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Petri Net Reductions
for Counting Markings

Bernard Berthomieu∗1, Didier Le Botlan1, and Silvano Dal Zilio1

1Université de Toulouse, CNRS, INSA, Toulouse, France

We propose a method to count the number of reachable markings of a Petri
net without having to enumerate these first. The method relies on a structural
reduction system that reduces the number of places and transitions of the
net in such a way that we can faithfully compute the number of reachable
markings of the original net from the reduced net and the reduction history.
The method has been implemented and computing experiments show that
reductions are effective on a large benchmark of models.

1 Introduction

Structural reductions are an important class of optimization techniques for the analysis of
Petri Nets (PN for short). The idea is to use a series of reduction rules that decrease the
size of a net while preserving some given behavioral properties. These reductions are then
applied iteratively until an irreducible PN is reached on which the desired properties are
checked directly. This approach, pioneered by Berthelot [2, 3], has been used to reduce
the complexity of several problems, such as checking for boundedness of a net, for liveness
analysis, for checking reachability properties [10] or for LTL model checking [5].
In this paper, we enrich the notion of structural reduction by keeping track of the

relation between the markings of an (initial) Petri net, N1, and its reduced (final) version,
N2. We use reductions of the form (N1, Q,N2), where Q is a system of linear equations
that relates the (markings of) places in N1 and N2. The reductions are tailored so that
the state space of N1 (its set of reachable markings) can be reconstructed from that of
N2 and equations Q. In particular, when N1 is totally reduced (N2 is then the empty
net), the state space of N1 corresponds with the set of non-negative integer solutions to
Q. Then Q acts as a symbolic representation for sets of markings, in much the same way
one can use decision diagrams or SAT-based techniques.
∗This material is based upon work supported by the RTRA STAE project IFSE2: “technical engineering
for embedded systems”.
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In practice, reductions often lead to an irreducible non-empty residual net. In this case,
we can still benefit from an hybrid representation combining the state space of the residual
net (expressed, for instance, using a decision diagram) and the symbolic representation
provided by linear equations. This approach can provide a very compact representation of
the state space of a net. Therefore it is suitable for checking reachability properties, that
is whether some reachable marking satisfies a given set of linear constraints. However,
checking reachability properties could benefit of more aggressive reductions since it is not
generally required there that the full state space is available (see e.g. [10]). For particular
properties, it could be more efficient to only approximate the set of reachable markings,
and therefore to use more aggressive reduction rules (see e.g. [10]).
At the opposite, we focus on computing a (symbolic) representation of the full state

space. A positive outcome of our choice is that we can derive a method to count the
number of reachable markings of a net without having to enumerate them first.
Computing the cardinality of the reachability set has several applications. For instance,

it is a straightforward way to assess the correctness of tools—all tools should obviously
find the same results on the same models. This is the reason why this problem was chosen
as the first category of examination in the recurring Model-Checking Contest (MCC) [6,
7]. We have implemented our approach in the framework of the TINA toolbox [4] and
used it on the large set of examples provided by the MCC (see Sect. 7). Our results are
very encouraging, with numerous instances of models where our performances are several
orders of magnitude better than what is observed with the best available tools.

Outline. We first define the notations used in the paper then describe the reduction
system underlying our approach, in Sect. 3. After illustrating the approach on a full
example, in Sect. 4, we prove in Sect. 5 that the equations associated with reductions
allow one to reconstruct the state space of the initial net from that of the reduced one.
Section 6 discusses how to count markings from our representation of a state space while
Sect. 7 details our experimental results. We conclude with a discussion on related works
and possible future directions.

2 Petri Nets

Some familiarity with Petri nets is assumed from the reader. We recall some basic
terminology. Throughout the text, comparison (=, ≥) and arithmetic operations (−, +)
are extended pointwise to functions.
A marked Petri net is a tuple N = (P, T,Pre,Post,m0) in which P , T are disjoint

finite sets, called the places and transitions, Pre,Post : T → (P → N) are the pre and
post condition functions, and m0 : P → N is the initial marking.
Figure 1 gives an example of Petri net, taken from [18], using a graphical syntax: places

are pictured as circles, transitions as squares, there is an arc from place p to transition
t if Pre(t)(p) > 0, and one from transition t to place p if Post(t)(p) > 0. The arcs are
weighted by the values of the corresponding pre or post conditions (default weight is 1).
The initial marking of the net associates integer 1 to place p0 and 0 to all others.
A marking m : P → N maps a number of tokens to every place. A transition t in T
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Figure 1: An example Petri net

is said enabled at m if m ≥ Pre(t). If enabled at m, transition t may fire yielding a
marking m′ = m − Pre(t) + Post(t). This is written m t→m′, or simply m → m′ when
only markings are of interest. Intuitively, places hold integers and together encode the
state (or marking) of a net; transitions define state changes.
The reachability set, or state space, of N is the set of markings R(N) = {m | m0

∗→
m }, where ∗→ is the reflexive and transitive closure of →.

A firing sequence σ over T is a sequence t1, . . . , tn of transitions in T such that there
are some markingsm1 . . . ,mn+1 withm1

t1→ m2 ∧ . . . ∧mn
tn→ mn+1. This can be written

m1
σ→ mn+1. Its displacement, or marking change, is ∆(σ) = Σn

i=1(Post(ti)−Pre(ti)),
where ∆ : P → Z, and its hurdle H(σ) is the smallest marking (pointwise) from which
the sequence is firable.
Displacements (or marking changes) and hurdles are discussed in [8], where the existence
and uniqueness of hurdles is proved. As an illustration, the displacement of sequence
t2t5t3 in the net Figure 1 is {(p2,−1), (p5, 1), (p9, 1)} (and 0 for all other places, implic-
itly), its hurdle is {(p2, 1), (p3, 1), (p7, 1)}.
The postset of a transition t is t• = { p | Post(t)(p) > 0 }, its preset is •t = { p |

Pre(t)(p) > 0 }. Symmetrically for places, p• = { t | Pre(t)(p) > 0 } and •p = { t |
Post(t)(p) > 0 }.
A net is ordinary if all its arcs have weight one; for all transition t in T , and place p

in P , we have Pre(t)(p) ≤ 1 and Post(t)(p) ≤ 1. Otherwise it is said generalized.
A net N is bounded if there is an (integer) bound b such thatm(p) ≤ b for allm ∈ R(N)

and p ∈ P . The net is said safe when the bound is 1. All nets considered in this paper
are assumed bounded.
The net in Figure 1 is ordinary and safe. Its state space holds 14 markings.

3 The Reduction System

We describe our set of reduction rules using three main categories. For each category,
we give a property that can be used to recover the state space of a net, after reduction,
from that of the reduced net.
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3.1 Removal of Redundant Transitions

A transition is redundant when its effects can always be achieved by firing instead
an alternative sequence of transitions. Our definition of redundant transitions slightly
strengthens that of bypass transitions in [15]. It is not fully structural either, but makes
it easier to identify special cases structurally.

Definition 3.1 (Redundant transition). Given a net (P, T,Pre,Post,m0), a transition
t in T is redundant if there is a firing sequence σ over T \ {t} such that ∆(t) = ∆(σ)
and H(t) ≥ H(σ). �

There are special cases that do not require to explore combinations of transitions. This
includes identity transitions, such that ∆(t) = 0, and duplicate transitions, such that for
some other transition t′ and integer k, ∆(t) = k.∆(t′). Finding redundant transitions
using Definition 3.1 can be convenient too, provided the candidate σ are restricted (e.g. in
length). Figure 2 (left) shows some examples of redundant transitions. Clearly, removing
a redundant transition from a net does not change its state space.

Theorem 3.1. If net N ′ is the result of removing some redundant transition in net N
then R(N) = R(N ′)

e
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c
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2

2
2

3
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identity (a,b), duplicate (c)
general redundant (d,e)
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2
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32

constant (a,b), duplicate (c)
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Figure 2: Some examples of redundant transitions (left) and places (right)

3.2 Removal of Redundant Places

A place is redundant if it never restricts the firing of its output transitions. Removing
redundant places from a net preserves its language of firing sequences [3]. We wish to
avoid enumerating marking for detecting such places, and further be able to recover the
marking of a redundant place from those of the other places. For these reasons, our
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definition of redundant places is a slightly strengthened version of that of structurally
redundant places in [3] (last clause is an equation).

Definition 3.2 (redundant place). Given a net (P, T,Pre,Post,m0), a place p in P is
redundant if there is some set of places I from P \ {p}, some valuation v : (I ∪ {p})→
(N− {0}), and some constant b ∈ N such that, for any t ∈ T :

1. The weighted initial marking of p is not smaller than that of I:

b = v(p).m0(p)− Σq∈Iv(q).m0(q)

2. To fire t, the difference between its weighted precondition on p and that on I may
not be larger than b: v(p).Pre(t)(p)− Σq∈Iv(q).Pre(t)(q) ≤ b

3. When t fires, the weighted growth of the marking of p is equal to that of I:

v(p).(Post(t)(p)−Pre(t)(p)) = Σq∈Iv(q).(Post(t)(q)−Pre(t)(q)) �

This definition can be rephrased as an integer linear programming problem [17], con-
venient in practice for computing redundant places in reasonably sized nets (say when
|P | ≤ 50). Like with redundant transitions, there are special cases that lead to easily
identifiable redundant places. These are constant places—those for which set I in the
definition is empty—and duplicated places, when set I is a singleton. Figure 2 (right)
gives some examples of such places.
From Definition 3.2, we can show that the marking of a redundant place p can always

be computed from the markings of the places in I and the valuation function v. Indeed,
for any marking m in R(N), we have v(p).m(p) = Σq∈Iv(q).m(q)+b, where the constant
b derives from the initial marking m0. Hence we have a relation kp.m(p) = ρp(m), where
kp = v(p) and ρp is some linear expression on the places of the net.

Theorem 3.2. If N ′ is the result of removing some redundant place p from net N , then
there is an integer constant k ∈ N∗, and a linear expression ρ, such that, for all marking
m: m ∪ {(p, (1/k).ρ(m))} ∈ R(N)⇔ m ∈ R(N ′).

3.3 Place Agglomerations

Conversely to the rules considered so far, place agglomerations do not preserve the num-
ber of markings of the nets they are applied to. They constitute the cornerstone of our
reduction system; the purpose of the previous rules is merely to simplify the net so that
agglomeration rules can be applied. We start by introducing a convenient notation.

Definition 3.3 (Sum of places). A place a is the sum of places p and q, written a = p�q,
if: m0(a) = m0(p) +m0(q) and, for all transition t, Pre(t)(a) = Pre(t)(p) + Pre(t)(q)
and Post(t)(a) = Post(t)(p) + Post(t)(q). �

Clearly, operation � is commutative and associative. We consider two categories of
place agglomeration rules; each one consisting in the simplification of a sum of places.
Examples are shown in Fig. 3.
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Figure 3: Agglomeration examples: chain (top), loop (for n = 3, bottom)

Definition 3.4 (Chain agglomeration). Given a net (P, T,Pre,Post,m0), a pair of
places p, q in P can be chain agglomerated if there is some t ∈ T such that: •t = {p};
t• = {q}; Pre(t)(p) = Post(t)(q) = 1; •q = {t}; and m0(q) = 0. Their agglomeration
consists of replacing places p and q by a place a equal to their sum: a = p� q. �

Definition 3.5 (Loop agglomeration). A sequence of n places (πi)
n−1
i=0 can be loop ag-

glomerated if the following condition is met:

(∀i < n)(∃t ∈ T )(Pre(t) = {(πi, 1)} ∧Post(t) = {(π(i+1)(mod n), 1)}) .

Their agglomeration consists of replacing places π0, . . . , πn−1 by a single place, a, defined
as their sum: a = �n−1

i=0 πi. �

Clearly, whenever some place a of a net obeys a = p � q for some places p and q of
the same net, then place a is redundant in the sense of definition 3.2. The effects of
agglomerations on markings are stated by Theorem 3.3.

Theorem 3.3. Let N and N ′ be the nets before and after agglomeration of some set
of places A as place a. Then for all markings m over (P \ A) and m′ over A we have:
(m ∪m′) ∈ R(N)⇔ m ∪ {(a,Σp∈Am

′(p)} ∈ R(N ′).

Proof. Assume N is a net with set of places P . Let us first consider the case of the chain
agglomeration rule in Fig. 3 (top). We have to prove that for all marking m of P \ {p, q}
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and for all values x, y in N:

m ∪ {(p, x), (q, y)} ∈ R(N)⇔ m ∪ {(a, x+ y)} ∈ R(N ′)

Left to right (L): Let N+ be net N with place a = p�q added. Clearly, a is redundant
in N+, with v(a) = v(p) = v(q) = 1. So N and N+ admit the same firing sequences,
and for any m ∈ R(N+), we have m(a) = m(p) +m(q). Next, removing places p and q
from N+ (the result is net N ′) can only relax firing constraints, hence any σ firable in
N+ (and thus in N) is also firable in N ′, which implies the goal.

Right to left (R): we use two intermediate properties (∀m,x, u, v implicit). We write
m ∼ m′ when m and m′ agree on all places except p, q and a, and m ≈ m′ when
m ∼ m′ ∧m(p) = m′(a) ∧m(q) = 0.
Property (1): m ∪ {(a, x)} ∈ R(N ′)⇒ m ∪ {(p, x), (q, 0)} ∈ R(N).
Since ∆(t) = 0, any marking reachable in N ′ is reachable by a sequence not containing

t, call these sequences t-free. Property (1) follows from a simpler relation, namely (Z):
whenever m ≈ m′ (m ∈ R(N), m′ ∈ R(N ′)) and m′ δ→ w′, (δ t-free), then there is a
sequence ω such that m ω→ w and w ≈ w′.
Any t-free sequence firable in N ′ but not in N can be written σ.t′.γ, where σ is firable

in N and transition t′ is not firable in N after σ. Let w, w′ be the markings reached by
σ in N and N ′, respectively. Since σ is firable in N , we have w ≈ w′, by (L) and the
fact that σ is t-free (only t can put tokens in q). That t′ is not firable at w but firable at
w′ is only possible if t′ is some output transition of a since w ∼ w′ and the preconditions
of all other transitions of N ′ than a are identical in N and N ′. That is, t′ must be an
output transition of either or both p or q in N . If t′ has no precondition on q in N , then
it ought to be firable at w in N since w(p) = w′(a). So t′ must have a precondition on
q; we have w(q) 6≥ Pre(t′)(q) in N and w′(a) ≥ Pre′(t′)(a) in N ′. Therefore, we can
fire transition t n times from w in N , where n = Pre(t′)(q), since w′(a) = w(p) and t′ is
enabled at w′, and this leads to a marking enabling t′. Further, firing t′ at that marking
leaves place q in N empty since only transition t may put tokens in q. Then the proof of
Property (1) follows from (Z) and the fact that Definition 3.4 ensures m0 ≈ m′0.
Property (2): if m ∪ {(p, x), (q, 0)} ∈ R(N) and (u + v = x) then m ∪ {(p, u), (q, v)} ∈
R(N).
Obvious from Definition 3.4: the tokens in place p can be moved one by one into place

q by firing t in sequence v times.
Combining Property (1) and (2) is enough to prove (R), which completes the proof for

chain agglomerations. The proof for loop agglomerations is similar.

3.4 The Reduction System

The three categories of rules introduced in the previous sections constitute the core of
our reduction system. Our implementation actually adds to those a few special purpose
rules. We mention three examples of such rules here, because they play a significant
role in the experimental results of Sect. 7, but without technical details. These rules
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are useful on nets generated from high level descriptions, that often exhibit translation
artifacts like dead transitions or source places.
The first extra rule is the dead transition removal rule. It is sometimes possible to

determine statically that some transitions of a net are never firable. A fairly general rule
for identifying statically dead transitions is proposed in [5]. Removal of statically dead
transitions from a net has no effects on its state space.
A second rule allows us to remove a transition t from a net N when t is the sole

transition enabled in the initial marking and t is firable only once. Then, instead of
counting the markings reachable from the initial marking of the net, we count those
reachable from the output marking of t in N and add 1. Removing such transitions often
yields structurally simpler nets.
Our last example is an instance of simple rules that can be used to do away with very

basic (sub-)nets, containing only a single place. This is the case, for instance, of the
source-sink nets defined below. These rules are useful if we want to fully reduce a net.
We say that a net is totally reduced when its set of places and transitions are empty
(P = T = ∅).

Definition 3.6 (Source-sink pair). A pair (p, t) in net N is a source-sink pair if •p = ∅,
p• = {t}, Pre(t) = {(p, 1)} and Post(t) = ∅. �

Theorem 3.4 (Source-sink pairs). If N ′ is the result of removing a source-sink pair (p, t)
in net N then (∀z ≤ m0(p))(∀m)(m ∪ {(p, z)} ∈ R(N)⇔ m ∈ R(N ′)).

Omitting for the sake of clarity the first two extra rules mentioned above, our final
reduction system resumes to removal of redundant transitions (referred to as the T rule)
and of redundant places (R rule), agglomeration of places (A rules) and removal of
source-sink pairs (L rule).
Rules T have no effects on markings. For the other three rules, the effect on the

markings can be captured by an equation or an inequality. These have shape vp.m(p) =∑
q 6=p vq.m(q)+b for redundant places, where b is a constant, shapem(a) = Σp∈Am(p) for

agglomerations, and shape m(p) ≤ k for source-sink pairs, where k is some constant. In
all these equations, the termsm(q) are marking variables; variablem(q) is associated with
the marking of place q. For readability, we will often use the name of the place instead of
its associated marking variable. For instance, the marking equation 2.m(p) = 3.m(q)+4,
resulting from a (R) rule, would be simply written 2.p = 3.q + 4.
We show in Sect. 5 that the state space of a net can be reconstructed from that of

its reduced net and the set of (in)equalities collected when a rule is applied. Before
considering this result, we illustrate the effects of reductions on a full example.

4 An Illustrative Example — HouseConstruction

We take as example a model provided in the Model Checking Contest (MCC, http:
//mcc.lip6.fr), a recurring competition of model-checking tools [6]. This model is a
variation of a Petri net model found in [14], which is itself derived from the PERT chart
of the construction of a house found in [11]. The model found in the MCC collection,

8

http://mcc.lip6.fr
http://mcc.lip6.fr


10 p1

p10

p11

p13

p14

p15

p16

p17

p18

p19

p2

p20

p21

p22

p26

p27

p3

p5

p6

p7

p9

t1

t10

t11

t12

t13

t14

t15

t16

t17

t18

t2 t3 t4

t5

t6

t7

t8

t9

p8

p12

p4
p25

p23

Figure 4: HouseConstruction-10 example net
.

reproduced in Fig. 4, differs from that of [14] in that it omits time constraints and a final
sink place. In addition, the net represents the house construction process for a number
of houses simultaneously rather than a single one. The number of houses being built is
represented by the marking of place p1 of the net (10 in the net represented in Fig. 4).

We list in Fig. 5 a possible reduction sequence for our example net, one for each line. To
save space, we have omitted the removal of redundant transitions. For each reduction, we
give an indication of its kind (R, A, . . . ), the marking equation witnessing the reduction,
and a short description. The first reduction, for instance, says that place p19 is removed,
being a duplicate of place p20. At the second step, places p11 and p7 are agglomerated
as place a1, a “fresh” place not found in the net yet.
Each reduction is associated with an equation or inequality linking the markings of the

net before and after application of a rule. The system of inequalities gathered is shown
below, with agglomeration places ai eliminated. We show in the next section that the set
of solutions of this system, taken as markings, is exactly the set of reachable markings
of the net.

p19 = p20 p4 = p6 + p15 + p11 + p7
p12 = p10 + p8 p9 + p5 = p6 + p8
p13 = p10 + p9 p21 + p18 = p22 + p20 + p23
p27 = p23 + p26

p25 + p16 + p15 + p11 + p7 = p26 + p23 + p22 + p20 + p17 + p14 + p10 + p8
p26 + p23 + p22 + p20 + p17 + p14 + p10 + p8 + p6 + p3 + p2 + p1 ≤ 10

9



R |- p19 = p20 p19 duplicate
A |- a1 = p11 + p7 agglomeration
A |- a2 = p17 + p14 agglomeration
A |- a3 = p2 + p1 agglomeration
A |- a4 = p21 + p18 agglomeration
A |- a5 = p22 + p20 agglomeration
A |- a6 = p25 + p16 agglomeration
A |- a7 = p15 + a1 agglomeration
A |- a8 = p3 + a3 agglomeration
R |- p12 = p10 + p8 p12 redundant
R |- p13 = p10 + p9 p13 redundant
R |- a4 = a5 + p23 a4 redundant
R |- p27 = p23 + p26 p27 redundant

R |- p4 = p6 + a7 p4 redundant
A |- a9 = a2 + p10 agglomeration
A |- a10 = a6 + a7 agglomeration
A |- a11 = p23 + a5 agglomeration
A |- a12 = p9 + p5 agglomeration
A |- a13 = a11 + p26 agglomeration
A |- a14 = a13 + a9 agglomeration
R |- a12 = p6 + p8 a12 redundant
R |- a10 = a14 + p8 a10 redundant
A |- a15 = a14 + p8 agglomeration
A |- a16 = p6 + a8 agglomeration
A |- a17 = a15 + a16 agglomeration
L |- a17 <= 10 a17 source

Figure 5: Reduction traces for net HouseConstruction-10

This example is totally reduced using the sequence of reductions listed. And we have
found other examples of totally reducible net in the MCC benchmarks. In the general
case, our reduction system is not complete; some nets may be only partially reduced, or
not at all.
When a net is only partially reducible, the inequalities, together with an explicit or

logic-based symbolic description of the reachability set of the residual net, yield a hybrid
representation of the state space of the initial net. Such hybrid representations are still
suitable for model checking reachability properties or counting markings.

Order of application of reduction rules. Our reduction system does not constrain
the order in which reductions are applied. Our tool attempts to apply them in an order
that minimizes reduction costs.
The rules can be classified into “local” rules, detecting some structural patterns on

the net and transforming them, like removal of duplicate transitions or places, or chain
agglomerations, and ‘’non-local” rules, like removal of redundant places in the general
case (using integer programming). Our implementation defers the application of the non-
local rules until no more local rule can be applied. This decreases the cost of non-local
reductions as they are applied to smaller nets.
Another issue is the confluence of the rules. Our reduction system is not confluent:

different reduction sequences for the same net could yield different residual nets. This
follows from the fact that agglomeration rules do not preserve in general the ordinary
character of the net (that all arcs have weight 1), while agglomeration rules require that
the candidate places are connected by arcs of weight 1 to the same transition.
An example net exhibiting the problem is shown in Fig. 6(a). Agglomeration of places

p3 and p4 in this net, followed by removal of identity transitions, yields the net in
Fig. 6(b). Place a1 in the reduced net is the result of agglomerating p3 and p4; this is
witnessed by equation a1 = p3+p4. Note that the arcs connecting place a1 to transitions
t0 and t1 both have weight 2.
Next, place p2 in the reduced net is a duplicate of place a1, according to the definitions
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Figure 6: Non confluence example

of Sect. 3.2, the corresponding equation is 2.p2 = a1. But, from the same equation, a1
is a duplicate of p2 as well. But removing p2 or a1 have differents effects:

• If a1 is removed, then we can fully reduce the net by the following sequence of
reductions:

A |- a2 = p1 + p2 agglomeration
A |- a3 = a2 + p0 agglomeration
R |- a3 = 1 constant place

• If p2 is removed instead, then the resulting net cannot be reduced further: places
p0, a1 and p1 cannot be agglomerated because of the presence of arcs with weight
larger than 1.

Confluence of the system could be easily obtained by restricting the agglomeration rules
so that no arcs with weight larger than 1 could be produced. But it is more effective to
favour the expressiveness of our reduction rules.
Alternatively, agglomeration rules could be generalized to handle arbitrary weights on

the arcs linking the agglomerated places; this is a scheduled improvement of our reduction
system.

5 Correctness of Markings Reconstruction

We prove that we can reconstruct the markings of an (initial) net, before application
of a rule, from that of the reduced net. This property ensues from the definition of a
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net-abstraction relation, defined below.
We start by defining some notations useful in our proofs. We use U ,V, . . . for finite

sets of non-negative integer variables. We use Q,Q′ for systems of linear equations (and
inequalities) and the notation V(Q) for the set of variables occurring in Q. The system
obtained by concatenating the relations in Q1 and Q2 is denoted (Q1;Q2) and the “empty
system” is denoted ∅.
A valuation e of NV is a solution of Q, with V = V(Q), if all the relations in Q are

(trivially) valid when replacing all variables x in V by their value e(x). We denote 〈Q〉
the subset of NV(Q) consisting in all the solutions of Q.
If E ⊆ NV then E ↓ U is the projection of E over variables U , that is the subset of NU

obtained from E by restricting the domain of its elements to U . conversely, we use E ↑ U
to denote the lifting of E to U , that is the largest subset E′ of NU such that E′ ↓ V = E.

Definition 5.1 (Net-abstraction). A triple (N1, Q,N2) is a net-abstraction, or simply
an abstraction, if N1, N2 are nets with respective sets of places P1, P2 (we may have
P1 ∩ P2 6= ∅), Q is a linear system of equations, and:

R(N1) = ((R(N2) ↑ V) ∩ (〈Q〉 ↑ V)) ↓ P1 where V = V(Q) ∪ P1 ∪ P2 .

Intuitively, N2 is an abstraction of N1 (through Q) if, from every reachable marking
m ∈ R(N2), the markings obtained from solutions of Q—restricted to those solutions
such that x = m(x) for all “place variable” x in P2—are always reachable in N1. The
definition also entails that all the markings in R(N1) can be obtained this way.

Theorem 5.1 (Net-abstractions from reductions). For any nets N , N1, N2:

1. (N, ∅, N) is an abstraction;

2. If (N1, Q,N2) is an abstraction then (N1, Q
′, N3) is an abstraction if either:

(T) Q′ = Q and N3 is obtained from N2 by removing a redundant transition (see
Sect. 3.1);

(R) Q′ = (Q; k.p = l) and N3 is obtained from N2 by removing a redundant place
p and k.p = l is the associated marking equation (see Sect. 3.2);

(A) Q′ = (Q; a = Σp∈A(p)), where a 6∈ V(Q) and N3 is obtained from N2 by
agglomerating the places in A as a new place, a (see Sect. 3.3);

(L) Q′ = (Q; p ≤ k) and N3 is obtained from N2 by removal of a source-sink pair
(p, t) with m0(p) = k (see Sect. 3.4).

Proof. Property (1) is obvious from Definition 5.1. Property (2) is proved by case
analysis. First, let V = V(Q) ∪ P1 ∪ P2 and U = V ∪ P3 and notice that for all
candidate (N1, Q

′, N3) we have V(Q′) ∪ P1 ∪ P3 = U . Then, in each case, we know
(H) : R(N1) = (R(N2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1 and we must prove (G) : R(N1) = (R(N3) ↑
U ∩ 〈Q′〉 ↑ U) ↓ P1.
Case (T) : Q′ = Q. By Th. 3.1, we have P3 = P2, hence V = U , and R(N3) = R(N2).
Replacing R(N2) by R(N3) and V by U in (H) yields (G).
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Case (R) : By Th. 3.2 we have : R(N2) = R(N3) ↑ P2 ∩ 〈k.p = l〉 ↑ P2. replacing R(N2)
by this value in (H) yields R(N1) = ((R(N3) ↑ P2 ∩ 〈k.p = l〉 ↑ P2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1.
Since P2 ⊆ V, we may safely lift to V instead of P2, so: R(N1) = (R(N3) ↑ V∩〈k.p = l〉 ↑
V ∩〈Q〉 ↑ V) ↓ P1. Which is equivalent to: R(N1) = (R(N3) ↑ V ∩〈Q; k.p = l〉 ↑ V) ↓ P1,
and equal to (G) since P3 ⊆ V and Q′ = (Q; k.p = l).
Case (A): Let Sp denotes the value Σp∈A(p). By Th. 3.3 we have: R(N2) = (R(N3) ↑
(P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↓ P2. Replacing R(N2) by this value in (H) yields:
R(N1) = (((R(N3) ↑ (P2 ∪P3)∩〈a = Sp〉 ↑ (P2 ∪P3)) ↓ P2) ↑ V ∩ 〈Q〉 ↑ V) ↓ P1. Instead
of V, we may lift to U since U = V ∪{a}, a 6∈ V(Q) and a 6∈ P1, so: R(N1) = (((R(N3) ↑
(P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↓ P2) ↑ U ∩ 〈Q〉 ↑ U) ↓ P1. Projection on P2 may be
omitted since P2 ∪ P3 = P2 ∪ {a} and a 6∈ V(Q), leading to:
R(N1) = ((R(N3) ↑ (P2 ∪ P3) ∩ 〈a = Sp〉 ↑ (P2 ∪ P3)) ↑ U ∩ 〈Q〉 ↑ U) ↓ P1.

Since P2 ∪ P3 ⊆ U , this is equivalent to: R(N1) = (R(N3) ↑ U ∩ 〈a = Sp〉 ↑ U ∩ 〈Q〉 ↑
U) ↓ P1. Grouping equations yields: R(N1) = (R(N3) ↑ U ∩ 〈Q; a = Sp〉 ↑ U) ↓ P1,
which is equal to (G) since Q′ = (Q; a = Sp).
case (L): The proof is similar to that of case (R) and is based on the relation R(N2) =
R(N3) ↑ P2 ∩ 〈p ≤ k〉 ↑ P2, obtained from Th. 3.4.

Theorem 5.1 states the correctness of our reduction systems, since we can compose
reductions sequentially and always obtain a net-abstraction. In particular, if a net N is
fully reducible, then we can derive a system of linear equations Q such that (N,Q, ∅)
is a net-abstraction. In this case the reachable markings of N are exactly the solutions
of Q, projected on the places of N . If the reduced net, say Nr, is not empty then each
marking m ∈ R(Nr) represents a set of markings 〈Q〉m ⊂ R(N): the solution set of Q in
which the places of the residual net are constrained as in m, and then projected on the
places of N . Moreover the family of sets { 〈Q〉m | m ∈ R(Nr)} is a partition of R(N).

6 Counting Markings

We consider the problem of counting the markings of a net N from the set of markings of
the residual net Nr and the (collected) system of linear equations Q. For totally reduced
nets, counting the markings of N resumes to that of counting the number of solutions in
non negative integer variables of system Q. For partially reduced nets, a similar process
must be iterated over all markings m reachable in Nr (a better implementation will be
discussed shortly).

Available methods. Counting the number of integer solutions of a linear system of
equations (inequalities can always be represented by equations by the addition of slack
variables) is an active area of research.
A method is proposed in [1], implemented in the tool Azove, for the particular case

where variables take their values in {0, 1}. The method consists of building a Binary
Decision Diagram for each equation, using Shannon expansion, and then to compute
their conjunction (this is done with a specially tailored algorithm). The number of paths
of the BDD gives the expected result. Our experiments with Azove show that, although
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the tool can be fast, its performances on larger system heavily depend on the ordering
chosen for the BDD variables, a typical drawback of decision diagram based techniques.
In any case, its usage in our context would be limited to safe nets.
For the general case, the current state of the art can be found in the work of De Loera

et al. [12, 13] on counting lattice points in convex polytopes. Their approach is imple-
mented in a tool called LaTTe; it relies on algebraic and geometric methods; namely the
use of rational functions and the decomposition of cones into unimodular cones. Our
experiments with LaTTe show that it can be conveniently used on systems with, say, less
than 50 variables. For instance, LaTTe is strikingly fast (less than 1s) at counting the
number of solutions of the system computed in Sect. 4. Moreover, its running time does
not generally depend on the constants found in the system. As a consequence, computing
the reachability count for 10 or, say, 1012 houses takes exactly the same time.

An ad-hoc method. Though our experiments with LaTTe suffice to show that these
approaches are practicable, we implemented our own counting method. Its main benefits
over LaTTe, important for practical purposes, are that it can handle systems with many
variables (say thousands), though it can be slower than LaTTe on small systems. Another
reason for finding an alternative to LaTTe is that it provides no builtin support for
parameterized systems, that is in the situation where we need to count the solutions of
many instances of the same linear system differing only by some constants.
Our solution takes advantage of the stratified structure of the systems obtained from

reductions, and it relies on combinatorial rather than geometric methods. While we
cannot describe this tool in full details, we illustrate our approach and the techniques
involved on a simple example.
Consider the system of equations obtained from the PN corresponding to the dashed

zone of Fig. 4. This net consists of places in the range p18—p27 and is reduced by our
system to a single place, a13. The subset of marking equations related to this subnet is:

R ` p19 = p20 R ` p27 = p23 + p26
A ` a4 = p21 + p18 A ` a11 = p23 + a5
A ` a5 = p22 + p20 A ` a13 = a11 + p26
R ` a4 = a5 + p23

(Q)

Assume place a13 is marked with n tokens. Then, by Th. 5.1, the number of markings
of the original net corresponding with marking a13 = n in the reduced net is the number
of non-negative integer solutions to system (Q, a13 = n). Let us define the function
A13 : N −→ N that computes that number.
We first simplify system (Q). Note that no agglomeration is involved in the redundancy

(R) equations for p19 and p27, so these equations have no effects on the marking count
and can be omitted. After elimination of variable a5 and some rewriting, we obtain the
simplified system (Q′):

A ` a4 = p21 + p18 R ` a4 = a11
A ` a11 = p23 + p22 + p20 A ` a13 = a11 + p26

(Q′)

Let ((k))(x) denote the expression
(
x+k−1
k−1

)
, which denotes the number of ways to put x

tokens into k slots. The first equation is a4 = p21+p18. If a4 = x, its number of solutions
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is ((2))(x) = x+ 1. The second equation is a11 = p23 + p22 + p20. If a11 = x, its number
of solutions is ((3))(x) = (x+2)(x+1)

2 .
Now consider the system consisting of the first two equations and the redundancy

equation a4 = a11. If a11 = x, its number of solutions is ((2))(x)× ((3))(x) (the variables
in both equations being disjoint). Finally, by noticing that a11 can take any value between
0 and n, we get:

A13(n) =
n∑

a11=0

((2))(a11)× ((3))(a11)

This expression is actually a polynomial, namely 1
8n

4 + 11
12n

3 + 19
8 n

2 + 31
12n+ 1.

By applying the same method to the whole net of Fig. 4, we obtain an expression involving
six summations, which can be reduced to the following 18th-degree polynomial in the
variable X denoting the number of tokens in place p1.

11
19401132441600X

18 + 1
16582164480X

17 + 2491
836911595520X

16 + 1409
15567552000X

15

+ 3972503
2092278988800X

14 + 161351
5535129600X

13 + 32745953
96566722560X

12 + 68229017
22353408000X

11

+ 629730473
29262643200X

10 + 83284643
696729600X

9 + 3063053849
5852528640X

8 + 74566847
41472000X

7

+ 1505970381239
313841848320 X

6 + 32809178977
3353011200 X

5 + 259109541797
17435658240 X

4 + 41924892461
2594592000 X

3

+ 4496167537
381180800 X

2 + 62925293
12252240X

1 + 1

In the general case of partially reduced nets, the computed polynomial is a multivariate
polynomial with at most as many variables as places remaining in the residual net. When
that number of variables is too large, the computation of the final polynomial is out of
reach, and we only make use of the intermediate algebraic term.

7 Computing Experiments

We integrated our reduction system and counting method with a state space generation
tool, tedd, in the framework of our TINA toolbox for analysis of Petri nets [4] (www.
laas.fr/tina). Tool tedd makes use of symbolic exploration and stores markings in a
Set Decision Diagram [19]. For counting markings in presence of agglomerations, one has
the choice between using the external tool LaTTe or using our native counting method
discussed in Sect. 6.

Benchmarks. Our benchmark is constituted of the full collection of Petri nets used
in the Model Checking Contest [6, 9]. It includes 627 nets, organized into 82 classes
(simply called models). Each class includes several nets (called instances) that typically
differ by their initial marking or by the number of components constituting the net. The
size of the nets vary widely, from 9 to 50 000 places, 7 to 200 000 transitions, and 20
to 1 000 000 arcs. Most nets are ordinary (arcs have weight 1) but a significant number
are generalized nets. Overall, the collection provides a large number of PN with various
structural and behavioral characteristics, covering a large variety of use cases.
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Figure 7: Distribution of reduction ratios (place count) over the 627 PN instances.

Reduction ratio and prevalence. Our first results are about how well the reductions
perform. We provide two different reduction strategies: compact, that applies all reduc-
tions described in Sect. 3, and clean, that only applies removal of redundant places and
transitions. The reduction ratios on number of places (number of places before and after
reduction) for all the MCC instances are shown in Fig. 7, sorted in descending order. We
overlay the results for our two reduction strategies (the lower, in light color, for clean
and the upper, in dark, for compact). We see that the impact of strategy clean alone
is minor compared to compact. Globally, Fig. 7 shows that reductions have a significant
impact on about half the models, with a very high impact on about a quarter of them.
In particular, there is a surprisingly high number of models that are totally reducible by
our approach (about 19% of the models are fully reducible).

Computing time of reductions. Many of the reduction rules implemented have a
cost polynomial in the size of the net. The rule removing redundant places in the general
case is more complex as it requires to solve an integer programming problem. For this
reason we limit its application to nets with less than 50 places. With this restriction,
reductions are computed in a few seconds in most cases, and in about 3 minutes for the
largest nets. The restriction is necessary but, because of it, we do not reduce some nets
that would be fully reducible otherwise.

Impact on the marking count problem. In our benchmark, there are 169 models,
out of 627, for which no tool was ever able to compute a marking count. With our
method, we could count the markings of at least 14 of them.
If we concentrate on tractable nets—instances managed by at least one tool in the

MCC 2017—our approach yields generally large improvements on the time taken to
count markings; sometimes orders of magnitude faster. Table 1 (top) lists the CPU time
(in seconds) for counting the markings on a selection of fully reducible instances. We
give the best time obtained by a tool during the last MCC (third column) and compare
it with the time obtained with tedd, using two different ways of counting solutions (first
with our own, native, method then with LaTTe). We also give the resulting speed-up.
These times also include parsing and applying reductions. An absent value (−) means
that it cannot be computed in less than 1 hour with 16 Gb of storage.
Concerning partially reducible nets, the improvements are less spectacular in general
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Net instance size MCC tedd tedd speed
] places ] states (best) native LaTTe up

BART-050 11 822 1.88e118 2 800 346 - 8
BART-060 14 132 8.50e141 - 496 - ∞
DLCround-13a 463 2.40e17 9 0.33 - 27
FlexibleBarrier-22a 267 5.52e23 5 0.25 - 20
NeighborGrid-d4n3m2c23 81 2.70e65 330 0.21 44 1571
NeighborGrid-d5n4m1t35 1 024 2.85e614 - 340 - ∞
Referendum-1000 3 001 1.32e477 29 12 - 2
RobotManipulation-00050 15 8.53e12 94 0.1 0.17 940
RobotManipulation-10000 15 2.83e33 - 102 0.17 ∞
Diffusion2D-50N050 2 500 4.22e105 1 900 5.84 - 325
Diffusion2D-50N150 2 500 2.67e36 - 5.86 - ∞
DLCshifumi-6a 3 568 4.50e160 950 6.54 - 145
Kanban-1000 16 1.42e30 240 0.11 0.24 2182
HouseConstruction-100 26 1.58e24 630 0.4 0.85 1575
HouseConstruction-500 26 2.67e36 - 30 0.85 ∞
Airplane-4000 28 019 2.18e12 2520 102 - 25
AutoFlight-48a 1127 1.61e51 19 3.57 - 5
DES-60b 519 8.35e22 2300 364 - 6
Peterson-4 480 6.30e8 470 35.5 - 13
Peterson-5 834 1.37e11 - 1200 - ∞

Table 1: Computation times (in seconds) and speed-up for counting markings on some
totally (top) and partially (bottom) reduced nets

though still significant. Counting markings in this case is more expensive than for totally
reduced nets. But, more importantly, we have to build in that case a representation
of the state space of the residual net, which is typically much more expensive than
counting markings. Furthermore, if using symbolic methods for that purpose, several
other parameters come into play that may impact the results, like the choice of an order
on decision diagram variables or the particular kind of diagrams used. Nevertheless,
improvements are clearly visible on a number of example models; some speedups are
shown in Table 1 (bottom). Also, to minimize such side issues, instead of comparing
tedd with compact reductions with the best tool performing at the MCC, we compared
it with tedd without reductions or with the weaker clean strategy. In that case, compact
reductions are almost always effective at reducing computing times.
Finally, there are also a few cases where applying reductions lower performances, typ-

ically when the reduction ratio is very small. For such quasi-irreducible nets, the time
spent computing reductions is obviously wasted.
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8 Related Work and Conclusion

Our work relies on well understood structural reduction methods, adapted here for the
purpose of abstracting the state space of a net. This is done by representing the effects
of reductions by a system of linear equations. To the best of our knowledge, reductions
have never been used for that purpose before.
Linear algebraic techniques are widely used in Petri net theory but, again, not with

our exact goals. It is well known, for instance, that the state space of a net is included
in the solution set of its so-called “state equation”, or from a basis of marking invariants.
But these solutions, though exact in the special case of live marked graphs, yield approx-
imations that are too coarse. Other works take advantage of marking invariants obtained
from semiflows on places, but typically for optimizing the representation of markings in
explicit or symbolic enumeration methods rather than for helping their enumeration, see
e.g. [16, 20]. Finally, these methods are only remotely related to our.
Another set of related work concerns symbolic methods based on the use of decision

diagrams. Indeed they can be used to compute the state space size. In such meth-
ods, markings are computed symbolically and represented by the paths of some directed
acyclic graph, which can be counted efficiently. Crucial for the applicability of these
methods is determining a “good” variable ordering for decision diagram variables, one
that maximizes sharing among the paths. Unfortunately, finding a convenient variable
ordering may be an issue, and some models are inherently without sharing. For example,
the best symbolic tools participating to the MCC can solve our illustrative example only
for p1 ≤ 100, at a high cost, while we compute the result in a fraction of a second for
virtually any possible initial marking of p1.

Finally, though not aimed at counting markings nor relying on reductions, the work
reported in [18] is certainly the closest to our. It defines a method for decomposing
the state space of a net into the product of “independent sets of submarkings”. The
ideas discussed in the paper resemble what we achieved with agglomeration. In fact,
the running example in [18], reproduced here in Figure 1, is a fully reducible net in our
approach. But no effective methods are proposed to compute decompositions.

Concluding remarks. We propose a new symbolic approach for representing the state
space of a PN relying on systems of linear equations. Our results show that the method
is almost always effective at reducing computing times and memory consumption for
counting markings. Even more interesting is that our methods can be used together with
traditional explicit and symbolic enumeration methods, as well as with other abstraction
techniques like symmetry reductions for example. They can also help for other problems,
like reachability analysis.
There are many opportunities for further research. For the close future, we are inves-

tigating richer sets of reductions for counting markings and application of the method
to count not only the markings, but also the number of transitions of the reachability
graph. Model-checking of linear reachability properties is another obvious prospective
application of our methods. On the long term, a question to be investigated is how to
obtain efficiently fully equational descriptions of the state spaces of bounded Petri nets.
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