
HAL Id: hal-01823694
https://laas.hal.science/hal-01823694v1

Submitted on 26 Jun 2018 (v1), last revised 4 Aug 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid parallelization of a multi-tree path search
algorithm: Application to highly-flexible biomolecules
Alejandro N Estaña, Kevin Molloy, Marc Vaisset, Nathalie Sibille, Thierry

Simeon, Pau Bernadó, Juan Cortés

To cite this version:
Alejandro N Estaña, Kevin Molloy, Marc Vaisset, Nathalie Sibille, Thierry Simeon, et al.. Hybrid par-
allelization of a multi-tree path search algorithm: Application to highly-flexible biomolecules. Parallel
Computing, 2018, 77, pp.84-100. �10.1016/j.parco.2018.06.005�. �hal-01823694v1�

https://laas.hal.science/hal-01823694v1
https://hal.archives-ouvertes.fr


Hybrid parallelization of a multi-tree path search
algorithm: Application to highly-flexible biomolecules

Alejandro Estañaa,b, Kevin Molloya, Marc Vaisseta, Nathalie Sibilleb,
Thierry Siméona, Pau Bernadób, Juan Cortésa

LAAS-CNRS, 7 Av. du Colonel Roche, BP 54200, 31031 Toulouse cedex 4, France

aLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
bCentre de Biochimie Structurale. INSERM U1054, CNRS UMR 5048, Université de

Montpellier, France

Abstract

The study of the conformational energy landscape of a molecule is essential

for the understanding of its physicochemical properties. This requires the ex-

ploration of a continuous, high-dimensional space to identify the most prob-

able conformations and the transition paths between them. The problem is

computationally difficult, in particular for highly-flexible biomolecules such as

Intrinsically Disordered Proteins (IDPs). In recent years, a robotics-inspired

algorithm called Transition-based Rapidly-exploring Random Tree (TRRT) has

been proposed to solve this problem, and has been shown to provide good re-

sults with small and middle-sized biomolecules. Aiming to treat larger systems,

we propose a hybrid strategy for the efficient parallelization of a multi-tree vari-

ant of TRRT, called Multi-TRRT, enabling an efficient execution in (possibly

large) computer clusters. The parallel algorithm uses OpenMP multi-threading

for computation inside each multi-core processor and MPI to perform the com-

munication between processors. Results show a near-linear speedup for a wide

range of cluster configurations. Although the paper mainly deals with the ap-

plication of the proposed parallel algorithm to the investigation of biomolecules,

the explanations concerning the methods are general, aiming to inspire future

work on the parallelization of related algorithms.

Email address: juan.cortes@laas.fr (Juan Cortés)

Preprint submitted to Parallel Computing June 22, 2018



Keywords: High Performance Computing (HPC), Hybrid parallelization,

Path planning algorithms, Molecular energy landscape exploration,

Intrinsically Disordered Proteins (IDPs)

1. Introduction

Experimental methods to analyze structural, thermodynamic and kinetic

properties of molecules are expensive and, in many cases, they do not pro-

vide the expected accuracy, especially for flexible biomolecules. Computational

methods have been developed over the last decades to complement experiment.

These methods explore the conformational energy landscape of the molecular

system, using physical or statistical models, aiming to determine physicochemi-

cal properties. Many different approaches have been proposed (see for example

[? ? ]), which can be classified into two main categories: deterministic ap-

proaches, headed by molecular dynamics (MD) simulations [? ], and stochastic

approaches, mostly based on Monte Carlo (MC) methods [? ]. When applied to

large molecules, these methods are highly computationally demanding. Thus,

parallel computing is almost mandatory. Basic MD and MC methods are se-

quential processes, but parallel computation is usually applied at a lower level

for energy evaluation (and derivatives). More sophisticated variants of these

methods can be parallelized at a higher level, as will be discussed in Section 2.1.

In recent years, algorithms originally developed for path planning in robotics

have been proposed as an alternative to classic approaches [? ? ? ]. This work

focuses on one of these algorithms, the Transition-based Rapidly-exploring Ran-

dom Tree (TRRT) [? ], which performs a randomized exploration of the confor-

mational space aiming to find probable transition paths between stable states of

a molecule. More precisely, we present a parallel implementation of a multi-tree

variant of TRRT [? ? ], which we will call Multi-TRRT hereafter (the principles

of TRRT and Multi-TRRT are reviewed in Section 3). TRRT is based on the

Rapidly-exploring Random Tree (RRT) algorithm [? ], a popular path plan-

ning algorithm that can tackle complex problems in high-dimensional spaces.

2



Although path planning problems in robotics are not very computationally ex-

pensive in general, several approaches have been proposed for the parallelisation

of RRT-like algorithms aiming to reduce computing time. A brief survey on par-

allel path planning algorithms is provided in Section 2.2.

Today, the majority of high-performance computing (HPC) systems are clus-

ters of multi-core processors1. To take advantage of this architecture, a current

trend is to develop hybrid parallelization strategies, combining shared memory

parallelization within each multi-core processor and distributed memory paral-

lelization between processors. In this work, we propose such a hybrid paralleliza-

tion strategy for the Multi-TRRT algorithm (Section 4). For the implementa-

tion, we use the standard and widely-used Message Passing Interface (MPI)2

for inter-processor communication and Open Multi-Processing (OpenMP)3 for

intra-processor work. To the best of our knowledge, this is the first time that a

hybrid parallelization approach has been employed within a robotics-based path

search/planning method.

The performance of the parallel Multi-TRRT algorithm is evaluated using

several molecules of different sizes. Indeed, the size of the molecule is directly

related to the computational requirements of the problem. Results presented

in Section 5 show the performance of the parallel algorithm, which achieves a

near-linear speedup for large molecules.

Although the focus of this paper is on the parallel algorithm itself rather

than on the application to molecular modeling, we would like to highlight here

its relevance for the study of highly-flexible biomolecules such as Intrinsically

Disordered Proteins (IDPs). The study of IDPs is extremely challenging due to

their large size and inherent plasticity [? ]. However, it is of great importance

due to the key roles these molecules play in numerous biological processes, some

1To avoid ambiguity between nodes of the exploration tree and nodes of the computer

cluster, in this paper we will refer to each component of a cluster as a computer or as a

processor.
2https://www.open-mpi.org/
3http://www.openmp.org/

3



of which are related to pathologies such as cancer or neurodegeneration [? ?

]. Contributing to a better understanding of these biomolecules is our main

motivation for the development of the methods presented in this paper.

2. Related work

Modeling molecular systems is computationally intensive. This has moti-

vated numerous initiatives to introduce parallelization within this domain. This

section first provides a brief survey on the parallelization of molecular dynamics

simulation methods, which are the most frequently used computational tech-

niques to study biomolecules. Then, more closely related to our contribution,

we present a concise review of previous work on parallel path planning algo-

rithms originating from robotics.

2.1. Parallel molecular simulation methods

Molecular Dynamics (MD) [? ] is the most widely-used technique for study-

ing molecular movements. This method explores the conformational space of

a molecular system by numerically solving Newton’s equations of motion. In

MD, roughly 90% of the computing time is consumed in the calculation of the

forces between non-bonded atoms. Since the 1980s, efforts have been focused on

the parallelization of this part of the algorithm aiming to speed-up MD simula-

tions [? ]. Research in this area, aiming to further improve parallel implemen-

tations of this family of methods, is still very active (e.g. [? ? ]). Nowadays,

parallel programming tools such as OpenMP (for shared memory architectures),

MPI (for distributed memory architectures) or Charm++4 (running on multi-

processor machines with or without a shared memory) are used for parallelizing

MD algorithms and are incorporated within many software packages. This is

the case for instance of the popular software packages GROMACS [? ] and

NAMD [? ].

4http://charm.cs.illinois.edu/research/charm

4



More sophisticated variants of MD methods enable parallelization at a higher

level. Replica Exchange Molecular Dynamics (REMD) [? ] is probably the most

clear representative of these advanced methods. REMD consists of running n

instances of the same molecular dynamics problem with different parameter

settings across the different replicas. After several iterations, the configurations

of different replicas are exchanged if a stochastic transition test succeeds. The

n simulations can be run in parallel, only requiring communication for replica

exchange. REMD has been shown to sample the conformational space much

more efficiently than a basic MD thanks to its ability to escape from local

minima traps [? ].

As an alternative to MD, Monte Carlo (MC) methods sample the conforma-

tional space of a molecular system by generating states according to a Boltzmann

distribution [? ]. Although the stochastic sampling process performed by a basic

MC method is sequential, several parallelization strategies have been developed.

The most simple approach is to run multiple independent MC explorations in

parallel [? ], aiming to provide a more exhaustive sampling of the conformational

space. Parallalization in this setting is simple, since it requires no inter-process

communication. However, more sophisticated parallelization strategies can be

more efficient [? ? ]. In particular, the method proposed by Strid [? ] improves

the sequential MC version by obtaining several draws from the posterior dis-

tribution doing multiple evaluations in parallel. Another advanced variant, the

Parallel Tempering Monte Carlo scheme, similar to REMD, enhances sampling

by performing exchanges between replicas running in parallel [? ].

2.2. Parallel path planning algorithms

Path planning algorithms have been developed since the 1970s to compute

robot movements [? ]. In the last two decades, sampling-based algorithms [? ]

have become very popular thanks to their efficiency, generality and conceptual

simplicity. In addition to robotics, they have been applied to problems in other

areas such as computational biology [? ? ? ]. The basic principle of these

algorithms is to construct a graph or a tree that captures the topology of the

5



admissible (i.e. collision-free or energetically-feasible) regions of the search space

by randomly sampling configurations and attempting local connections. The

Multi-TRRT algorithm enhanced in this work belongs to this family of methods.

When applied to simple robot systems, path planning algorithms are com-

putationally fast, and parallelized implementations are not required. However,

parallel computing may provide significant performance gains when dealing with

complex systems. Starting from seminal work on the parallelization of classical

path planning algorithms [? ], most efforts have been focused on shared-memory

parallelization strategies. This is particularly relevant when using multi-core

central processing units (CPUs) [? ] or many-core graphics processing units

(GPUs) [? ? ]. Several approaches have also been proposed for shared-memory

systems, with the aim to enable a more general and large-scale parallelization

(e.g. [? ? ? ]). In this work, we propose to combine both shared-memory

and distributed-memory strategies. To the best of our knowledge, this is the

first work proposing such a hybrid approach in the context of path planning

algorithms.

As for molecular simulation methods, parallelization can be done at differ-

ent levels of the algorithm. In the case of path planning algorithms for robotics

applications, collision detection is the most computationally expensive opera-

tion, and parallelization can be focused on this part [? ? ]. Nevertheless, the

algorithms can also be parallelized at a higher level using diverse strategies, as

explained below. This paper focuses on high-level parallelization of the Multi-

TRRT algorithm, but combining it with lower-level parallelization for collision

detection and/or energy evaluation could be an interesting direction for future

work.

The best parallelization strategy to be adopted depends on the character-

istics of each path planning algorithm. Some algorithms present an inherent

parallelism whereby they can be easily subdivided into embarrassingly parallel

processes. This is the case for the Probabilistic Road-Map (PRM) algorithm [?

]. Using a basic parallelization strategy, based on a shared-memory program-

ming paradigm, significant speed-up can be achieved by building the roadmap

6



cooperatively across multiple processes [? ]. Other algorithms, such as RRT and

its variants, are more difficult to parallelize due to the intrinsic sequentiality of

the tree construction process. Nevertheless, since RRT-based algorithms have

been shown to be more efficient to solve some classes of problems compared to

PRM-based methods, their parallelization has also been investigated in recent

years.

The simplest parallelization strategy, known as the OR Parallel paradigm,

can be applied to all types of randomized algorithms. The idea is to run in

parallel several independent instances of the same sequential processes using

different seeds for the initialization of the random sampling process. The first

instance to reach the solution reports it and the other processes terminate.

This method reduces the execution time by multiplying the chances of finding

a solution. It can significantly accelerate solving problems that have a huge

variability on running time. This strategy has been applied successfully to

randomized algorithms using distributed-memory architecture [? ? ] and in

shared-memory machines [? ? ].

A recent work [? ] presents and compares the performance of three distributed-

memory parallel versions of RRT: OR parallel RRT, Manager-Worker RRT and

Distributed RRT. The Manager-Worker RRT approach uses a single proces-

sor to manage the tree construction, whereas the other processors perform the

calculation of the most computationally expensive part of the tree expansion.

Thus, a single copy of the tree is maintained in the memory of the master pro-

cessor. In the Distributed RRT strategy, all the processes collectively build a

single search tree. Each processor needs to update its own copy with informa-

tion provided by the others. Results presented show that the Manager-Worker

RRT and Distributed RRT achieves good performance improvements when solv-

ing constrained problems [? ]. However, both approaches present drawbacks

that hinder scalability when applied to very large computer clusters. For the

Manager-Worker RRT approach, the manager process can rapidly become a

bottleneck. For the Distributed RRT strategy, communication time increases

with the number of processors, resulting in limited scalability. Several strategies

7



can be applied to improve the performance of the simple distributed-memory

approaches mentioned above, such as the subdivision of the search space among

processes and the implementation of efficient nearest neighbor search methods [?

? ].

More intricate strategies can be applied for the parallelization of algorithms

that simultaneously construct several exploration trees. For instance, a master-

client scheme was proposed to solve large-scale problems using a forest of ran-

dom trees [? ]. In a first stage, processes are run in parallel to build a set of trees

that can be RRTs [? ? ] or Expansive Space Trees (ESTs) [? ]. Then, a sin-

gle process scheduler distributes work to link the trees among client processes.

Another strategy consists of exchanging information between several processors

running instances of the same problem (each processor builds its own tree) with

different random seeds, aiming to find the shortest path more efficiently [? ].

The work presented in this paper shares ideas with some of the aforemen-

tioned approaches. As in [? ], the construction of several (independent) trees

is parallelized. As in [? ? ], the space is subdivided to improve computational

efficiency. Note that in our approach, space subdivision is implicit and evolves

during execution, compared to an explicit and constant subdivision proposed in

related work.

3. The Multi-TRRT algorithm

This section presents the main principles of the Multi-TRRT algorithm [? ? ]

that we have parallelized. The pseudo-code of the overall algorithm is presented

in Algorithm 1. It incorporates the parallelization explained in next section. In

all the pseudo-code presented in this paper, brown lines correspond to OpenMP

commands for shared-memory parallelization, and blue lines indicate functions

involving MPI calls for distributed-memory parallelization. Red text is used to

highlight parts of the code involving only the master processor.

Multi-TRRT is a multiple-tree variant of the TRRT algorithm [? ? ]. It

explores a continuous cost space C (i.e. the conformational space of a molecule,

8



Algorithm 1: Parallel Multi-TRRT

input : the configuration space C; the extension step-size δ;

the energy function E : C → R; the set of initial configurations Qinit

output: the tree(s) T

1 (T ,S)← initProcesses(Qinit)

2 #pragma omp parallel (NumThreads)

3 while not stoppingCriteria () do

4 Ti ← chooseNextTreeToExpand()

5 qrand ← sampleRandomConf(Si)

6 qinear ← findNearestNeighbor(Ti, qrand)

7 qnew ← extend(qinear, qrand, E, δ)

8 if qnew 6= null and

9 transitionTest(Ti, E(qinear), E(qnew)) then

10 #pragma omp critical (addNodeAndEdge)

11 addNewNodeAndEdge(Ti, qinear, qnew)

12 (Tj , qjnear) ← findNearestNeighbor(T , qnew)

13 if distance(qnew, q
j
near) ≤ δ then

14 Ti ← merge(Ti, Tj , qnew, qjnear)

15 #pragma omp critical (Communication)

16 MPI send(Master, qnew, i, j)

17 updateStructures(qnew, Si)

18 return(T )

9



Figure 1: Illustration of the TRRT expansion process (for a single tree). The red node is

the initial configuration and grey nodes have been generated in previous iterations. A new

node qnew is created by the extension of the nearest node in the tree qnear toward a randomly

sampled configuration qrand. a) Mono-thread extension. b) Multi-thread extension, where k

new nodes are generated in parallel.

in the present application context) by iteratively expanding several trees rooted

at a given set ofm initial configurationsQinit = {q1init . . . qminit}. At each iteration,

a tree Ti is selected for expansion (line 4 in Algorithm 1). Following the principle

of TRRT, the tree expansion involves three main stages, corresponding to lines 5-

7 in Algorithm 1: 1) A configuration qrand is randomly sampled5. 2) The nearest

neighbor qinear ∈ Ti to qrand is selected for expansion. 3) A new node qnew (and

its corresponding edge) is created by extending/perturbing qnear in the direction

of qrand using a given step size. The principle is illustrated in Figure 1.a. This

simple exploration strategy favors a rapid growth of the tree towards unexplored

regions and guarantees convergence towards a uniform coverage of the reachable

regions of C from qinit [? ].

5In this pseudo-code, corresponding to the parallel implementation, qrand is not sampled

in the whole space C, as is the case for the basic Multi-TRRT algorithm, but in a subset Si.

This will be further explained in Section 4.

10



A stochastic transition test (lines 9 in Algorithm 1) is then applied to qnew

aiming to favor the exploration of low-cost/high-quality regions of C. This im-

portant component of the TRRT algorithm will be further explained below. If

the transition test succeeds, the new configuration qnew is added to Ti and con-

nected to qinear (lines 10-11 in Algorithm 1). Then, the algorithm searches for

the closest configuration qjnear to qnew in all the other trees Tj 6= Ti. If qjnear and

qnew are close enough and the transition test is accepted in at least one direc-

tion, the two trees are connected (lines 12-14 in Algorithm 1). The exploration

continues until all trees are merged or another stop condition (e.g. maximum

number of iterations, timeout, ...) is reached. Figure 2 illustrates the behavior

of TRRT (the single-tree variant is illustrated here for clarity purposes) ex-

ploring the conformational energy landscape of a very simple molecular system,

alanine dipeptide [? ]. The figure shows that the tree tends to explore low

energy regions aiming to find the most favorable transition pathway connecting

two given configurations.

The stochastic transition test applied to qnew (lines 9 in Algorithm 1) is based

on the evaluation of a function E : C → R that associates a real-value cost with

each configuration q. In the case of the molecular models considered in this work,

the cost/quality function E correspond to the potential energy computed from

a classical molecular mechanics forcefield [? ], as generally used in molecular

simulations. More detailed explanations about this cost/energy function are out

of the scope of this paper. However, it is important to note that this energy

function is computationally expensive, and typically scales quadratically with

the size of the molecule being evaluated. The transition test within TRRT

is inspired by the Metropolis criterion commonly used in MC methods, and

involves a self-adaptive parameter T that we call temperature by analogy with

methods in statistical physics. The pseudo-code is provided in Algorithm 2.

Moves to lower-cost configurations are always accepted, and the temperature

is unchanged in that case. Uphill moves are accepted with a probability that

decreases exponentially with the local energy variation. After each accepted

uphill move, T is decreased to avoid over-exploring high-cost regions. After

11



Figure 2: Illustration of TRRT exploring an energy landscape. The background image rep-

resents a two-dimensional projection of the conformational space of a small peptide. The

red dots represent the local energy minima (C5, PII, αR, αP, αL, Cax
7 ), and the black dots

represent the main transition states (S1, S2, S3, S4). The background colors represent energy

values with respect to the global energy minium, C5. TRRT is applied here to find a path

from C5 to one of the local energy minima, αL. The TRRT search tree rooted at C5 grows on

low-energy regions and explores other basins of the landscape before finding a higher-energy

saddle region (around S3) from which αL can be easily reached.

each rejected uphill move, T is increased to facilitate the exploration and to

avoid being trapped in local minima. The greediness of the algorithm depends

on the parameter Trate, which is a real value in the interval (0, 1] provided as

input. In general, Trate = 0.1 has been empirically shown to be a good tradeoff

between path quality and computing time [? ].

4. Hybrid parallelization of Multi-TRRT

This section presents first a global overview of the approach, and then pro-

vides details of the parallel implementation.

12



Algorithm 2: transitionTest (T , Ei, Ej)

input : the current temperature T ; the temperature increase rate Trate;

the Boltzmann constant K

output: True if the transition is accepted, False otherwise

1 if Ej ≤ Ei then return True

2 if e−(Ej−Ei) / (K·T ) > 0.5 then

3 #pragma omp critical (Temperature)

4 T ← T / 2(Ej−Ei) / energyRange(T )

5 return True

6 else

7 #pragma omp critical (Temperature)

8 T ← T · 2Trate ; return False

4.1. General principle

The hybrid parallelization of Multi-TRRT presented below is aimed to better

exploit current (multi-core) computer clusters. The idea is to minimize inter-

processor communication overhead while taking advantages of shared-memory

operations. In addition, this kind of parallelization permits easy adaptation of

the algorithm to all types of computer architectures. For the implementation,

we use a combination of OpenMP and MPI, which are standard and widely-

used parallel computing tools. Some rules have to be respected between these

two portable APIs in order to perform an efficient global interaction, as will be

explained below.

A logical view of the architecture consists of p processes and k threads within

each process. We consider one process per processor and one thread per physical

core. In other words, we do not use the available hyper-threading technology

that allows two threads per core. Although this technology is compatible with

the proposed approach, we have not used it in this work to facilite the perfor-

mance analysis of the parallel algorithm on the basis of physical cores rather than

virtual cores. One of the processors is chosen as the master processor, which

13



Figure 3: Illustration of the concept of a bounding n-polytope of a tree and its growth process.

a) A new node is created near the boundary of the n-polytope, represented by the light brown

region. b) The n-polytope is extended around the node (new green region).

will coordinate a few specific tasks while also performing the same task as the

other processors. In the first stage of the algorithm (function initProcesses

in Algorithm 1), the master processor distributes the m initial configurations

Qinit among the processes. We consider m > p, so that each process builds

m/p trees on average, and each tree building process is done almost completely

independently (without the need for inter-process communication). The dis-

tribution takes into account the distances between the initial configurations in

such a way that neighboring configurations are assigned to the same processor.

This is important to reduce inter-processor communication during the multi-tree

construction, as will be better understood with the explanations in Section 4.3.

An adaptive space subdivision approach is applied to avoid redundancies in

the exploration performed by the different processes, and to reduce the com-

munication between processors. The idea is to associate a bounding volume Si,

defined by a n-dimensional polytope (n-polytope), for each tree Ti. The shape

of the n-polytope evolves as the tree grows. If the n-polytopes Si and Sj associ-

ated with two trees Ti and Tj do not intersect, this means that the exploration

is taking place in different regions of the space. Thus, the trees can grow inde-

pendently from each other, with no communication requirements between the

corresponding processes. On the other hand, when two n-polytopes intersect,

14



Figure 4: Illustration of the tree junction process. a) The extension of T1 generates a new

node qnew(1) in the intersection of bounding n-polytopes I1,2. b) The processor in charge of

the construction of T2 tries to connect qnew(1) to the nearest neighbor.

communication is required for attempting the connection of the associated trees.

As will be further explained below, in our implementation, the master processor

manages the information concerning the n-polytopes of all the trees, computes

the intersections, and informs the other processors when they need to exchange

data. The master process also detects when all the trees are connected, and

informs that the exploration can be stopped.

4.2. Cooperative construction of trees inside each process (OpenMP)

Groups of trees are built using multiple threads within a shared-memory,

multi-core processor. The idea is to parallelize the whole exploration loop. From

the directive #pragma omp parallel (line 2 in Algorithm 1), several threads are

created. The set of trees that are assigned to a processor are cooperatively con-

structed using all of that processor’s threads (see Figure 1.b for an illustration).

Each thread performs independently the tree selection, sampling and extension

operations. The only operations that are required to be inside critical sections

(i.e. cannot be executed in parallel) involve the modification of shared variables:

the trees Ti, the bounding n-polytopes Si, and the temperatures Ti. Thanks to a

careful implementation, the workload in critical sections is very small compared

15



Algorithm 3: updateStructures (qnew, Si)

1 if qnew 6= null and nodeNearBoundary(qnew, Si) then

2 #pragma omp critical (updateNPolytope)

3 Si ← updateNPolytope(qnew, Si)

4 #pragma omp critical (Communication)

5 MPI send(Master, Si)

6 forall the (Ii,j) do

7 if nodeInsideIntersection(qnew, Ii,j) then

8 #pragma omp critical (Communication)

9 MPI send(Processor(j), qnew)

10 while MPI received(qnew) do

11 (Tj , qjnear) ← findNearestNeighbor(T , qnew)

12 if distance(qnew, q
j
near) ≤ δ then

13 MPI send(Master, qnew, i, j)

14 while MPI received(Ii,j) do

15 addToIntersectionList(Ii,j)

16 if Master then

17 while MPI received(Sj) do

18 if intersection(Si, Sj) then

19 MPI send(Processor(i,j), Ii,j)

20 while MPI received(qnew, i, j) do

21 updateGraphOfTrees(qnew, i, j)

22 if numberCC(GraphOfTrees) = 1 then

23 MPI broadcast(endMessage)

to the rest of the process, which is essential for good performance. The most

important implementation details are provided next.

Copies of the molecular system. Most of the operations concerning sampling and

tree expansion require handling a model of the molecular system. Thus, a copy

16



of this model is provided to each thread in order to avoid race conditions. The

drawback of this solution is that it requires more memory space. Nevertheless,

this is not an important issue, since the memory space required by the copies of

the molecular system is small compared to the space required by the exploration

trees being constructed.

Multiple temperatures. In the basic Multi-TRRT algorithm, the temperature T

is a global variable. In other words, a single variable T is used for the construc-

tion of all the trees. However, as each tree is exploring a different region of the

space, it seems reasonable to assign different temperatures to different trees.

This has several advantages. First, since different threads in a process are often

working with different trees (especially when m � p), they are rarely blocked

because of the critical section for updating the value of T . Besides, when us-

ing several processors, they do not need to communicate about variations of T ,

since it remains as a local variable for each tree. Furthermore, considering mul-

tiple temperatures improves the quality of the overall exploration (experimental

results showing this are not presented in this paper).

Multi-threading nearest neighbor search. Efficiently locating the nearest neigh-

bor is a difficult problem when considering large search trees and high dimen-

sional configuration spaces, such as those of protein systems. In this work,

we employ the Hierarchical K-Means Tree method within the Fast Library for

Approximate Nearest Neighbors (FLANN) [? ] (inside findNearestNeighbor

function in Algorithm 1). The search can be executed simultaneously by multi-

ple threads. However, the addition of a node to a tree requires single threading

(a critical section) since the data-structure used for the rapid search has to

be updated, requiring both reading and writing threads to block. To avoid a

possible bottleneck, node insertions are first appended to a shared container

(i.e. a buffer). The actual insertion is performed when the tree is not being

actively accessed by any threads. In order to ensure a regular updating of the

tree data-structure (protect against starvation), a size limit is enforced on the

17



container. When this size limit is exceeded, one of the threads enforces node

insertion, blocking the access to the other threads.

Merging trees. When two trees constructed by the same process can be con-

nected, they are merged into a single tree (lines 14-16 in Algorithm 1). The

merging operation is performed by the thread that created the connecting node.

To avoid race conditions during this operation, merging has to be delayed until

all the other threads finish ongoing operations within the trees being merged.

The lowest current value of the temperature T among the two trees is associated

with the merged tree.

4.3. Limiting communication between processes (MPI)

The efficiency of a parallel algorithm strongly depends on the computa-

tional requirements associated with inter-process communication. To reduce

communication requirements, we have implemented an adaptive space subdi-

vision approach as explained below. The idea is to delay the communication

between processes until it is necessary, and to use a master process to manage

information exchange. The main operations requiring communication are per-

formed inside the updateStructures function (line 17 in Algorithm 1), which

is detailed in Algorithm 3.

Adaptive space subdivision. At the initialization (line 1 in Algorithm 1), a small

n-dimensional polytope (n-polytope) Si is associated with each qiinit ∈ Qinit,

where n is the dimension of the space being explored. In the current implemen-

tation, we use hyperrectangles because of the simplicity to update their shape

and to compute intersections, acknowledging that other more accurate represen-

tations could be used. At the beginning, Si is symmetric and centered on qiinit.

Random sampling for the expansion of each tree is performed in its correspond-

ing n-polytope. When a new node is created near the boundary, the n-polytope

grows in the direction of the tree expansion (lines 1-3 in Algorithm 3). The

process is illustrated in Figure 3. This operation involves an OpenMP critical

18



section to avoid several threads trying to update the same n-polytope simul-

tanously. Every time that a n-polytope is updated, the information is sent to

the master processor (lines 4-5 in Algorithm 3), which then computes possible

intersections with the n-polytopes associated with those built by other proces-

sors. Note that communication must be in an OpenMP critical section.

N-polytope intersection and trees connection. The master processor computes

the intersection between the n-polytope Si sent by a processor i and the n-

polytopes Sj associated with trees managed by other processors (lines 17 in

Algorithm 3). If the intersection Ii,j is not empty, the information is sent to

the corresponding processors (lines 18-19 in Algorithm 3), and they add Ii,j to

their n-polytope intersections lists (lines 14-15 in Algorithm 3).

When a processor i creates a new node qnew lying inside an intersection

between n-polytopes Ii,j , the node is sent to the corresponding processor j

(lines 6-9 in Algorithm 3). Then, the other processor will try to connect the two

trees (lines 10-13 in Algorithm 3), as in the basic Multi-TRRT. The process is

illustrated in Figure 4.

Stopping condition and path extraction. In addition to performing space inter-

sections, the master processor maintains a graph data structure to represent

the connectivity between all the trees (lines 19-20 in Algorithm 3) using infor-

mation sent by all the processors. The exploration process continues until a

solution to the path finding problem is found, or if a stop condition based on a

maximum number of iterations is satisfied first. The master process determines

that a solution has been found when the connectivity graph contains a single

connected component (lines 22-23 in Algorithm 3). Then, the solution path

connecting all the initial configurations Qinit can be extracted. As the solution

path is distributed among the processors, each processor i extracts the part of

the path that connects qiinit with the nodes that served as connectors with trees

constructed by other processors.

19



4.4. Implementation framework

To implement the two aforementioned levels of parallelization, we use a

combination of MPI (for distributed-memory parallelization) and OpenMP

(for shared-memory parallelization). In such a hybrid framework, multiple

threads may concurrently call MPI functions, requiring the MPI implemen-

tation to be thread-safe. Our algorithm makes MPI calls from all threads. In

principle, two levels of thread safety (among the four available) can be used

in our case: MPI THREAD SERIALIZED and MPI THREAD MULTIPLE.

However, due to technical constrains of our implementation framework6,

we use the MPI THREAD SERIALIZED safety level. It allows multiple

threads to make MPI calls, but not simultaneously, as is the case for

MPI THREAD MULTIPLE. This implies that all the communications have to

be performed inside OpenMP critical sections. Non-blocking receive operations

(MPI irecv) are used to reduce the time spent inside these critical sections.

Since our implementation is constructed in C++, we required the C++

MPI bindings. In addition, our application messages may contain instances

of high-level classes, whose attributes can be pointers or Standard Template

Library (STL) containers, which is incompatible with low-level MPI communi-

cation, requiring the programmer to explicitly specify the size of each message.

Therefore, we exploit the higher-level abstraction provided by the Boost.MPI

library (http://www.boost.org/). Coupled with the Boost Serialization library,

it enables processes to exchange class instances, making the tasks of gathering,

packing and unpacking the underlying data transparent. Given that OpenMP

(http://openmp.org/) supports the C++ language, no adaptation or additional

library are required.

6Our implementation applies, at a lower level, the bullx MPI library recommended by

the Bull supercomputer manufacturer. Using the current version of this library (bullx MPI

1.2.8.4), MPI THREAD MULTIPLE is not supported.

20



Figure 5: Models of the four molecules considered for the experiments.

5. Experiments

This section presents an empirical performance analysis of the proposed al-

gorithm. First, we present the problems considered for this analysis, as well

as the specifications of the computers we used. Then, the performance of the

sequential algorithm, running on a single core, is analyzed to identify the most

computationally expensive operations. The performance of the parallelized algo-

rithm is then evaluated on a multi-core processor and on a cluster of processors,

showing the interest of the hybrid approach.

5.1. Problem studied

We have evaluated the parallel MultiTRRT algorithm on several energy land-

scape exploration problems involving flexible biomolecules of different sizes. The

number of degrees of freedom (DOF) of the molecule defines the dimensionality

n of the space being explored. For most path planning algorithms, the theo-

retical time complexity grows exponentially with n. Although sampling-based

algorithms are in practice less sensitive to dimensionality, computing time also

increases significantly with n. We investigate two relatively small peptides, met-

enkephalin [? ] and chignolin [? ], and the intrinsically disordered regions of

the vasopressin 2 receptor [? ] and a β-2 adrenergic receptor [? ]. Figure 5

shows models of these four molecules. Hereafter, we will refer to these four

molecules as MNK, CHGN, V2R and B2AR, respectively. The conformational

exploration was performed using an internal-coordinate representation of the

molecules, assuming constant bond lengths and bond angles. The number of

21



DOF for MNK, CHGN, V2R and B2AR are 24, 46, 173 and 425, respectively.

For the four molecules, the energy landscape exploration was started from a

set of m randomly sampled configurations. More precisely, we generated initial

configurations using random sampling followed by local energy minimisation in

order to obtain acceptable structures. In addition, a minimum distance was

imposed between these initial configurations in order to maximize space cover-

age. The problem then consisted of building exploration trees rooted at these

m initial states, and eventually to find paths connecting all of them. In the

experiments presented below, we used m = {32, 90}. The same problem was

solved for all instances tested, in which the number of threads and processors

were varied.

5.2. Computer architecture

For the evaluation of the sequential algorithm and the multi-threaded im-

plementation, we used a server with the following features: Intel R© CoreTM i7

processor at 2.8 GHz, 16 cores, 32 GB RAM.

The evaluation of the hybrid algorithm was performed on the EOS super-

computer at CALMIP (Centre de Calcul Midi-Pyrénées). EOS is a Bull super-

computer with 612 Intel R© Ivy Bridge processors at 2.8 GHz, with 20 cores and

64 GB RAM per processor, and a InfiniBand interconnect with a full data rate

of 6.89 GB/s for inter-processors communication. For our experiments, we used

up to 90 processors (i.e. up to 1800 cores).

5.3. Analysis of the sequential algorithm

Figure 6 shows the percentage of time that the algorithm is expending in

the most computationally-expensive operations. The computational require-

ments may change as a function of the search tree size, and thus, we evaluate

these costs for various tree sizes. For each molecule, the plot shows the time

decomposition with respect to the exploration tree size. The sum of extend

and findNearestNeighbor methods consumes 99% of the computational time

for all cases. Note that the energy computation is actually performed inside

22



Figure 6: Computation time decomposition depending on the number of nodes in the trees

for the four molecules under study.

Figure 7: Evolution of the time per iteration with respect to the total number of nodes in the

tree.

23



extend, and the value is stored for subsequent use. Therefore, the paralleliza-

tion of these two operations is essential for performance improvements. It can

be clearly seen in the figure that the time consumed by extend increases with

the size of the molecule, being largely dominant for the two biggest molecules

because of the computational cost of the energy computation. As expected, the

time required by findNearestNeighbor becomes significant when the trees grow

above several thousands of nodes. sampleRandomConf and addNewNodeAndEdge

operations are very fast in all the cases, representing less than 0.1% of the total

time. Therefore, introducing an OpenMP critical section to protect memory

writing inside addNewNodeAndEdge does not represent significant overhead.

Figure 7 shows that the average time per iteration increases slowly with the

number of nodes in the tree. The reason is that the most time-consuming oper-

ation, extend, which involves costly energy computation, is independent of the

trees size. For this same reason, the time per iteration varies significantly with

the size of the molecule, since cost of energy computation increases quadrati-

cally with the size of the protein. Compared to the smallest molecule, MNK, the

time per iteration increases by one order of magnitude for V2R, and by almost

2 orders of magnitude for B2AR.

5.4. Analysis of the multi-threaded algorithm running on a single processor

As a preamble, before the implementation and analysis of the hybrid paral-

lelization approach, we analyzed the performance of the Multi-TRRT algorithm

running on a multi-core processor. The goal was to evaluate the potential in-

terest of a larger-scale parallelization.

The usual metric to evaluate the performance of a parallel algorithm over

its sequential counterpart is the speed-up S(k) = ts/tp(k). Were ts is the time

needed to solve the problem working with one thread: ts = tp(1), and tp(k) is

the running time when k threads are used. The results presented in Figure 8

show that the performance strongly depends on the size of the molecule. The

plot corresponds to CPU times averaged over 5 executions for each instance.

For a small system such as MNK, a maximum speed-up of around 4.5 is reached

24



Figure 8: Evolution of the speed-up of the parallel algorithm running on a single (multi-core)

processor for the four molecules. As a reference, the black line represent the linear speed-up.

for 11 threads. Then, the performance does not improve with a larger number

of threads. For CHGN, the speed-up curve also tends to show an asymptotic

shape, as for MNK, but with a maximum value approaching 8 for 16 threads.

The reason of this limited performance gain is that the time per iteration of

the main loop of the Multi-TRRT algorithm is very short for small systems

(see Figure 7). Therefore, when the number of threads increases, the time spent

waiting for access to critical sections starts to be significant, eventually becoming

a bottleneck. Indeed, large-scale parallelization is useless for small molecules.

For large systems such as V2R and B2AR, however, the speed-up increases

almost linearly from 1 to 16 threads, with maximum speed-up values around

12 and 13, respectively. This shows that, in principle, better performance gains

can be obtained with a larger number of threads.

In many cases, the speed-up is not the only criterion to assess the quality

of a parallel algorithm. For instance, in our case, it is important to verify that

the quality of the exploration and of the solution paths do not degrade with an

increasing number of threads.

A side effect of the parallelization of RRT-based algorithms is that some

25



Figure 9: Evolution of the total number of nodes needed to solve the transition path finding

problem depending on the number of threads for the two peptides: a) MNK, b) CHGN.

Figure 10: Energy profiles along the solution paths obtained using 1 thread and 16 threads

for the two peptides: a) MNK, b) CHGN.

redundancy in the exploration can be introduced by multiple threads simulta-

neously creating nodes in nearby regions of the space. A simple test to detect

if this happens is to look at the size of the trees (i.e. number of nodes) required

to solve the same problem while varying the number of threads. An increasing

number of nodes with the number of threads would mean a degradation of the

exploration quality. As shown in Figure 9.a, the total number (averaged over

100 runs of the algorithm) of nodes in the trees required to find paths con-

necting 32 initial configurations for MNK increases slightly with the number

of processors (up to 10%). This shows that, for problems in relatively low di-

mension, there is some redundancy in the exploration performed by the parallel

version of Multi-TRRT. However, this undesired behaviour disappears when the

dimension increases. This can be clearly seen in Figure 9.b for CHGN, which

shows that the number of nodes in the trees required to solve the problem is

26



almost constant, independent of the number of threads. Surprisingly, in this

case, the number of nodes is larger for a single thread (i.e. for the sequential

algorithm), which actually shows that the parallel algorithm performs a more

efficient exploration in high-dimensional spaces, due to what was called the “OR

parallel effect” [? ]. As each thread performs its own sampling of the space,

when multiple threads are involved, the parallel algorithm reaches smaller-size

solutions than the sequential one, on average. This phenomenon is more impor-

tant in problems containing “narrow passages”, corresponding to saddle regions

in the energy landscape of the molecules, which require intensive sampling to

be found.

To evaluate the quality of the paths obtained by the parallel implemen-

tation of Multi-TRRT compared to the sequential one, we can compare the

corresponding energy profiles. It is worth recalling that the solution provided

by the algorithm is a set of connected trees from which a path connecting the

32 initial configurations can be extracted. We can obtain a simplified repre-

sentation of the energy profile by identifying the highest-energy configuration

(i.e. the transition state) between each pair of initial configurations directly

connected along the path. Figure 10.a shows that the energy profiles (averaged

over 100 runs) of the solutions obtained with the sequential and the parallel

versions (using 16 cores) of Multi-TRRT are very similar in the case of MNK,

thus demonstrating that the quality of the solutions is preserved for problems

in relatively low dimension. In higher dimension, as shown in Figure 10.b for

CHGN, the quality of the paths are better for the solutions obtained by the par-

allel algorithm running with 16 threads compared to the sequential algorithm.

This is also a consequence of the “OR parallel effect”, which yields a better

sampling of high-dimensional spaces with Multi-TRRT when several processes

run in parallel.

5.5. Analysis of hybrid algorithm

We have evaluated the performance of the hybrid parallelization of Multi-

TRRT for the two largest molecules: V2R and B2AR. For this experiment,

27



B2AR

V2R

Nb Threads

Figure 11: Evolution of the speed-up of the parallel algorithm with respect to the number of

processors (working with 20 threads per processor) for the two largest molecules. Results are

presented for Multi-TRRT with and without space subdivision. As a reference, the black line

represents the linear speed-up.

instead of measuring the time required to connect the m initial configurations

(we used m = 90 for this experiment), we have measured the time required to

generate 200,000 nodes. The reason is that the former involves a larger variance

than the latter, therefore requiring a larger number of runs in order to obtain

a meaningful average value. As we have seen in the previous subsection, the

number of nodes needed to solve a problem is almost constant, independent of

the number of threads/processes, and the variance is very low. Therefore, the

time to generate a given number of nodes is a good indicator of the performance,

and only requires a few runs per instance (10 in our case) to obtain statistically

meaningful values.

Figure 11 shows the speed-up of the algorithm with respect to the number

of processors. Experiments were performed for the implementation described in

this paper and for a simpler version not including the adaptive space subdivision

approach. With space subdivision, the speed-up increase is linear at the begin-

28



Figure 12: Proportion of the time used for computation and for communication depending on

the number of processors without space subdivision (left) and with space subdivision (right).

ning, extending to 4 processors for V2R and up to 8 processors for B2AR. Then,

the performance gains decrease slightly for both molecules. Nevertheless, the

speed-up using 90 processors is 85 for the largest molecule, B2AR. This means a

parallel efficiency (i.e. speed-up per processor) around 0.94, being very close to

the ideal value. Without the space subdivision approach, the performance of the

algorithm is drastically different. In this case, each processor needs to commu-

nicate with all the others each time a new node is created, and nearest neighbor

searches have to be performed for all the trees. This causes a very rapid collapse

of the overall exploration process, even when a small number of processors are

used. For both molecules, the speed-up reaches a plateau around a value of

5-6, extending from 8 processors up to 32 processors. Then, the speed-up starts

decreasing, reaching a value below 1 for 90 processors. In summary, these re-

sults shows that the proposed parallelization strategy is very efficient, and that

the space subdivision approach to reduce inter-processor communication is very

effective.

We have made additional tests and measurements to evaluate the perfor-

mance of the algorithm more accurately. Figure 12 showcases the proportion of

the time used for computation and for communication, depending on the num-

ber of processors, for the conformational exploration of B2AR. Using the space

subdivision approach, the percentage of the time required for communication

is very low, even when using 90 processors (around 6% in the worst case). On

29



Table 1: Time per processor (in seconds) for a single run of the parallel Multi-TRRT.

Nb Proc. Task Min. Max. Average Std. dev.

2
Computation 1685.5043 1685.5326 1685.5184 0.0001

Communication 6.5855 10.1001 8.3428 0.2106

4
Computation 822.6771 823.8928 823.1394 0.0006

Communication 5.2486 6.6333 5.6552 0.1014

8
Computation 421.0210 423.6831 421.7080 0.0019

Communication 2.8500 5.1652 3.2154 0.2300

16
Computation 206.2155 213.0075 208.0654 0.0075

Communication 1.5405 4.4856 0.5990 0.3628

32
Computation 113.9660 121.0360 118.2404 0.0124

Communication 1.0749 5.1344 1.3101 0.5254

64
Computation 63.9305 69.9495 65.9272 0.0172

Communication 0.9574 5.0125 1.4440 0.4038

90
Computation 33.0473 33.0794 33.0572 0.0002

Communication 1.6552 6.1581 2.6923 0.1772

the contrary, communication cost rapidly becomes a bottleneck without space

subdivision. This explains the very poor performance of this simpler version of

the parallel Multi-TRRT algorithm.

Table 1 presents statistics about the time required by each processor running

the parallel Multi-TRRT algorithms to generate its corresponding part of the

200,000 configurations for B2AR. The results correspond to a single run of the

algorithm (i.e. they are not averaged over several runs) in order to avoid a

possible smoothing of the results regarding load balance, which is represented

here by the standard deviation. One can observe that computation time is very

similar for all the processors. Communication time is more variable. The reason

is that some processors construct exploration trees having more connections to

other trees, thus requiring more communication compared to processors that

construct trees in more isolated areas. Note however that communication time

is very small compared to computation time in all the cases. Thus, these results

show a very good load balance among the processors. Inside each processor,

the load of all the cores, which collaboratively construct one or several trees, is

30



Figure 13: Proportion of the time spent by the master processor executing coordination tasks

(Master work) and the exploration task (TRRT work).

almost identical.

In the proposed implementation, one of the processors (called master) exe-

cutes a few specific operations related to the connection of different exploration

trees, in addition to the execution of the TRRT algorithm as the other pro-

cessors. Figure 13 represents the proportion of the time required by each of

these tasks, depending on the number of processors, for the conformational

exploration of B2AR. Since the coordination task involves simple and compu-

tationally cheap operations, the percentage of the time required to execute this

task is very low. Even in the worst case, for 90 processors, the coordination task

(including communication) requires only about 5% of the capacity of the master

processor. In conclusion, the master processors is far from being a bottleneck.

6. Conclusions

Nowadays, most HPC systems are clusters of multi-core processors. We have

presented a parallel implementation of Multi-TRRT to efficiently exploit these

type of architectures, combining distributed-memory parallelization using MPI

with shared memory-parallelization using OpenMP. Such a hybrid paralleliza-

tion strategy clearly outperforms our previous fully-distributed implementations

of RRT-like algorithms [? ], significantly reducing communication overhead and

memory requirements. This implementation is also very flexible, since the al-

gorithms can be run on a single multi-core processor (without communication

31



requirements) or on a large computer cluster without any modification in the

code. The adaptive space subdivision approach is a key component of the pro-

posed parallelization strategy. It drastically reduces the computational cost

associated with inter-processor communication and nearest neighbor search.

Although the paper is focused on the application of the proposed parallel

algorithm to highly-flexible biomolecules, the explanations concerning the meth-

ods can be easily extracted from the application context. The principle is very

general, and could be applied to other sampling-based path search/planning

algorithms applied in different domains. Indeed, we expect that our work will

be a source of inspiration for the parallelization of related methods.

The analysis presented in this paper shows that the performance gain pro-

vided by the parallel algorithm depends on the complexity of the problem (i.e.

on the size of the molecule). For relatively small systems such as peptides of up

to 10-15 residues, using multiple threads in a single computer to collaboratively

construct the exploration trees is probably the best choice. In this case, the

performance gain provided by a larger computer cluster is not very significant,

presenting an asymptotic profile. However, for larger systems such as IDPs,

the speed-up obtained by the hybrid approach increases almost linearly with

the number of processors, even when this number is large. Indeed, these en-

couraging results demonstrate the applicability of the parallelized Multi-TRRT

algorithm to characterize the conformational landscape of large disordered pro-

teins. We expect that the methodological advances presented in this paper

will contribute in the near future to a better understanding of such challenging

biomolecules, which are involved in key biological processes and neurodegener-

ative pathologies.

7. Acknowledgements

The authors would like to thank Leonard Marsault for his help with the in-

tegration of FLANN, as well as Nicolas Renon and Mickaël Duval for their tech-

nical support for the implementation and evaluation of the parallel algorithm.

32



This research has been partially funded by the European Research Council un-

der the European Union’s H2020 Framework Programme (2014-2020) / ERC

Grant agreement number 648030 and by the French National Research Agency

(ANR) under project ProtiCAD (project number: ANR-12-MONU-0015). Some

of the experiments in this work were performed using the HPC resources of the

CALMIP supercomputing center under the allocation 2016-P16032.

References

[1] D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algo-

rithms to Applications, 2nd Edition, Vol. 1 of Computational Science Se-

ries, Academic Press, 2001.

[2] D. J. Wales, Energy Landscapes: Applications to Clusters, Biomolecules

and Glasses, Cambridge University Press, 2003.

[3] M. Karplus, J. A. McCammon, Molecular dynamics simulations of

biomolecules, Nature Structural & Molecular Biology 9 (2002) 646–652.

[4] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E.Teller, Equa-

tion of state calculations by fast computing machines, Journal of Chemical

Physics 21 (1953) 1087–1092.

[5] I. Al-Bluwi, T. Siméon, J. Cortés, Motion planning algorithms for molecular

simulations: A survey, Computer Science Review 6 (4) (2012) 125–143.

[6] B. Gipson, D. Hsu, L. E. Kavraki, J.-C. Latombe, Computational models

of protein kinematics and dynamics: Beyond simulation, Annual Review of

Analytical Chemistry 5 (2012) 273–291.

[7] A. Shehu, Probabilistic search and optimization for protein energy land-

scapes, in: S. Aluru, M. Singh (Eds.), Handbook of Computational Molecu-

lar Biology, 2nd Edition, Computer & Information Science Series, Chapman

& Hall/CRC, 2013, in press.

33



[8] L. Jaillet, F. J. Corcho, J.-J. Pérez, J. Cortés, Randomized tree construc-

tion algorithm to explore energy landscapes, Journal of Computational

Chemistry 32 (16) (2011) 3464–3474.

[9] D. Devaurs, T. Siméon, J. Cortés, A multi-tree extension of the Transition-

based RRT: Application to ordering-and-pathfinding problems in continu-

ous cost spaces, in: Proc. IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), 2014.

[10] D. Devaurs, K. Molloy, M. Vaisset, A. Shehu, T. Siméon, J. Cortés, Charac-

terizing Energy Landscapes of Peptides using a Combination of Stochastic

Algorithms, IEEE Transactions on NanoBioscience 14 (5) (2015) 545–552.

[11] S. M. LaValle, Rapidly-exploring Random Trees: a new tool for path plan-

ning, Tech. Rep. TR: 98-11, Computer Science Dept., Iowa State University

(1998).

[12] T. N. Cordeiro, F. Herranz-Trillo, A. Urbanek, A. Estaña, J. Cortés,

N. Sibille, P. Bernadó, Small-angle scattering studies of intrinsically disor-

dered proteins and their complexes, Current Opinion in Structural Biology

42 (Supplement C) (2017) 15 – 23.

[13] V. N. Uversky, C. J. Oldfield, A. K. Dunker, Intrinsically disordered pro-

teins in human diseases: Introducing the D2 concept, Annual Review of

Biophysics 37 (1) (2008) 215–246.

[14] M. M. Babu, R. van der Lee, N. S. de Groot, J. Gsponer, Intrinsically

disordered proteins: regulation and disease, Current Opinion in Structural

Biology 21 (3) (2011) 432 – 440.

[15] H. L. Nguyen, H. Khanmohammadbaigi, E. Clementi, A parallel molecular

dynamics strategy, Journal of Computational Chemistry 6 (1985) 634.

[16] J. Li, Z. Zhou, R. J. Sadus, Parallelization Algorithms for Three-Body

Interactions in Molecular Dynamics Simulation, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006, pp. 374–382.

34



[17] A. Heinecke, W. Eckhardt, M. Horsch, H.-J. Bungartz, Parallelization of

MD Algorithms and Load Balancing, Springer International Publishing,

Cham, 2015, pp. 31–44.

[18] E. Lindahl, B. Hess, D. van der Spoel, Gromacs 3.0: a package for molecular

simulation and trajectory analysis, Molecular modeling annual 7 (8) (2001)

306–317.

[19] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,

C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics

with namd, Journal of Computational Chemistry 26 (16) (2005) 1781–1802.

[20] Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for

protein folding, Chemical Physics Letter 314 (1999) 141–151.

[21] F. Rao, A. Caflisch, Replica exchange molecular dynamics simulations of

reversible folding, Journal of Chemical Physics 119 (2003) 4035–4042.

[22] J. S. Rosenthal, Parallel computing and monte carlo algorithms, Far East

Journal of Theoretical Statistics 4 (2000) 207–236.

[23] I. Strid, Efficient parallelisation of metropolis-??hastings algorithms using

a prefetching approach, Computational Statistics & Data Analysis 54 (11)

(2010) 2814 – 2835.

[24] D. Gront, A. Kolinski, Efficient scheme for optimization of parallel temper-

ing Monte Carlo method, Journal of Physics: Condensed Matter 19 (2007)

036225.

[25] R. H. Swendsen, J.-S. Wang, Replica monte carlo simulation of spin-glasses,

Physical Review Letters 57 (1986) 2607–2609.

[26] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,

1991.

[27] S. M. LaValle, Planning Algorithms, Cambridge University Press, Cam-

bridge, U.K., 2006.

35



[28] D. Henrich, Fast motion planning by parallel processing – a review, Journal

of Intelligent and Robotic Systems 20 (1) (1997) 45–69.

[29] J. Ichnowski, R. Alterovitz, Scalable multicore motion planning using lock-

free concurrency, IEEE Transactions on Robotics 30 (5) (2014) 1123–1136.

[30] J. Bialkowski, S. Karaman, E. Frazzoli, Massively parallelizing the RRT

and the RRT*, in: Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2011, pp. 3513–3518.

[31] J. Pan, D. Manocha, Gpu-based parallel collision detection for fast motion

planning, International Journal of Robotics Research 31 (2) (2012) 187–

200.

[32] N. M. Amato, L. K. Dale, Probabilistic roadmap methods are embarrass-

ingly parallel, in: Proc. IEEE International Conference on Robotics and

Automation (ICRA), 1999, pp. 688–694.

[33] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, L. E. Kavraki, Sampling-

based roadmap of trees for parallel motion planning, IEEE Transactions

on Robotics 21 (4) (2005) 597–608.

[34] D. Devaurs, T. Siméon, J. Cortés, Parallelizing RRT on large-scale

distributed-memory architectures, IEEE Transactions on Robotics 29 (2)

(2013) 571–579.

[35] L. E. Kavraki, P. Švestka, J.-C. Latombe, M. H. Overmars, Probabilistic

roadmaps for path planning in high-dimensional configuration spaces, IEEE

Transactions on Robotics and Automation 12 (4) (1996) 566–580.

[36] D. Challou, D. Boley, M. Gini, V. Kumar, C. Olson, Parallel search algo-

rithms for robot motion planning, in: K. Gupta, A. P. del Pobil (Eds.),

Practical Motion Planning in Robotics: Current Approaches and Future

Directions, John Wiley & Sons Ltd., 1998, pp. 115–131.

36



[37] S. Caselli, M. Reggiani, ERPP: An experience-based randomized path plan-

ner, in: Proc. IEEE International Conference on Robotics and Automation

(ICRA), 2000, pp. 1002–1008.

[38] S. Carpin, E. Pagello, On parallel RRTs for multi-robot systems, in: Proc.

International Conference of the Italian Association for Artificial Intelligence

(AI*IA), 2002, pp. 834–841.

[39] I. Aguinaga, D. Borro, L. Matey, Parallel RRT-based path planning for se-

lective disassembly planning, The International Journal of Advanced Man-

ufacturing Technology 36 (11-12) (2008) 1221–1233.

[40] S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, N. M. Amato, A

scalable distributed rrt for motion planning, in: Proc. IEEE International

Conference on Robotics and Automation (ICRA), 2013, pp. 5088–5095.

[41] S. M. LaValle, J. J. Kuffner, Rapidly-exploring random trees: progress and

prospects, in: B. R. Donald, K. M. Lynch, D. Rus (Eds.), Algorithmic and

Computational Robotics: New Directions, A. K. Peters, Wellesley, MA,

2001, pp. 293–308.

[42] D. Hsu, R. Kindel, J.-C. Latombe, S. M. Rock, Randomized kinody-

namic motion planning with moving obstacles, The International Journal

of Robotics Research 21 (3) (2002) 233–255.

[43] M. Otte, N. Correll, C-FOREST: Parallel shortest-path planning with su-

per linear speedup, IEEE Transactions on Robotics 29 (2013) 798–806.

[44] L. Jaillet, J. Cortés, T. Siméon, Sampling-based path planning on

configuration-space costmaps, IEEE Transactions on Robotics 26 (4) (2010)

635–646.

[45] P. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot, A. Pohorille, The

development/application of a “minimalist” organic/biochemical molecular

mechanic force field using a combination of ab initio calculations and ex-

perimental data, in: W. van Gunsteren, P. Weiner, A. Wilkinson (Eds.),

37



Computer Simulation of Biomolecular Systems, Vol. 3 of Computer Simu-

lations of Biomolecular Systems, Springer Netherlands, 1997, pp. 83–96.

[46] D. Devaurs, T. Siméon, J. Cortés, Enhancing the Transition-based RRT to

deal with complex cost spaces, in: Proc. IEEE International Conference on

Robotics and Automation (ICRA), 2013, pp. 4105–4110.

[47] M. Muja, D. G. Lowe, Fast approximate nearest neighbors with automatic

algorithm configuration, in: In VISAPP International Conference on Com-

puter Vision Theory and Applications, 2009, pp. 331–340.

[48] G. H. Paine, H. A. Scheraga, Prediction of the native conformation of a

polypeptide by a statistical-mechanical procedure. III. Probable and aver-

age conformations of enkephalin, Biopolymers 26 (7) (1987) 1125–1162.

[49] D. Satoh, K. Shimizu, S. Nakamura, T. Terada, Folding free-energy land-

scape of a 10-residue mini-protein, chignolin, FEBS Letters 580 (14).

[50] A. K. Shukla, G. H. Westfield, K. Xiao, et al., Visualization of arrestin

recruitment by a G protein-coupled receptor, Nature 512 (2014) 218–222.

[51] S. Granier, S. Kim, A. M. Shafer, V. R. Ratnala, J. J. Fung, R. Zare, B. Ko-

bilka, Structure and conformational changes in the c-terminal domain of

the beta2-adrenoceptor: insights from fluorescence resonance energy trans-

fer studies, Journal of Biological Chemistry 282 (2007) 13895–13905.

38


	Introduction
	Related work
	Parallel molecular simulation methods
	Parallel path planning algorithms

	The Multi-TRRT algorithm
	Hybrid parallelization of Multi-TRRT
	General principle
	Cooperative construction of trees inside each process (OpenMP)
	Limiting communication between processes (MPI) 
	Implementation framework

	Experiments
	Problem studied
	Computer architecture
	Analysis of the sequential algorithm
	Analysis of the multi-threaded algorithm running on a single processor
	Analysis of hybrid algorithm

	Conclusions
	Acknowledgements

