
HAL Id: hal-01828585
https://laas.hal.science/hal-01828585

Submitted on 3 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-Simulation of Complex Multi-Physics Systems
Aeronautical example

Romaric Guillerm, Hamid Demmou, Alexandre Nketsa, Jean-Jacques Carrillo

To cite this version:
Romaric Guillerm, Hamid Demmou, Alexandre Nketsa, Jean-Jacques Carrillo. Co-Simulation of Com-
plex Multi-Physics Systems Aeronautical example. 28th European Simulation and Modelling Confer-
ence (ESM 2014), Oct 2014, Porto, Portugal. 6p. �hal-01828585�

https://laas.hal.science/hal-01828585
https://hal.archives-ouvertes.fr


Co-Simulation of Complex Multi-Physics Systems 
Aeronautical example 

 
 

Romaric Guillerm1, Hamid Demmou1, 2 and Alexandre Nkesta1, 2 
1 CNRS, LAAS, 7 av. du colonel Roche, F-31400 Toulouse, France 
2 Université de Toulouse, UPS, LAAS, F-31400 Toulouse, France 

guillerm@laas.fr, demmou@laas.fr and nkesta@laas.fr 

Jean-Jacques Carrillo 
EDISON WAYS, CEEI Novalia 82, 20 place Prax Paris, 

CS 80435, F-82000 Montauban, France 
contact@edisonways.com 

 
 
 

 
Abstract – Co-simulation is part of the current techniques to 
simulate multi-physics systems, which has a number of 
advantages compared to a complete simulation within the 
same multi-physics simulator. The principle is to connect 
existing dedicated simulators and to run in parallel these 
simulators allowing them to exchange data. A concrete 
example, based on the modeling of a new system of electric 
power distribution, illustrates this approach. 
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I. INTRODUCTION 
 
Complex systems associate many components and several 
phenomena of different natures (Bar-Yam 2003). They 
involve different domain or scientific disciplines, each of 
which deals with one physical aspect of the system. For 
example, these physical aspects correspond to the science of 
solid mechanic, fluid mechanic, chemistry, 
electromagnetism, thermal, automation or computing. 
Meanwhile, since several years the cost and time constraints 
imposed by the market on industrial projects induce a very 
restrictive prototyping. Less expensive and faster to 
implement, computer simulations progressively replaces this 
step. Many software tools exist for deep analysis and 
simulations in every scientific domain. 
However, all the existing underlying interactions between 
phenomena make essential a simultaneous and common 
simulation of all fields. Various solutions exist today, 
including tools for multi-physics simulation (Istardi   and 
Triwinarko 2013). Their principle is to integrate within a 
single software all phenomena, all possible physics. This 
approach provides excellent results. However, for our point 
of view it presents a number of disadvantages:  
• Tools become very heavy because each tool has to deal 

with all the existing physics in the systems.  
• They are not ergonomically suited to the working mode 

of a specific domain, because they have one common 
interface that integrates all the aspects. 

• They force engineers to use new working tools, while 
they have specific tools well adapted to their own 
respective areas. 

Addressing the problem in a different way, a second 
approach is possible: the co-simulation (Schmerler et al. 
1995) (Glass et al. 2012), which allow engineers to keep 
their own specific simulation tools provided with new 
interfaces - software meaning (not graphical) - allowing 
them to communicate. The communication between different 

simulators allows to simulate the different models of the 
system, potentially related to different physics, as parts of 
the entire system. This approach is referred to co-simulation. 
 
After this short introduction, the objective of this paper is to 
introduce the approach of co-simulation, followed by the 
presentation of the general principle in the second part. 
Then, a number of tools that we use are presented in the third 
part. The fourth part is devoted to the presentation of an 
industrial example with an application of co-simulation. It is 
about a new electrical power distribution system for aircrafts 
developed by the Edison Ways Compagny. The fifth and 
final section concludes the paper and presents some possible 
perspectives. 
 
II. PRINCIPLE OF CO-SIMULATION 
 
1. Co-Simulation - Definition 
 
The first objective of the co-simulation was to do a mixed 
simulation between software and hardware systems (Yoo 
and Jerraya 2005). Now it is possible to simulate systems 
increasingly sophisticated and composed of different 
subsystems of various natures (electrical, mechanical, 
hydraulic, ...).  
Used during the design, the co-simulation allows the 
validation of the complete system before its implementation, 
helping to correct design errors earlier. 
 
From a global point of view, the principle of the co-
simulation is the parallel execution of multiple simulators. 
Each simulator executes a system model established in a 
language specific to the concerned area. Then, all the models 
of the different simulators form the complete modeling of 
the system.  
 
2. Communication between models 
 
The co-simulation requires therefore an exchange of 
information between different simulators. To do this, a 
dedicated standard exists: the HLA (High Level 
Architecture) (Dahmann et al. 1997). 
 
The HLA is a standard of interoperability for distributed 
simulation. It formalises the architecture and rules of 
interaction and it is based around a RTI (Run-Time 
Infrastructure). However, this solution is not the one that we 
have adopted. 
 



In our work, we prefer to use the principle of co-simulation 
with data exchanges through a bus that is provided by a 
specialized tool: Cosimate, presented below. An illustration 
of this principle is shown in Figure 1. 
 
3. Synchronization modes 
 
Several methods of synchronization between models are 
possible for the co-simulation. Mainly, we distinguish the 
two following modes: event driven or synchronous. 
 
The principle of the event driven mode is asynchronous 
communication between models. Each model can have its 
own clock, independent of those of the other models. 
Messages are sent or read by each model only when this one 
decide to do so. The overall behaviour of the co-simulation 
is then provided by the implemented communication 
protocols and their consistencies. 
 
With the synchronous mode, the clocks of the different 
simulators evolve simultaneously: they are synchronized. 
Every data is exchanged at each co-simulation step. This 
mode is particularly suitable for co-simulations 
implementing various physical phenomena evolving in 
different simulators and possibly coupled. It is this second 
method that we implement in our case study. 
 
III. TOOLS PRESENTATION 
 
This part presents the different tools, simulators or languages 
that we will use in the fourth part to treat an industrial 
example. The first one is essential to our approach: it is 
Cosimate. 
 
1. The bandmaster: Cosimate 
 
Cosimate is a software tool developed by the Chiastek 
Compagny, allowing the co-simulation of a model set by 

establishing communications between several tool simulators 
or languages (Colenbrander et al. 2008) (Mitts et al. 2009). 
These simulators are either on a single machine or multiple 
machines distributed across a local or global network. The 

current version of Cosimate (2014.02-v7.0.0) supports many 
simulators (including Simulink and OpenModelica) and 
several languages (including C and Java). 
 
As stated above, Cosimate therefore adopts the principle of 
communication by exchanging data through a co-simulation 
bus. All the models of the system which is desired to achieve 
co-simulation will be connected to this bus (see Figure 1). 
 
2. OpenModelica 
 
OpenModelica is an open-source tool for modeling and 
simulation, developed by the OSMC (Open Source Modelica 
Consortium). The models created with this tool are defined 
into Modelica language (hence the name of the tool), which 
describes a system as a set of equations. It allows modeling 
of complex systems, including mechanical, electrical, 
hydraulic or thermal. OpenModelica can itself be considered 
as a multi-physics simulator.  
In our case, we use OpenModelica for its ability to model an 
electrical system. 
 
3. Simulink and LabView 
 
In order to control and view system information during the 
simulation, we initially implement a HMI (Human-Machine 
Interface) with LabView. This tool from National 
Instruments enables the creation or the quick prototyping of 
graphical user interfaces. 
 
However, this tool is not directly supported by Cosimate. To 
use it with our co-simulation based around Cosimate, we 
used the feasible connections between: 
• Simulink and LabView, through the SIT (Simulation 

Interface Toolkit) which is an add-on provided by 
National Instruments. 

• Cosimate and Simulink. 
4. C language 

 
The C language is an imperative programming language 
widely used, especially for programming microcontrollers. 
We use the C in our case study for system management and 

 

 
 

Figure 1: Co-simulation bus connecting different models (Cosimate view) 
 



control software programs precisly supposed to be 
implemented on microcontrollers. 
 
5. Java language 
 
The Java language is inspired by the C++ object oriented 
language. We used it only for the implementation of a more 
accomplished HMI dedicated to the visualization and control 
of the studied system, using the Swing standard library. 
 
VI. INDUSTRIAL EXAMPLE: NEW ELECTRICAL 
POWER DISTRIBUTION SYSTEM 
 
1. Presentation of the System 
 
We illustrate the approach of co-simulation with the use of 
various tools/simulators on a new electric power distribution 
system for airliners. This system completely rethink the 
architecture of the electrical distribution system and offers an 
innovative, lighter, more economical, safer, and more 
maintainable solution. Many patents protect this new concept 
named "Captain". They are held by Jean-Jacques Carrillo, 
founder of the Edison Ways Compagny. 
 
Note: For privacy reasons, this article will not present in 
detail all the different parts of the system. However, it 
presents a general view of the functional principle, enough 
to understand the main features of the system. 
 
The Figure 2a shows the traditional architecture of the 
electrical system of airliners. 
 
The Figure 2b exhibits the new system architecture using the 
"Captain" network. The general principle is to pool the 
electrical distribution in multiwire networks sized relatively 
to the sources (ie the generators). The primary distribution 
systems disappear and leave space to dispatchers, located in 
the center of the aircraft, and a set of secondary distribution 
systems scattered along networks. 
 

 
 

Figure 2a: Traditional architecture 
 

 
 

Figure 2b: "Captain" architecture 
 
Dispatchers are responsible for monitoring the generator and 
network loads and for the power supply of the networks. The 
secondary distribution systems locally distribute electrical 
power to loads at around. 
 
The figure 3 shows a simplified schematic view of the 
multiwire network. It shows, among other things, the 
dynamic allocation of loads over subnetworks linked to 
different sources. A network is actually composed of two 
subnetworks. 

 
The largest gain for the aeronautical industry is undoubtedly 
on mass. Indeed, the use of this system allows a gain of more 
than 60% of the wiring mass, which represent a relief of 
more than 2 tonnes for an aircraft like the A380. 
 

 

 
 

Figure 3: Multiwire network with dynamic allocation 



2. The different models in interaction 
 
In our case study, the configuration of the system that we 
chose is composed of 3 generators (twin engine 
configuration with APU) and 3 networks. Two networks are 
oriented to the front of the aircraft and are connected to two 
secondary distribution systems each. The third network is 
localized in the back of the aircraft and is connected to three 
secondary distribution systems. The figure 4 provides a 
representation of this configuration. 
 
We connect 10 models to achieve a co-simulation of this 
system:  
• 1 electrical model, made in OpenModelica,  
• 1 C code for the management and control software of 

the dispatchers,  
• 7 similar C codes for the management and control 

software of the secondary distribution systems (1 code 
for each one)  

• 1 Simulink gateway linked to one LabView interface, 
or - depending on the choice of the GUI - 1 Java tool, 
for the user interface.  

The figure 1 shows this set of models connected to the 
Cosimate bus in its Java tool version for the choice of the 
HMI. 
 
a. Electrical model 
 
The highest level of the electrical model is visible in figure 
5. This model matches to the configuration fixed for our 
study ; it models all the electrical components and the 
connections from the generators to the loads, through 
dispatchers, multiwire networks and secondary distribution 

system. 
 

 
 

Figure 5: Electrical model 
 
Considering the number of components of the system, the 
compositional aspect of the Modelica language has been 
widely praised here and used to define classes of objects: 
slices of circuit breakers, secondary distribution system, sub-
dispatchers, dispatchers, etc. 
 
Towards the co-simulation bus, data exchanged are:  
• For those sent on the bus: the values of currents or 

voltages, mainly, 
• For those from the bus: the states of the circuit breakers 

in order to control them, electrical parameters, or 
information relating to faults injected into the system. 

 

b. Management and control software of the dispatchers 
 

 
 

Figure 4: Electrical system configuration 
 



The level of abstraction chosen led us to encode a single 
management software to govern all of the dispatchers. The 
role of this program is mainly to monitor the loads of 
generators and networks. If an overload is detected, several 
strategies have been defined to return to an acceptable 
situation. This potentially involves dynamic reallocations or 
unballastings of loads that are not essential to a safe flight. 
 
Details of these strategies are not described in this article, 
both for reasons of pages limitation and confidentiality. 
 
This management software operates on data from the 
electrical model, passing through the co-simulation bus. 
Then, it makes decisions that determine the state of the 
circuit breakers at the dispatchers level or control orders sent 
to the secondary distribution systems. 
 
c. Management and control software of the secondary 
distribution system 
 
Each secondary distribution system is provided with a 
management software. This program is designed to manage 
the connection or disconnection of the loads associated to the 
secondary distribution system. It works autonomously but 
also receives orders from the management software of the 
dispatchers that must be treated. In normal operation, its role 
is mainly to balance consumption between the two 
subnetworks to which it is attached. 
 
To work, this software uses also values provided by the 
electrical model transmitted trough the co-simulation bus, in 
addition to the orders from the software of the dispatchers 
that it receives as input. The decisions concern the status of 
the circuit breakers at the secondary distribution system 
level. 
 
d. Human-Machine Interface (HMI) 
 
As previously announced, two versions of the HMI were 
implemented. 
 
The first one was created with the LabView software, 
dedicated specially to the fast development of user interface 
(see figure 6). The advantage here is the extremely short 
time and ease of development with such tool. 
 
However, disadvantages of this solution are:  
• The fact that LabView is a commercial tool, 
• The need to use Matlab/Simulink - another commercial 

tool - to connect the interface to the co-simulation bus 
of Cosimate, 

• The opportunities in terms of HMI and ergonomics, 
less widespread and sophisticated than with a pure 
programming language. 

 
These disadvantages have led us to perform a second 
interface in Java. Nevertheless, the interest of using 
LabView in the early stages of the project was still not 
negligible, as it allowed to have very quickly a functional 
interface that was used for the first versions of the simulator. 
The work effort was then turned to the electrical modeling 
and the algorithms implemented by the different software. 
 

 
 

Figure 6: HMI implemented with LabView 
 
Therefore, the second interface has been implemented 
entirely in Java. It includes many more features, for example 
the ability to define in advance scenarios (including both 
dated events or random events associated with probability 
distribution), to save them, or to execute them. This Java 
interface also provides an animated and interactive aircraft 
view, which brings a better understanding of the system and 
its operation. The figure 7 shows the main view of this 
interface, under the "aircraft" tab. 
 

 
 

Figure 7: HMI implemented in Java 
 
3. Co-Simulation and Results 
 
Different scenarios have already been tested using this 
simulator around the co-simulation bus of Cosimate. 
 
a. Running one scenario 
 
To start a co-simulation with Cosimate, the procedure is as 
follows:  
• Open the project in Cosimate (see figure 1), and start 

the co-simulation, 
• Then, Cosimate will, for each model and based on the 

project parameters, run models automatically or prompt 
the user to do so. In this step, it is therefore to run 
models on Cosimate requests. 

 
In our case study, for example, we set the co-simulation so 
that the various C codes start automatically. It remains the 



responsibility of the user to run the simulation with 
OpenModelica and under the Java HMI when requested by 
Cosimate. 
 
In order to run a predefined scenario, simply select it before 
in our Java HMI. This scenario will be used for the co-
simulation, without preventing a possible interaction of the 
user who can inject new events on the fly. 
 
b. Results analysis 
 
Once the co-simulation is finished, many results can be 
analyzed:  
• Traces of the Cosimate tool, 
• Data of the simulators, 
• Log files of the codes. 

  
For example, the OpenModelica simulator allows to plot the 
curves of the evolution over time of any parameter of the 
model, like the current in a wire of a network (figure 8) or 
the one delivered by a generator (figure 9). The management 
software have been coded to keep track of their states and 
their decisions in files. These traces are very useful to test 
and validate the developed and implemented strategies, and 
also to validate the functional aspects of the new architecture 
of the electrical distribution system inside an aircraft. 
 

 
 

Figure 8 :  Currents in the subnetworks 
 

 
 

Figure 9 : Currents delivered by the generators 
 
 

V. CONCLUSION 
 
The objective of this article was to present a framework for 
the co-simulation of complex multi-physic systems. The 
principle here is the use of a co-simulation bus, using the 
Cosimate tool, alternative to an HLA-based approaches.  
The use of this approach in an aeronautical project showed 
its feasibility and interest. The models are made with specific 
tools in the preferred environments of the engineers. All 
models aggregated around the co-simulation bus then allow a 
co-simulation to validate and verify the system. Moreover, it 
is possible to refine and reduce the level of abstraction of 
some models without jeopardizing the whole simulator and 
architecture. 
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