequence,
there is no guarantee that designed chronicles can be
recognized in another temporal sequence S ′ with a slightly
different behavior. Another idea is to exploit the Jaccard
index not only on a crisp value (0 or 1) but on a fuzzy value
(a percentage of similarity). This could permit to combine
chronicles with different frequencies. Finally, it could be
interesting to design a chronicle discovery algorithm that
could deal with domain constraints, when an event could
not occur in a period of time; and event counters (added
in the chronicle representation in (Dousson, 2002)), when
a determined number of events must occur in a given time
interval.
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