
HAL Id: hal-01828585
https://laas.hal.science/hal-01828585

Submitted on 3 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-Simulation of Complex Multi-Physics Systems
Aeronautical example

Romaric Guillerm, Hamid Demmou, Alexandre Nketsa, Jean-Jacques Carrillo

To cite this version:
Romaric Guillerm, Hamid Demmou, Alexandre Nketsa, Jean-Jacques Carrillo. Co-Simulation of Com-
plex Multi-Physics Systems Aeronautical example. 28th European Simulation and Modelling Confer-
ence (ESM 2014), Oct 2014, Porto, Portugal. 6p. �hal-01828585�

https://laas.hal.science/hal-01828585
https://hal.archives-ouvertes.fr

Co-Simulation of Complex Multi-Physics Systems
Aeronautical example

Romaric Guillerm1, Hamid Demmou1, 2 and Alexandre Nkesta1, 2
1 CNRS, LAAS, 7 av. du colonel Roche, F-31400 Toulouse, France
2 Université de Toulouse, UPS, LAAS, F-31400 Toulouse, France

guillerm@laas.fr, demmou@laas.fr and nkesta@laas.fr

Jean-Jacques Carrillo
EDISON WAYS, CEEI Novalia 82, 20 place Prax Paris,

CS 80435, F-82000 Montauban, France
contact@edisonways.com

Abstract – Co-simulation is part of the current techniques to
simulate multi-physics systems, which has a number of
advantages compared to a complete simulation within the
same multi-physics simulator. The principle is to connect
existing dedicated simulators and to run in parallel these
simulators allowing them to exchange data. A concrete
example, based on the modeling of a new system of electric
power distribution, illustrates this approach.

Keywords – Co-simulation, complex system, multi-physic
system, electric distribution.

I. INTRODUCTION

Complex systems associate many components and several
phenomena of different natures (Bar-Yam 2003). They
involve different domain or scientific disciplines, each of
which deals with one physical aspect of the system. For
example, these physical aspects correspond to the science of
solid mechanic, fluid mechanic, chemistry,
electromagnetism, thermal, automation or computing.
Meanwhile, since several years the cost and time constraints
imposed by the market on industrial projects induce a very
restrictive prototyping. Less expensive and faster to
implement, computer simulations progressively replaces this
step. Many software tools exist for deep analysis and
simulations in every scientific domain.
However, all the existing underlying interactions between
phenomena make essential a simultaneous and common
simulation of all fields. Various solutions exist today,
including tools for multi-physics simulation (Istardi and
Triwinarko 2013). Their principle is to integrate within a
single software all phenomena, all possible physics. This
approach provides excellent results. However, for our point
of view it presents a number of disadvantages:
• Tools become very heavy because each tool has to deal

with all the existing physics in the systems.
• They are not ergonomically suited to the working mode

of a specific domain, because they have one common
interface that integrates all the aspects.

• They force engineers to use new working tools, while
they have specific tools well adapted to their own
respective areas.

Addressing the problem in a different way, a second
approach is possible: the co-simulation (Schmerler et al.
1995) (Glass et al. 2012), which allow engineers to keep
their own specific simulation tools provided with new
interfaces - software meaning (not graphical) - allowing
them to communicate. The communication between different

simulators allows to simulate the different models of the
system, potentially related to different physics, as parts of
the entire system. This approach is referred to co-simulation.

After this short introduction, the objective of this paper is to
introduce the approach of co-simulation, followed by the
presentation of the general principle in the second part.
Then, a number of tools that we use are presented in the third
part. The fourth part is devoted to the presentation of an
industrial example with an application of co-simulation. It is
about a new electrical power distribution system for aircrafts
developed by the Edison Ways Compagny. The fifth and
final section concludes the paper and presents some possible
perspectives.

II. PRINCIPLE OF CO-SIMULATION

1. Co-Simulation - Definition

The first objective of the co-simulation was to do a mixed
simulation between software and hardware systems (Yoo
and Jerraya 2005). Now it is possible to simulate systems
increasingly sophisticated and composed of different
subsystems of various natures (electrical, mechanical,
hydraulic, ...).
Used during the design, the co-simulation allows the
validation of the complete system before its implementation,
helping to correct design errors earlier.

From a global point of view, the principle of the co-
simulation is the parallel execution of multiple simulators.
Each simulator executes a system model established in a
language specific to the concerned area. Then, all the models
of the different simulators form the complete modeling of
the system.

2. Communication between models

The co-simulation requires therefore an exchange of
information between different simulators. To do this, a
dedicated standard exists: the HLA (High Level
Architecture) (Dahmann et al. 1997).

The HLA is a standard of interoperability for distributed
simulation. It formalises the architecture and rules of
interaction and it is based around a RTI (Run-Time
Infrastructure). However, this solution is not the one that we
have adopted.

In our work, we prefer to use the principle of co-simulation
with data exchanges through a bus that is provided by a
specialized tool: Cosimate, presented below. An illustration
of this principle is shown in Figure 1.

3. Synchronization modes

Several methods of synchronization between models are
possible for the co-simulation. Mainly, we distinguish the
two following modes: event driven or synchronous.

The principle of the event driven mode is asynchronous
communication between models. Each model can have its
own clock, independent of those of the other models.
Messages are sent or read by each model only when this one
decide to do so. The overall behaviour of the co-simulation
is then provided by the implemented communication
protocols and their consistencies.

With the synchronous mode, the clocks of the different
simulators evolve simultaneously: they are synchronized.
Every data is exchanged at each co-simulation step. This
mode is particularly suitable for co-simulations
implementing various physical phenomena evolving in
different simulators and possibly coupled. It is this second
method that we implement in our case study.

III. TOOLS PRESENTATION

This part presents the different tools, simulators or languages
that we will use in the fourth part to treat an industrial
example. The first one is essential to our approach: it is
Cosimate.

1. The bandmaster: Cosimate

Cosimate is a software tool developed by the Chiastek
Compagny, allowing the co-simulation of a model set by

establishing communications between several tool simulators
or languages (Colenbrander et al. 2008) (Mitts et al. 2009).
These simulators are either on a single machine or multiple
machines distributed across a local or global network. The

current version of Cosimate (2014.02-v7.0.0) supports many
simulators (including Simulink and OpenModelica) and
several languages (including C and Java).

As stated above, Cosimate therefore adopts the principle of
communication by exchanging data through a co-simulation
bus. All the models of the system which is desired to achieve
co-simulation will be connected to this bus (see Figure 1).

2. OpenModelica

OpenModelica is an open-source tool for modeling and
simulation, developed by the OSMC (Open Source Modelica
Consortium). The models created with this tool are defined
into Modelica language (hence the name of the tool), which
describes a system as a set of equations. It allows modeling
of complex systems, including mechanical, electrical,
hydraulic or thermal. OpenModelica can itself be considered
as a multi-physics simulator.
In our case, we use OpenModelica for its ability to model an
electrical system.

3. Simulink and LabView

In order to control and view system information during the
simulation, we initially implement a HMI (Human-Machine
Interface) with LabView. This tool from National
Instruments enables the creation or the quick prototyping of
graphical user interfaces.

However, this tool is not directly supported by Cosimate. To
use it with our co-simulation based around Cosimate, we
used the feasible connections between:
• Simulink and LabView, through the SIT (Simulation

Interface Toolkit) which is an add-on provided by
National Instruments.

• Cosimate and Simulink.
4. C language

The C language is an imperative programming language
widely used, especially for programming microcontrollers.
We use the C in our case study for system management and

Figure 1: Co-simulation bus connecting different models (Cosimate view)

control software programs precisly supposed to be
implemented on microcontrollers.

5. Java language

The Java language is inspired by the C++ object oriented
language. We used it only for the implementation of a more
accomplished HMI dedicated to the visualization and control
of the studied system, using the Swing standard library.

VI. INDUSTRIAL EXAMPLE: NEW ELECTRICAL
POWER DISTRIBUTION SYSTEM

1. Presentation of the System

We illustrate the approach of co-simulation with the use of
various tools/simulators on a new electric power distribution
system for airliners. This system completely rethink the
architecture of the electrical distribution system and offers an
innovative, lighter, more economical, safer, and more
maintainable solution. Many patents protect this new concept
named "Captain". They are held by Jean-Jacques Carrillo,
founder of the Edison Ways Compagny.

Note: For privacy reasons, this article will not present in
detail all the different parts of the system. However, it
presents a general view of the functional principle, enough
to understand the main features of the system.

The Figure 2a shows the traditional architecture of the
electrical system of airliners.

The Figure 2b exhibits the new system architecture using the
"Captain" network. The general principle is to pool the
electrical distribution in multiwire networks sized relatively
to the sources (ie the generators). The primary distribution
systems disappear and leave space to dispatchers, located in
the center of the aircraft, and a set of secondary distribution
systems scattered along networks.

Figure 2a: Traditional architecture

Figure 2b: "Captain" architecture

Dispatchers are responsible for monitoring the generator and
network loads and for the power supply of the networks. The
secondary distribution systems locally distribute electrical
power to loads at around.

The figure 3 shows a simplified schematic view of the
multiwire network. It shows, among other things, the
dynamic allocation of loads over subnetworks linked to
different sources. A network is actually composed of two
subnetworks.

The largest gain for the aeronautical industry is undoubtedly
on mass. Indeed, the use of this system allows a gain of more
than 60% of the wiring mass, which represent a relief of
more than 2 tonnes for an aircraft like the A380.

Figure 3: Multiwire network with dynamic allocation

2. The different models in interaction

In our case study, the configuration of the system that we
chose is composed of 3 generators (twin engine
configuration with APU) and 3 networks. Two networks are
oriented to the front of the aircraft and are connected to two
secondary distribution systems each. The third network is
localized in the back of the aircraft and is connected to three
secondary distribution systems. The figure 4 provides a
representation of this configuration.

We connect 10 models to achieve a co-simulation of this
system:
• 1 electrical model, made in OpenModelica,
• 1 C code for the management and control software of

the dispatchers,
• 7 similar C codes for the management and control

software of the secondary distribution systems (1 code
for each one)

• 1 Simulink gateway linked to one LabView interface,
or - depending on the choice of the GUI - 1 Java tool,
for the user interface.

The figure 1 shows this set of models connected to the
Cosimate bus in its Java tool version for the choice of the
HMI.

a. Electrical model

The highest level of the electrical model is visible in figure
5. This model matches to the configuration fixed for our
study ; it models all the electrical components and the
connections from the generators to the loads, through
dispatchers, multiwire networks and secondary distribution

system.

Figure 5: Electrical model

Considering the number of components of the system, the
compositional aspect of the Modelica language has been
widely praised here and used to define classes of objects:
slices of circuit breakers, secondary distribution system, sub-
dispatchers, dispatchers, etc.

Towards the co-simulation bus, data exchanged are:
• For those sent on the bus: the values of currents or

voltages, mainly,
• For those from the bus: the states of the circuit breakers

in order to control them, electrical parameters, or
information relating to faults injected into the system.

b. Management and control software of the dispatchers

Figure 4: Electrical system configuration

The level of abstraction chosen led us to encode a single
management software to govern all of the dispatchers. The
role of this program is mainly to monitor the loads of
generators and networks. If an overload is detected, several
strategies have been defined to return to an acceptable
situation. This potentially involves dynamic reallocations or
unballastings of loads that are not essential to a safe flight.

Details of these strategies are not described in this article,
both for reasons of pages limitation and confidentiality.

This management software operates on data from the
electrical model, passing through the co-simulation bus.
Then, it makes decisions that determine the state of the
circuit breakers at the dispatchers level or control orders sent
to the secondary distribution systems.

c. Management and control software of the secondary
distribution system

Each secondary distribution system is provided with a
management software. This program is designed to manage
the connection or disconnection of the loads associated to the
secondary distribution system. It works autonomously but
also receives orders from the management software of the
dispatchers that must be treated. In normal operation, its role
is mainly to balance consumption between the two
subnetworks to which it is attached.

To work, this software uses also values provided by the
electrical model transmitted trough the co-simulation bus, in
addition to the orders from the software of the dispatchers
that it receives as input. The decisions concern the status of
the circuit breakers at the secondary distribution system
level.

d. Human-Machine Interface (HMI)

As previously announced, two versions of the HMI were
implemented.

The first one was created with the LabView software,
dedicated specially to the fast development of user interface
(see figure 6). The advantage here is the extremely short
time and ease of development with such tool.

However, disadvantages of this solution are:
• The fact that LabView is a commercial tool,
• The need to use Matlab/Simulink - another commercial

tool - to connect the interface to the co-simulation bus
of Cosimate,

• The opportunities in terms of HMI and ergonomics,
less widespread and sophisticated than with a pure
programming language.

These disadvantages have led us to perform a second
interface in Java. Nevertheless, the interest of using
LabView in the early stages of the project was still not
negligible, as it allowed to have very quickly a functional
interface that was used for the first versions of the simulator.
The work effort was then turned to the electrical modeling
and the algorithms implemented by the different software.

Figure 6: HMI implemented with LabView

Therefore, the second interface has been implemented
entirely in Java. It includes many more features, for example
the ability to define in advance scenarios (including both
dated events or random events associated with probability
distribution), to save them, or to execute them. This Java
interface also provides an animated and interactive aircraft
view, which brings a better understanding of the system and
its operation. The figure 7 shows the main view of this
interface, under the "aircraft" tab.

Figure 7: HMI implemented in Java

3. Co-Simulation and Results

Different scenarios have already been tested using this
simulator around the co-simulation bus of Cosimate.

a. Running one scenario

To start a co-simulation with Cosimate, the procedure is as
follows:
• Open the project in Cosimate (see figure 1), and start

the co-simulation,
• Then, Cosimate will, for each model and based on the

project parameters, run models automatically or prompt
the user to do so. In this step, it is therefore to run
models on Cosimate requests.

In our case study, for example, we set the co-simulation so
that the various C codes start automatically. It remains the

responsibility of the user to run the simulation with
OpenModelica and under the Java HMI when requested by
Cosimate.

In order to run a predefined scenario, simply select it before
in our Java HMI. This scenario will be used for the co-
simulation, without preventing a possible interaction of the
user who can inject new events on the fly.

b. Results analysis

Once the co-simulation is finished, many results can be
analyzed:
• Traces of the Cosimate tool,
• Data of the simulators,
• Log files of the codes.

For example, the OpenModelica simulator allows to plot the
curves of the evolution over time of any parameter of the
model, like the current in a wire of a network (figure 8) or
the one delivered by a generator (figure 9). The management
software have been coded to keep track of their states and
their decisions in files. These traces are very useful to test
and validate the developed and implemented strategies, and
also to validate the functional aspects of the new architecture
of the electrical distribution system inside an aircraft.

Figure 8 : Currents in the subnetworks

Figure 9 : Currents delivered by the generators

V. CONCLUSION

The objective of this article was to present a framework for
the co-simulation of complex multi-physic systems. The
principle here is the use of a co-simulation bus, using the
Cosimate tool, alternative to an HLA-based approaches.
The use of this approach in an aeronautical project showed
its feasibility and interest. The models are made with specific
tools in the preferred environments of the engineers. All
models aggregated around the co-simulation bus then allow a
co-simulation to validate and verify the system. Moreover, it
is possible to refine and reduce the level of abstraction of
some models without jeopardizing the whole simulator and
architecture.

REFERENCES

Bar-Yam, Y. 2003. “Dynamics of Complex Systems”. The
Advanced Book Studies in Nonlinearity series, ISBN
0813341213.

Istardi, D. and A. Triwinarko. 2013. “Induction Heating Process

Design Using COMSOL Multiphysics Software”.
TELKOMNIKA (Telecommunication Computing Electronics
And Control), 9(2), pp.327-334.

Schmerler, S.; Y. Tanurhan; and K.D. Muller-Glaser. 1995. “A

backplane approach for cosimulation in high-level system
specification environments”. Design Automation Conference,
1995, with EURO-VHDL, Proceedings EURO-DAC '95.,
European, pp.262-267.

Glass, M.; J. Teich; and L. Zhang. 2012. “A co-simulation approach

for system-level analysis of embedded control systems”.
Embedded Computer Systems (SAMOS), 2012 International
Conference, pp.355-362.

Dahmann, J.S.; R.M. Fujimoto; and R.M. Weatherly. 1997. “The

Department of Defense High Level Architecture”. In
Proceedings of the 29th conference on Winter simulation (WSC
'97), Sigrún Andradóttir, Kevin J. Healy, David H. Withers, and
Barry L. Nelson (Eds.). IEEE Computer Society, Washington,
DC, USA, pp.142-149.

Yoo, S. and A.A. Jerraya. 2005. “Hardware/software cosimulation

from interface perspective”. Computers and Digital Techniques,
IEE Proceedings, vol.152, no.3, pp.369-379.

Colenbrander, R.R.; A.S. Damstra; C.W. Korevaar; C. A. Verhaar;

and A. Molderink. 2008. “Co-design and Implementation of the
H.264/AVC Motion Estimation Algorithm Using Co-
simulation”. Digital System Design Architectures, Methods and
Tools, 2008. DSD '08. 11th EUROMICRO Conference, pp.210-
215.

Mitts, K.; K. Lang; T. Roudier; and D. Kiskis. 2009. “Using a Co-

simulation Framework to Enable Software-in-the-Loop
Powertrain System Development”. SAE World Congress &
Exhibition, Detroit, Michigan, United States of America.

Behr, R.; J. Brown; and V. Baumbach. 2011. “Aircraft Thermal

System Simulation - Hydraulic and Fuel”. 3rd International
Workshop on Aircraft System Technologies, Hamburg,
Germany.

