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Abstract— This paper is concerned with an innovative strat-
egy that maps chronicles, that are timed discrete event models,
to a k-dimensional Euclidean space via random projections.
The proposed approach is a projection that takes into account
both characteristics of events, namely event types, and temporal
constraints of chronicles. This will lead to an unbounded convex
polytope in the Euclidean space that contains all the possible
instances of the corresponding chronicle. It allows to easily and
efficiently compare chronicles. Such comparisons are useful in a
fault diagnosis purpose to discriminate chronicles representing
behaviors of dynamic processes. Examples and preliminary
results are provided in this paper to introduce the proposed
methodology.

Index Terms— Timed Discrete Event Systems, Chronicles,
Random Projection, Euclidean Space.

I. INTRODUCTION

In the recent years, both academic and industrial commu-
nities have been interested in the study of the timed discrete
event models called chronicles for a fault diagnosis purpose
(see [1] for a recent survey, [2], [3]). Indeed, chronicles
are temporal patterns where events are partially ordered
which are well-suited to capture dynamic processes with
an event abstraction of the information of interest. Namely,
to encapsulate the nominal behavior, only necessary data
are captured in one or several chronicles whereas another
set of chronicles encapsulates the faulty behaviors. Then,
from on-line timed observations of the system, a pattern
recognition of the chronicles expressing a faulty situation
can be done efficiently and leads to detect that it is in that
faulty situation [4].

Recently, many studies have been achieved on chronicles,
more particularly on discovering chronicles in data gen-
erated by a specific process. Although diagnosis is more
efficient with chronicles, their design is not trivial. Indeed,
for complex systems it is necessary to achieve it auto-
matically. An interesting chronicle discovery algorithm that
finds chronicles in a temporal sequence on a frequency
criterion is proposed in [5]. An extension to multiple tem-
poral sequences is presented in [6]. The chronicle discovery
process is discussed in healthcare applications in [7] and in
[8] where clinical pathways are analyzed. However, these
algorithms provide a large number of chronicles that the
expert must then sort, analyze and compare. For instance,
some learned chronicles are irrelevant when only few well
defined chronicles are enough to obtain an efficient fault
diagnosis. Similar chronicles are close representations of the
same dynamic behavior of a complex process and should be

reduced to improve the diagnosis. For this sake, solutions
have to be provided.

In this paper, we propose to project chronicles in a k-
dimensional Euclidean space in order to compare and classify
them easily and efficiently. In [9], a method based on random
projections is used to map timed event sequence to a point in
this space for finding similar situations in large sequence of
events. Here, we use this mathematical projection method on
a chronicle. The proposed method allows to map chronicles
to an unbounded polytope in an Euclidean space. In this
space, it is easier and faster to compare values than a direct
comparison of chronicles where both event and time must
be taken into account.

The rest of the paper is organized as follows. Section II
gives the definition of the required chronicle concepts with
a first simple mapping of the chronicle’s temporal con-
straints. Section III presents the projection of chronicles into
polytopes in a k-dimensional Euclidean space. Section IV
explains some properties of the obtained polytopes in the Eu-
clidean space and how they relate to the reference chronicles.
Section V analyzes the impact of the value of k. Section VI
concludes this work and discusses interesting perspectives.

II. CHRONICLE CONCEPT

A. Background on chronicle

This section explains the chronicle concepts used in this
work. Chronicles are a way to express temporal patterns of a
specific process [4]. Common temporal properties of chroni-
cles are easily checked by means of graph theory. Chronicles
are then represented as Temporal Constraint Networks [10].

Definition 1 (Event): An event is defined by x = (e, t)
with an event type e ∈ E, and a time instant t ∈ R.

Definition 2 (Temporal sequence): A temporal sequence
is a time-ordered set of events denoted S = {x1, . . . , xn}
with n a finite number of events, and tj < tj+1, j =
1, . . . , n − 1. The set of all event types occurring in S is
called ES .

Example 1: The temporal sequence S =
{x1, x2, x3, x4, x5} where x1 = (a, 1), x2 = (b, 4),
x3 = (b, 8), x4 = (a, 16), x5 = (b, 18), is graphically
represented in Figure 1. This sequence points out the
difference between event and event type that is several
events can share the same event type. For instance, events
x1 and x4 are different occurrences of event type a at
different times.
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Fig. 1: A temporal sequence S.

Definition 3 (Temporal constraint): A temporal constraint
is a tuple τij = (xi, xj , t

−, t+), also noted τij =
xi[t
−, t+]xj , where 0 < t− ≤ t+. A temporal constraint

τij = xi[t
−, t+]xj is said satisfied by a couple of events

xi = (ei, ti), xj = (ej , tj) if and only if (tj − ti) ∈ [t−, t+].
Definition 4 (Chronicle): A chronicle C is a pair (X , T )

where X = {x1, . . . , xn} is a set of partially ordered events
with n a finite number of events, and T = {τij}1≤i<j≤n is
a set of temporal constraints on X . EC denotes the set of all
event types of C. An n-length chronicle is a chronicle with
n events.

A chronicle can be graphically represented by a directed
graph where the nodes are the events of X and the transitions
are the temporal constraints of T . In each temporal constraint
τij , xi is the starting node and xj is the ending node.

Example 2: Figure 2 is the graphical representation of
the 3-length chronicle C = (X , T ) where X = {x1 =
(a, t1), x2 = (b, t2), x3 = (c, t3)} and T = {τ12 =
x1[10, 20]x2, τ13 = x1[25, 35]x3, τ23 = x2[10, 20]x3}. An-
other 3-length chronicle C2 = (X2, T2) where X2 = {x1 =
(a, t1), x2 = (b, t2), x3 = (b, t3)} and T2 = {τ12 =
x1[1, 3]x2, τ13 = x1[2, 4]x3} is illustrated Figure 3. This
chronicle points out the partial order between events in the
chronicle formalism.
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Fig. 2: A 3-length chronicle C = (X , T ).
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Fig. 3: Another 3-length chronicle C2 = (X2, T2).

Definition 5 (Chronicle instance): Given a chronicle C =
(X , T ), a chronicle instance is a set of events denoted IC
such that their event types are those of X and their time
occurrences satisfy all the temporal constraints T of C.

Example 3: Let us define a chronicle C = (X , T )
with X = {x1 = (a, t1), x2 = (b, t2)} and T =
{τ12 = x1[1, 3]x2}. Given the temporal sequence S =
{(a, 1), (b, 4), (b, 8)(a, 16), (b, 18)}, two instances of the
chronicle C appear: I1C = {x1, x2} = {(a, 1), (b, 4)}, and
I2C = {x4, x5} = {(a, 16), (b, 18)}.

The number of chronicle instances IC of a consistent
chronicle C is infinite. A consistent chronicle is a chronicle
that have at least one instance [10]. In a chronicle, events
are temporally constrained to each other but they are not
constrained themselves. The first event could occur anytime
between −∞ and +∞.

B. Mapping chronicles with time

This subsection shows that an n-length chronicle can be
represented by an unbounded convex polytope1, a geomet-
rical volume in an n-dimension Euclidean space. Chronicle
can be easily mapped to this geometrical volume by a simple
orthogonal projection along each corresponding timeline. For
instance, [11] uses this orthogonal projection on simpler
temporal patterns than chronicles where only time is of
interest.

Given an n-length chronicle C = (X , T ), its temporal
constraints T define a polytope P in Rn. Each dimension of
Rn is associated with a time occurrence of the events of X .
The polytope P is defined by the following formula:

∀τij ∈ T , P = {−ti + tj ≥ t−ij , ti − tj ≥ −t+ij}. (1)

P can be rewritten as the following linear constraint2:

At ≥ b (2)

with A ∈ Rm×n, t ∈ Rn, and b ∈ Rm, where m is the
number of inequalities and n the length of the chronicle C.
Vector b contains the bounds of all the temporal constraints,
and matrix A defines events on which those constraints take
effect. Solutions of Equation (2) are the time occurrences of
all the acceptable instances IC of C. As there is an infinite
number of chronicle instances IC , the polytope P will always
be unbounded [13].

Example 4: Let C = (X , T ) be the chronicle of Exam-
ple 2 and Figure 2. This chronicle defines the polytope P
shown in Figure 4 such that A ∈ R6×3, t ∈ R3 and b ∈ R6

with:

A =


−1 1 0
1 −1 0
−1 0 1
1 0 −1
0 −1 1
0 1 −1

 and b =


10
−20
25
−35
10
−20

 .
One solution of Equation (2), highlighted in Figure 4 by a
black square, is:

t =
[
8 21 33

]>
and corresponds to the projection of the instance IC =
{(a, 8), (b, 21), (c, 33)}.

This representation in Rn has several limitations: the
dimension of the Euclidean space is the length n of the
chronicle, so comparisons between chronicles of different
lengths is not easily done in this representation; the projec-
tion is done only on time occurrences of the events and the

1In the rest of this paper, convex polytopes will be called polytopes.
2Let us note that P can also be seen as a Difference Bound Matrix [12].
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Fig. 4: Polytope P of Example 4. Each axis corresponds
to the timeline of each event. The projection of IC =
{(a, 8), (b, 21), (c, 33)} is highlighted with a black square.

event types are not considered. We aims to try and tackle
these limitations in the next section by adapting a technique
proposed in [9]. This technique, originally used with timed
event sequences, is applied here to project a chronicle in an
Euclidean space.

III. MAPPING CHRONICLES TO A k-DIMENSIONAL
EUCLIDEAN SPACE

Chronicles can be easily mapped to a Euclidean space
by a simple orthogonal projection along each corresponding
timeline as seen in Section II-B. However, in such a simple
projection, only temporal constraints are taken into account
whereas event types are not used. Event types can bring
more information when an objective of comparison and
classification of projected chronicles is needed. In the work
presented here, in addition to temporal constraints, event
types are considered in the chronicle projection by means of
methods coming from the pattern recognition domain, such
as random projection [14]. Let us start by the fingerprint of
an event type e in the k-dimensional Euclidean space.

Definition 6 (Fingerprint of an event type): Let e be an
event type of E. Let ρ(e) be a k-dimensional vector filled
with k normally distributed random variables with mean 0
and variance 1. The random k-dimensional vector ρ(e) is the
fingerprint of the event type e in the k-dimensional Euclidean
space.

Since a chronicle has several events containing several
event types, each of them will have its own fingerprint. Those
fingerprints are compiled in the fingerprint matrix.

Definition 7 (Fingerprint matrix of a chronicle): Let C
be a n-length chronicle, ρ ∈ Rn×k is the matrix containing
the fingerprints of all the event types e1, . . . , en of the set
X = {x1, . . . , xn} of C:

ρ =
[
ρ(e1) ρ(e2) . . . ρ(en)

]
. (3)

Thanks to the use of the chronicle fingerprint matrix in
addition to the simple orthogonal projection, both event and

time information contained in a chronicle instance IC can
be considered in the projection proposed here. Indeed, time
occurrences are easily taken into account by an orthogonal
projection whereas event types are considered by means of
their fingerprints. So, the random projection of a chronicle
instance IC in the Euclidean space is the fingerprint matrix
ρ of C weighted by its time occurrences t.

Definition 8 (Random projection of a chronicle instance):
The random projection x′ ∈ Rk of a chronicle instance
IC to the k-dimensional Euclidean space is the product
between the fingerprint matrix ρ ∈ Rn×k of C and the time
occurrences t ∈ Rn of IC :

x′ = ρt. (4)

Example 5: Let IC = {(a, 8), (b, 21), (c, 33)} be the in-
stance detailed in Example 4 and ρ =

[
ρ(a) ρ(b) ρ(c)

]
be the fingerprint matrix of C randomly obtained such that:

ρ(a) =
[
−0.1220 −1.0868 0.6843

]>
,

ρ(b) =
[
−1.0752 0.0333 0.7448

]>
,

ρ(c) =
[
0.0336 −0.5266 0.4625

]>
.

For the sake of simplicity in this example, we have set k
to 3 even though it is clear that some problems occur when
k is set too low as discussed in Section V. The random
projection x′ of IC in this 3-dimension space is highlighted
in Figure 5 by a black square. It is obtained by means of the
linear projection seen in Equation (4):

x′ =
[
−22.4457 −25.3749 36.3794

]>
.
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Fig. 5: Polytope P ′ where the projection of IC =
{(a, 8), (b, 21), (c, 33)} is highlighted with a black square.

Since the fingerprint matrix of a chronicle is randomly
generated, the random projection of instances of differ-
ent chronicles must be done in the same k-dimensional
Euclidean space. This means that fingerprint matrices of
different chronicles should be computed coherently. Indeed,
when chronicles share event types, the fingerprints are also



shared. For instance, event types a and b are common to both
chronicles C and C2 of Example 2. When event types or use
of event types are not seen in fingerprint matrices previously
processed, a new fingerprint is generated. For instance, this
is the case for the second use of the event type b in chronicle
C2. Thus, the fingerprint matrix ρ2 of C2 is obtained in the
same k-dimensional Euclidean space than C (k = 3):

ρ2 =
[
ρ(a) ρ(b1) ρ(b2)

]
,

=

−0.1220 −1.0752 0.5377
1.0868 0.0333 1.8339
0.6843 0.7448 −2.2588

 .
ρ(a) is the same for both chronicles C and C2. ρ(b) of C is
the same than ρ(b1) of C2 whereas ρ(b2) of C2 is new.

By means of the fingerprint matrix ρ, x′ is a representation
in the k-dimensional Euclidean space of an instance IC .
Applying this fingerprint matrix directly on the polytope
P of a chronicle C allows to project all its acceptable
chronicle instances IC . This leads to a new polytope P ′
in Rk. However, the size k of the Euclidean space should
be higher than the size n of the chronicle to obtain ρ left
invertible. The solutions of the linear constraint defined by
the polytope P ′ are all the instances IC of the chronicle C
projected in the Euclidean space.

Proposition 1: Let At ≥ b be the linear constraint defined
by a chronicle C, and let x′ = ρt be the projection of an
instance IC in the k-dimensional Euclidean space. There
exists a matrix A′ ∈ Rm×k, iff k ≥ n, such that:

A′x′ ≥ b, (5)

Proof: As ρ is filled with random variables that are
independent and identically distributed, each row and each
column are linearly independent. The pseudo-inverse ρ+ ∈
Rk×n can be computed [15]. When k ≥ n, ρ+ is a left
inverse and is given by:

ρ+ = (ρ>ρ)−1ρ>.

Equation (4) becomes:

ρ+x′ = t.

With Equation (2):
Aρ+x′ ≥ b.

Finally, with A′ = Aρ+,

A′x′ ≥ b.

Example 6: Let At ≥ b be the projection in R3 of the 3-
length chronicle C seen in Example 4 (n = 3). Let x′ = ρt be
the projection of an instance IC in the k-dimensional space
with k = 3 detailed in Example 5. First, the pseudo-inverse
ρ+ ∈ R3×3 is computed:

ρ+ =

−1.7670 −2.2641 −2.4495
−0.6169 0.3442 0.4367
3.6075 2.7953 5.0827

 .

Then, the matrix A′ ∈ R6×3 is computed with A′ = Aρ+:

A′ =


1.1501 2.6083 2.8863
−1.1501 −2.6083 −2.8863
5.3745 5.0594 7.5322
−5.3745 −5.0594 −7.5322
4.2244 2.4511 4.6459
−4.2244 −2.4511 −4.6459

 .

The polytope P ′ defined by A′x′ ≥ b is shown in Figure 5.
The projection of the instance IC detailed in Example 5 is
a solution of A′x′ ≥ b. So:

1.1501 2.6083 2.8863
−1.1501 −2.6083 −2.8863
5.3745 5.0594 7.5322
−5.3745 −5.0594 −7.5322
4.2244 2.4511 4.6459
−4.2244 −2.4511 −4.6459


−22.4457−25.3749

36.3794

 ≥


10
−20
25
−35
10
−20

 .

Remark 1: Let us remark that the chronicle projection
depends on the partial order of the events xi in the set
X of the chronicle. Thus, similar chronicles for which the
only difference is the arbitrary choice of the numbering of
the events may have different projections. For instance, the
following chronicles have a different mapping whether their
events are numbered as in Figure 6a or as in Figure 6b.
Indeed, their fingerprint matrices will be identical but the
difference in the temporal constraints will have a different
result on the projection. More work needs to be done to take
into account this phenomenon due to the partial order of the
events.
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[1, 3]
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(a) First configuration.
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a t3
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(b) Second configuration.

Fig. 6: Two configurations of the numbering of the events of
the same chronicle that can be mapped differently.

Remark 2: When mapping several chronicles of different
lengths in the same k-dimensional Euclidean space, k should
be greater than the length of the longest chronicle.

IV. ANALYSIS OF THE PROJECTED CHRONICLE

Properties of the random mapping of a chronicle in the
k-dimensional Euclidean space are closely related to the
studied chronicle model. In this section, some of these
relations are explained.

A. Geometry of a projected chronicle

The projected chronicle is a polytope where all the edges
are parallel and share the same direction vector. This direc-
tion vector ~v could be easily computed in the polytope P
defined in Equation (2). For all n ∈ N, consider the n-length



chronicle C defined by At ≥ b. The kernel of the linear map
A is the set of equations At = 0:

ker(A) = {t ∈ Kn|At = 0}.
As all time occurrences ti of an event are constrained to a
time occurrence tj of another event, At = 0 can be rewritten
as follows:

∀i, j, −xi + xj = 0.

So, the rank of the kernel of a n-length chronicle C is
always 1. For all n ∈ N, the direction vector ~v ∈ Rn of
a n-length chronicle C is unique and defined by:

~v =
[
1 1 · · · 1

]>
. (6)

In the k-dimensional Euclidean space, the direction vector
~v′ of the polytope P ′ can be deduced from ~v by means of
the fingerprint matrix ρ:

~v′ = ρ~v. (7)

Therefore, the direction vector ~v′ is a representation of the
set of event types present in the chronicle C.

Another relation between temporal constraints of the
chronicle and the projected chronicle exists. Let us define
V as the volume of the section between the polytope P ′ of
a projected chronicle and the hyper-plan orthogonal to its
direction vector ~v′. The bounds of the temporal constraints
define the vector b and is associated with V . With narrow
temporal constraints, a smaller set of acceptable time oc-
currences leads to a smaller V . While with wide temporal
constraints, much more time occurrences are acceptable for
the instances and lead to a larger V . Furthermore, low
values of lower and upper bounds of the temporal constraints
generate a small offset for the edges, the projected chronicle
is then close to the origin. High values for the bounds of the
temporal constraints will have the opposite effect.

B. Intersection of two projected chronicles

A common way to compare chronicles is through their
instances. For example, two chronicles are said equivalent
when they share the exact same set of instances [10]. In
the Euclidean space, instances that are common to two
chronicles means an intersection of two polytopes.

Let C1 = {X1, T1} with X1 = {x1 = (a, t1), x2 =
(b, t2)}, T1 = {τ12 = x1[2, 6]x2}, and C2 = {X2, T2} with
X2 = {x3 = (a, t3), x4 = (b, t4)}, T2 = {τ34 = x3[5, 9]x4}
be two 2-length chronicles. Some instances of these chron-
icles are identical, e.g. IC1 = IC2 = {(a, 3), (b, 8)} is
an instance of both C1 and C2. In the Euclidean space,
the random projections of IC1 and IC2 will be equal and
both polytopes P ′1 and P ′2 will contain this projection. The
intersection of these polytopes, shown in Figure 7, are all
the equal projected instances of C1 and C2.

As expected, direction vectors ~v′1 and ~v′2 of the polytopes
P ′1 and P ′2 are similar. Indeed, both C1 and C2 have the same
set of events X1 = X2 with the same set of event types
EC1 = EC2 . The value of V of these polytopes are similar
as the temporal constraints τ12 of C1 and τ34 of C2 have the

P ′1
P ′2

IC1 = IC2

x′1

x′2

Fig. 7: Polytopes P ′1 and P ′2 in Rk with k = 2. Projection
of IC1 = IC2 is highlighted with a black square.

same width. P ′2 is farther from the origin than P ′1 since the
lower bound of temporal constraint of C2 is higher than C1.

V. IMPACT OF k

The choice of the value of k is very important and must
get a particular attention as described in this section. An
approximation of the information contained in the event
types is expected due to the use of random projection. In the
Johnson-Lindenstrauss Theorem [16], this approximation can
be quantified by a value ε in the interval [0, 1]. A high value
of ε, obtained by setting k to a high value, will reduce the
approximation achieved. A value of k set too low leads to an
increased approximation. This can be seen in the following
example.

Let C3 and C4 be two 2-length chronicles with EC3 =
{a, b} and EC4 = {c, d}. Let us project both chronicles in
Rk, with k = 2. This projection gives the two polytopes
P ′3 and P ′4 shown in Figure 8. In this plot, it can be seen
that P ′3 and P ′4 are intersecting. The intersecting part means
that the projection of some instances IC3 of C3 and some
instances IC4 of C4 are equal. However, C3 and C4 can not
have common instances as they have different sets of event
types. This intersection can happen because of the random
projection approximation. A k set too low will increase the
probability of this undesirable effect.

Moreover, with a statistical analysis, it can be shown that
the value of k will have an impact on how far from the origin
the chronicles will be in the Euclidean space. To do so, let
us consider the squared distance from the origin to a vector
obtained by mapping an instance of a n-length chronicle in
the k-dimensional Euclidean space, that is:

d2 =

k∑
j=1

x′(j)2.

Equation (4) defines the vector x′ and x′(j)2 is the square
of each element of x′:

x′(j)2 =

(
n∑

i=1

ρ(ei, j)ti

)2

.
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Fig. 8: An undesirable effect when k is set too low.

Since vector x is filled with normally distributed random
variables with a mean value equal to 0 and variance 1,
E
(
ρ(ei, j)

2
)
= 1 and E (ρ(ei, j)) = 0. The expected value

of x′(j) is:

E
(
x′(j)2

)
=

n∑
i=1

t2i .

So the expected value of d2 is given by:

E(d2) =

k∑
j=1

E
(
x′(j)2

)
= k

n∑
i=1

t2i .

This means that a high value of k will have an important ef-
fect on the dispersion of chronicles mapped in the Euclidean
space. In other words, an n-length chronicle will be farther
from the origin with a high value of k than with a low value
of k. For the variance, it is given by:

V AR
(
d2
)
= E

(
d4
)
− E

(
d2
)2

= k
(
E
(
x′(j)4

)
− E

(
x′(j)2

)2)
= k

3

(
n∑

i=1

t2i

)2

−
(

n∑
i=1

t2i

)2


= 2k

(
n∑

i=1

t2i

)2

.

VI. CONCLUSION AND DISCUSSION

This paper provides a new method based on random
projections to map chronicles in a k-dimensional Euclidean
space. This approach leads to an unbounded polytope that
contains all the possible instances of the corresponding
chronicle. Some simple relations between properties of poly-
topes in the Euclidean space and the chronicle model have
been established. The impact of the value of k has been
discussed and it was shown that this parameter should be
chosen carefully.

The new chronicle representation will improve the chroni-
cle discovery algorithm results, especially for fault diagnosis
objectives. Indeed, comparison and analysis of the chronicles
obtained by such algorithms can be easily achieved when
they are projected in an Euclidean space using directly

distances between polytopes. Computations of distances be-
tween polytopes is commonly used in geo-spatial applica-
tions [17]. However, a bounded polytope is required for these
distances. As seen in Section III, a chronicle will always
be mapped to an unbounded polytope. A possible solution
to try and tackle this problem is to define the distance
between chronicles as the distance between the dual of their
mapped polytopes. The dual of a polytope always exists and
is bounded [18].

A well defined distance is crucial for defining a notion
of similarity of chronicles. Similar chronicles are close
representations of the same dynamic behavior of a process.
Similarity is useful for fault diagnosis as the less similar
chronicles are, the more accurate the diagnosis will be.
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