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Abstract

We propose to solve polynomial hyperbolic partial differential equations (PDEs)
with convex optimization. This approach is based on a very weak notion of solution of
the nonlinear equation, namely the measure-valued (mv) solution, satisfying a linear
equation in the space of Borel measures. The aim of this paper is, first, to provide
the conditions that ensure the equivalence between the two formulations and, second,
to introduce a method which approximates the infinite-dimensional linear problem by
a hierarchy of convex, finite-dimensional, semidefinite programming problems. This
result is then illustrated on the celebrated Burgers equation. We also compare our
results with an existing numerical scheme, namely the Godunov scheme.

Keywords: nonlinear partial differential equation, convex optimization, moments and
positive polynomials.

1 Introduction

This paper is concerned with the numerical study of scalar nonlinear hyperbolic con-
servation laws, a partial differential equation (PDE) which model numerous physical
phenomena such as fluid mechanics, traffic flow or nonlinear acoustics [6], [34]. The ex-
istence and uniqueness of solutions to the associated Cauchy problem crucially depends
on the flux and the initial condition [23]. Even if the solution is unique, its numerical
computation is still a challenge – in particular when the solution has a shock, i.e., a
discontinuity. Existing schemes based on discretization such as [16] suffer from nu-
merical dissipation: the shock is smoothened in the numerical solution and cannot be
represented accurately. In fact, sometimes the exact location of the shock is of cru-
cial interest for applications. Note however that some existing numerical schemes are
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able to capture shocks in the case where the conservation laws under consideration are
linear, see e.g. [9].

In contrast to existing methods, a distinguishing feature of the numerical scheme
presented in this paper is to not rely on discretization; it computes the solution in a
given time-space window globally. From such a solution, the location of the shock at a
given time can be computed up to the limits of machine precision. In our opinion this
is a major advantage when compared to other numerical methods.

Measure-Valued Solutions While PDEs are usually understood in a weak sense,
DiPerna proposed an even weaker notion of solution, so-called measure-valued solutions
(mv solutions for short) [10], which are based on Young measures, i.e. time and/or
space dependent probability measures. Young measures have originally been introduced
in the context of calculus of variations and optimal control, where the velocity or
more generally the control is relaxed from being a function of time to being a time-
dependent probability measure on the control space, see e.g. [12, Part III] for an
overview. Similarly, DiPerna introduced mv solutions to conservation laws as measures
on the solution space, now depending on time and space.

Naturally, every weak solution gives rise to a mv solution when identifying a so-
lution y(t, x) with the Young measure δy(t,x)(dy). We say then that the mv solution
is concentrated on (the graph of) the solution. In this paper, we are focusing on a
setup where both weak and mv solutions are unique (hence identical). In this case,
both solutions coincide via the identification just mentioned. Note however that our
approach also applies without any change to situations where the mv solution is not
concentrated, e.g., because of an initial condition that is not concentrated either.

In order to ensure uniqueness we rely on the notion of entropy solutions which has
been extended to entropy mv solutions. Entropy is a concept from thermodynamics
that makes reference to the fact that differences in physical systems, e.g., the densities
of particles in a room, tend to adjust to each other. It is well-known that the entropy
solution of a scalar nonlinear hyperbolic conservation law is unique. For the generalized
situation things are more involved. However under suitable assumptions on the initial
condition entropy, uniqueness of mv solutions can be proved.

Recently there has been an increasing interest in numerical schemes to compute
mv solutions for hyperbolic conservation laws with non concentrated initial conditions
[15, 13]. Existing numerical schemes apply standard discretization methods to com-
pute sufficiently many trajectories according to the distribution of the initial condition
and recover the moments of the mv solution by considering limits of the trajectories.
In contrast to this our approach directly computes the moments of the mv solution.
Therefore in some sense this work is in the opposite direction. We compute moments
to recover trajectories in the case where the initial condition and the solution are
concentrated.

Generalized Moment Problem The key idea underlying the approach is to con-
sider mv solutions as solutions to a particular instance of the Generalized Moment
Problem (GMP) which is an infinite-dimensional optimization problem on appropriate
spaces of measures, and where both the cost and the (possibly countably many) con-
straints are linear in the moments of the respective measures. Lasserre [24] showed
that the GMP can be approximated as closely as desired by solving a hierarchy of
convex semidefinite programs (SDP) of increasing size, provided that the data of the
GMP are semi-algebraic; that is, the measures are supported on basic semi algebraic
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compact sets (i.e. bounded sets defined by finitely many polynomial inequalities and
equations) and the involved functions are polynomial or semi-algebraic functions (i.e.
functions whose graphs are semi-algebraic sets). The duals to these SDPs are linear
problems on polynomial sums of squares (SOS). Therefore this hierarchy of SDP relax-
ations is called the moment-SOS (sums of squares) hierarchy. By now, many problems
from different fields of mathematics, including optimal control of ordinary differential
equations [25], have been reformulated as particular instances of the GMP and then
approximated or solved by the moment-SOS hierarchy. This paper is in the line of
these former contributions. That is, (i) the mv solutions are viewed (or formulated)
as solutions of a particular instance of the GMP, and (ii) the moments of mv solutions
are approximated as closely as desired by solving a moment-SOS hierarchy.

Any optimal solution of each semidefinite relaxation at step d in the hierarchy
provides information about the mv solution in the form of a sequence of its (approx-
imated) moments, up to degree d; the higher is d the better is the approximation of
its moments. As we restrict to measures with compact support, they are fully char-
acterized from knowledge of the complete sequence of their moments. Interestingly, it
is worth noting that in [15] it was already pointed out that the statistical moments of
mv solutions are precisely the quantities of interest.

Contribution To the best of our knowledge, this work seems to be the first contri-
bution where nonlinear PDEs are addressed without time-space domain discretization
and using convex optimization with a proof of convergence. An original early attempt
to compute mv solutions of nonlinear wave equations with linear programming was
reported in [33], also in the presence of controls. In [25], the authors apply to moment-
SOS hierarchy to solve optimal control problems of ordinary differential equations, and
it was shown in [31] that it provides a sequence of subsolutions converging in norm
to the viscosity solution of the Hamilton-Jacobi-Bellmann PDE, a particular nonlinear
hyperbolic equation. In [28], nonlinear PDEs are discretized into large-scale sparse
polynomial optimization problems, in turn solved with the moment-SOS hierarchy.
More recently, bounds on functionals of solutions were obtained with SOS polynomials
for nonlinear PDEs arising in fluid dynamics in [3] and for the nonlinear Kuramoto-
Sivashinsky PDE in [17]. These works, however, focus only on the dual SOS problems,
and they provide bounds with no convergence guarantees. They do not exploit the
primal formulation of the problem on moments, which we believe to be crucial for con-
vergence analysis. In the recent work [14], the authors compute mv solutions for the
equations of compressible and incompressible inviscid fluid dynamics, with the help
of discretization algorithms based on Monte Carlo methods. Even more recently, in
[1] the author has proposed a convex formulation for the classical solution to nonlin-
ear hyperbolic PDEs and he proves that the entropy solution to the Burgers equation
might be recovered also via this optimization problem. However, this paper does not
provide a numerical scheme. In the concurrent work [22], the authors propose to use
the moment-SOS hierarchy in a much more general setting of a controlled polynomial
PDE. However, at that level of generality, there is no proof that the numerical scheme
will converge to an appropriate solution of the PDE. For more references on previous
attempts to use convex optimization for solving and controlling PDEs, the reader is
referred to the introduction of [22].

Outline This paper is organized as follows. Section 2 introduces different notions
of solutions for scalar conservation laws and provides some links between these notions.
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Section 3 introduces the Moment-SOS hierarchy, proves that the mv solution framework
can be written as an instance of the GMP, and explains how one may interpret the
moment solutions. The focus of Section 4 is on a numerical study of the Burgers
equation. Finally, Section 5 collects some concluding remarks and further research
issues to be addressed.

Notation If X is a topological space, let C (X ) resp. C0(X ) resp. C 1
c (X ) denote the

space of functions on X that are continuous resp. continuous and vanishing at infinity
resp. continuously differentiable with compact support. For p ≥ 1, the Lebesgue space
L p(X ) consists of functions on X whose p-norms are bounded. The set of signed
resp. positive Borel measures is denoted M (X ) resp. M (X )+. The set of probability
measures on X is denoted by P(X ) and it consists of elements µ ∈M (X )+ such that
µ(X ) = 1. The measure λX ∈ P(X ) denotes the normalized Lebesgue measure on
X . Given a vector w = (w1 . . . wn), we denote by R[w] the ring of real multivariate
polynomials in the variables w1, . . . , wn.

2 Notions of solutions

We start with a brief overview of different notions of solutions to scalar polynomial
PDEs. For details, we refer to [6] for weak solutions and [29] for measure-valued
solutions. The aim of this section is to give a clear link between these two concepts of
solutions.

2.1 Weak and entropy solutions

In order to study mv solutions, it is instructive to revisit the classical concept of weak
solutions first. Consider therefore the Cauchy problem

∂y

∂t
(t, x) +

∂f(y)

∂x
(t, x) = 0, (t, x) ∈ R+ × R, (1a)

y(0, x) = y0(x), x ∈ R, (1b)

where (1a) is a scalar hyperbolic conservation law with f ∈ C 1(R) and (1b) provides
an initial condition y0 ∈ L 1(R)∩L∞(R). Note that (1a) encompasses, among others,
the well-known Burgers equation if one sets f(y) = 1

2y
2.

Even if the initial condition y0 is smooth, solutions to (1) might be discontinuous
(see [11, p. 143] for the case of the Burgers equation). Solutions to this problem are
hence usually understood in the following weak sense.

Definition 1 (Weak solution). A function y ∈ L∞(R+×R) is a weak solution to (1)
if, for all test functions ψ1 ∈ C 1

c (R+ × R), it satisfies∫
R+

∫
R

(
∂ψ1(t, x)

∂t
y(t, x) +

∂ψ1(t, x)

∂x
f(y(t, x))

)
dx dt+

∫
R
ψ1(0, x)y0(x) dx = 0. (2)

In general, weak solutions to (1) are not unique. However it can be shown (see e.g.
[23]) that among all possible weak solutions, only one has a physical meaning. This
solution is called the entropy solution and can be characterized as follows.
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Definition 2 (Entropy pair/entropy solution). (i) A pair of functions η, q ∈ C 1(R)
is called an entropy pair for (1a) if η is strictly convex and q′ = f ′η′.

(ii) A weak solution y ∈ L∞(R+×R) of (1) is an entropy solution if, for all entropy
pairs and all non-negative test functions ψ2 ∈ C 1

c (R+ × R), it satisfies∫
R+

∫
R

(
∂ψ2

∂t
η(y) +

∂ψ2

∂x
q(y)

)
dx dt+

∫
R
ψ2(0, x)η(y0)(x) dx ≥ 0. (3)

2.2 Measure-valued solutions

Generally, regularity results of conservation laws are obtained from regularized conser-
vation laws

∂

∂t
yε +

∂

∂x
f(yε)− ε ∂

2

∂x2
yε = 0,

where ε > 0 is a fixed parameter. Then one studies the limit of solutions yε as ε goes
to 0 and tries to retrieve some of regularity properties of the latter equation for the
conservation law. However, on the one hand, regularized solution yε may or may not
converge to a weak solution y of (1). This is due to a lack of reflexivity of the space L∞.
On the other hand, regularized solutions yε necessarily converge to a measure-valued
(mv) solution. This notion builds upon the concept of a Young measure.

Definition 3 (Young measure). A Young measure on a Euclidean space X is a map
µ : X →P(R), ξ 7→ µξ, such that for all g ∈ C0(R) the function ξ 7→

∫
R g(y)µξ(dy) is

measurable.

Later, mv solutions have also proved to be useful in the study of problems more
general than (1), where the initial condition (1b) is replaced by a Young measure
parametrized in space (see e.g. [15] and the references therein). The generalized
problem is to find a Young measure µ(t,x) which satisfies the following Cauchy problem:

∂t〈µ(t,x), y〉+ ∂x〈µ(t,x), f(y)〉 = 0, (t, x) ∈ R+ × R, (4a)

µ(0,x) = σ0, x ∈ R, (4b)

where 〈·, ·〉 denotes integration of a measure µ ∈M (R) against a function g ∈ C (R):

〈µ, g〉 :=

∫
R
g(y)µ(dy).

In (4) the measure σ0 is a given Young measure on R, and f is a continuously differ-
entiable function on R. The conservation law (4a) has to be understood in the sense
of distributions, i.e.:

Definition 4 (Measure-valued solution). A Young measure is a measure-valued (mv)
solution to (4) if, for all test functions ψ1 ∈ C 1

c (R+ × R), it satisfies∫
R+

∫
R

(
∂ψ1(t, x)

∂t
〈µ(t,x), y〉+

∂ψ1(t, x)

∂x
〈µ(t,x), f(y)〉

)
dx dt+

∫
R
ψ1(0, x)〈σ0, y〉dx = 0.

(5)
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Note that the weak solution y has been replaced by a time-space parametrized
probability measure µ supported on the range of y. Whereas a weak solution is re-
quested to satisfy (2), only averages of the mv solution are considered in (5). It is easy
to see that every weak solution induces a mv solution via the canonical embedding
y(t, x) 7→ δy(t,x). As in the case of weak solution, an entropy condition is needed in or-
der to select solutions with a physical meaning. Quite in analogy to entropy solutions,
entropy mv solutions are defined as follows.

Definition 5 (Entropy measure-valued solution). An mv solution µ is an entropy
mv solution to (4) if, for all entropy pairs (η, q) and all non-negative test functions
ψ2 ∈ C 1

c (R+ × R), it satisfies∫
R+

∫
R

(
∂ψ2(t, x)

∂t
〈µ(t,x), η〉+

∂ψ2(t, x)

∂x
〈µ(t,x), q〉

)
dx dt+

∫
R
ψ2(0, x)〈σ0, η〉dx ≥ 0.

(6)

Remark 1. Again it is straightforward to see that entropy solutions are entropy mv
solutions via the canonical embedding y(t, x) 7→ δy(t,x). However, as demonstrated on
an example in [15, p. 775], in contrast with entropy solutions, entropy mv solutions
are not necessarily unique.

We have seen that the concept of mv solutions is weaker than the concept of weak
solutions. Hence mv solutions are a relaxation of weak solutions: every weak solution
is also an mv solution, but the set of mv solutions can be larger than the set of weak
solutions. However, the following result states that considering mv solutions is not a
relaxation. To be more precise, when the initial measure in (4b) is concentrated on (the
graph of) the initial condition in (1b), then the entropy mv solution to (4) is unique
and concentrated on (the graph of) the (unique) entropy solution to (1).

Theorem 1 (Concentration of the entropy mv solution). Let C be the Lipschitz con-
stant of the function f . Let y be an entropy solution and µ be an entropy mv solution
to (1). Then, for all T ≥ 0 and all r ≥ 0, it holds∫

|x|≤r
〈µ(t,x), |y − y(T, x)|〉dx ≤

∫
|x|≤r+CT

〈σ0, |y − y0(x)|〉dx. (7)

In particular, if σ0 = δy0(x), then µ(t,x) = δy(t,x) for all t ∈ [0, T ] and all x such that
|x| ≤ r.
Remark 2. The proof of Theorem 1 is similar to the one provided in [23] and it
is postponed to Appendix A. It is based on the doubling variable strategy, using the
following family of entropy pairs:

ηv(y) = |y − v|, qv(y) = sign(y − v)(f(y)− f(v)) (8)

parametrized in v ∈ R. In [26], it has been proved that linear combinations of these
entropy pairs, together with the convex hull of linear functions, generate all entropy
pairs. In other words, to prove Theorem 1 for every entropy pair it is enough to
consider the entropy pairs (8).

Moreover, note that initially the doubling variable strategy has been used to prove
uniqueness of the solution to scalar nonlinear conservations laws. The main drawback
is that the entropy solution has to satisfy this inequality for all convex pairs. However
for the specific case of the Burgers equation, it is shown in [7] and [30] that one may
consider only one convex pair.
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2.3 An emphasis on compact sets

In practice, one computes or approximates the solution on compact subsets, so let

T := [0, T ], X := [L,R] (9)

be the respective domains of time t and space x, for fixed (but arbitrary) constants
T, L,R. After scaling, we assume without loss of generality that T = R− L = 1.

Note that the entropy inequality induces a stability property:

‖y(t, ·)‖L∞(X) ≤ ‖y0‖L∞(R), ∀t ≥ 0 (10)

see e.g. [6, Theorem 6.2.4]. Since y0 is bounded in L∞, it follows from the maximum
principle [6, Theorem 6.3.2] that y(t, .) is bounded in L∞ for all t ≥ 0. Hence, we can
consider that y takes values in the following compact set

Y := [y, ȳ], (11)

where the bounds y := ess infx∈R y0(x) and ȳ := ess supx∈R y0(x) depend on the initial
condition. On T×X, the polynomial hyperbolic equations given in (1) reads:

∂y

∂t
+
∂f(y)

∂x
= 0, (t, x) ∈ T×X,

y(0, x) = y0(x), x ∈ X.
(12)

Definition 6 (Entropy solution on compact sets). A weak solution y is an entropy
solution to (12) if, for all test functions ψ1 ∈ C 1(R+ × R), it satisfies∫

T

∫
X

(
∂ψ1

∂t
y +

∂ψ1

∂x
f(y)

)
dxdt+

∫
X
ψ1(0, x)y0(x)dx−

∫
X
ψ1(T, x)y(T, x)dx

+

∫
T
ψ1(t, L)y(t, L)dt−

∫
T
ψ1(t, R)y(t, R)dt = 0

(13)

and, for all convex pairs (η, q) and all non-negative test functions ψ2 ∈ C 1(R+ × R),
it satisfies∫
T

∫
X

(
∂ψ2

∂t
η(y) +

∂ψ2

∂x
q(y)

)
dxdt+

∫
X
ψ2(0, x)η(y0)(x)dx−

∫
X
ψ2(T, x)η(y(T, x))dx

+

∫
T
ψ2(t, L)q(y(t, L))dt−

∫
T
ψ2(t, R)q(y(t, R))dt ≥ 0.

(14)

As we work on compact sets, the test functions do not have to vanish at infinity.
However new terms y(t, R) and y(t, L) now appear. Related to this notion of solutions
on compact sets, we also have a similar definition for mv entropy solution.

Definition 7 (Measure-valued entropy solution on compact sets). A Young measure
µ : (t, x) ∈ T ×X 7→ µ(t,x) ∈ P(Y) is an entropy measure-valued solution to (12) if,
for all test functions ψ1 ∈ C 1(T×X), it satisfies∫

T

∫
X

(
∂ψ1

∂t
〈µ(t,x), y〉+

∂ψ1

∂x
〈µ(t,x), f(y)〉

)
dx dt+

∫
X
ψ1(0, x)〈σ0, y〉dx

−
∫
X
ψ1(T, x)〈σT , y〉dx+

∫
T
ψ1(t, L)〈σL, f(y)〉dt−

∫
T
ψ1(t, R)〈σR, f(y)〉dt = 0

(15)

7



and, for all convex pairs (η, q) and all non-negative test functions ψ2 ∈ C 1(T×X), it
satisfies∫

T

∫
X

(
∂ψ2

∂t
〈µ(t,x), η(y)〉+

∂ψ2

∂x
〈µ(t,x), q(y)〉

)
dx dt+

∫
X
ψ2(0, x)〈σ0, η(y)〉dx

−
∫
X
ψ2(T, x)〈σT , η(y)〉dx+

∫
T
ψ2(t, L)〈σL, q(y)〉dt−

∫
T
ψ2(t, R)〈σR, q(y)〉dt ≥ 0,

(16)

where σ0, σT , σL resp. σR are Young measures supported on T, X, T resp. X.

Remark 3 (Imposing constraints on the boundary). To ensure concentration of µ(t,x)
on the graph of the solution to (13)-(14), in addition to the condition σ0 = δy0(x),
one may impose conditions on the boundary measures σL and/or σR. In practice, one
knows the initial condition in an interval larger than X and so one is able to impose
σL and/or σR. The width of this interval depends on the Lipschitz constant of the flux,
T , L and R. As an illustrative example, consider the case where the initial condition is
positive and the flux is strictly convex. By the classical method of characteristics, if the
initial condition y0 is positive then so is the solution y for all t ≥ 0. In particular if f
is strictly convex we only need to impose knowledge at the left of the box X. Therefore
σL has to be known for all t ∈ T, and σR is unconstrained. We refer to [27] for a more
precise discussion on the choice of the boundary constraint.

3 A convex optimization approach for mv solu-

tions on compact sets

In the latter section, we introduced mv solutions for scalar hyperbolic equations. Note
that measures are fully characterized by their moments on compact sets, see e.g. [24,
p. 52]. This means in particular that moments are the quantities of interest. The aim
of this section is to express formulations (15)-(16) as constraints on the moments, to
explain how one can compute numerically these moments thanks to the moment-SOS
hierarchy. We also show how one can interpret these moments in the case where the
initial measure is concentrated.

3.1 Moment constraints for the entropy mv solution

Let ν ∈M (K)+, with K := T×X×Y. In the following, we derive moment constraints
that will imply that ν can be desintegrated as follows

dν(t, x, y) = dt dx dµ(t,x)(dy) (17)

or, equivalently,
ν = λTλXµ(t,x), (18)

where µ is an entropy mv solution satisfying (15) and (16). In (17) the measure ν is
called an occupation measure and the Young measure µ is its conditional measuring y
given t and x. We also need to introduce the following time boundary measures

dν0(t, x, y) := δ0(dt) dxσ0(dy), dνT (t, x, y) := δT (dt) dxσT (dy) (19)
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whose supports are K0 := {0}×X×Y and KT := {T}×X×Y respectively. Similarly,
we introduce the following space boundary measures.

dνL(t, x, y) := dt δL(dx)σL(dy), dνR(t, x, y) := dt δR(dx)σR(dy) (20)

whose supports are given by KL := T×{L}×Y and KR := T×{R}×Y respectively.
First, to ensure that the marginal of ν with respect to t and x is the Lebesgue

measure on T×X, it suffices to impose that:∫
K
tα1xα2 dν(t, x, y) =

∫
T×X

tα1xα2 dt dx, α ∈ N2. (21)

In a similar manner, we can enforce the respective marginal of the boundary measures
to be products of an Dirac measure and the Lebesgue as follows∫

K0

0α1xα2 dν0(t, x, y) =

∫
X

0α1xα2dx, α ∈ N2, (22)

∫
KT

Tα1xα2 dνT (t, x, y) =

∫
X
Tα1xα2dx, α ∈ N2, (23)∫

KL

tα1Lα2 dνL(t, x, y) =

∫
T
tα1Lα2dt, α ∈ N2 (24)

and ∫
KR

tα1Rα2 dνR(t, x, y) =

∫
T
tα1Rα2dt, α ∈ N2. (25)

Next, we aim at proving that (15) and (16) can also be expressed by moment
constraints. We split the exposition into two steps: the first one deals with (15), while
the second deals with (16).

3.1.1 First step: enforcing (15) by moment constraints

Lemma 1. Let φα1 (t, x, y) := tα1xα2y and φα2 (t, x, y) := tα1xα2f(y) for α ∈ N2. Linear
constraint (15) is equivalent to∫

K

(
∂φα1
∂t

+
∂φα2
∂x

)
dν+

∫
K0

φα1 dν0−
∫
KT

φα1 dνT +

∫
KL

φα2 dνL−
∫
KR

φα2 dνR = 0 (26)

for all α ∈ N2.

Proof of Lemma 1 Since T × X is a compact set, as a consequence of the Stone-
Weierstrass theorem, we can restrict the test functions to ψ1 = tα1xα2 for α ∈ N2 to
enforce (15). 2
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3.1.2 Second step: enforcing (16) by moment constraints

As noticed in Remark 2, the entropy inequality is satisfied for all convex pairs (η, q)
if and only it is satisfied for all Kruzkhov entropies given in (8). To express (16)
as moment constraints, we are faced with two issues: first, taking into account an
uncountable family of functions parametrized by v ∈ Y and, second, the absolute
value function v 7→ |v| is not a polynomial. To deal with the uncountable family of
functions, we introduce v as a new variable. To treat the absolute value, we double the
number of measures.

More precisely, we define the Borel measures ϑ+, ϑ− whose supports are defined as
follows

K+ := spt(ϑ+) = {(t, x, y, v) ∈ K×Y : y ≥ v},

K− := spt(ϑ−) = {(t, x, y, v) ∈ K×Y : y ≤ v}.

Similarly, we define the time boundary measures ϑ+0 , ϑ−0 , ϑ+T and ϑ−T with the
following supports

K+
0 := spt(ϑ+0 ) = {(t, x, y, v) ∈ K0 ×Y : y ≥ v},

K−0 := spt(ϑ−0 ) = {(t, x, y, v) ∈ K0 ×Y : y ≤ v},
(27)

and

K+
T := spt(ϑ+T ) = {(t, x, y, v) ∈ KT ×Y : y ≥ v},

K−T := spt(ϑ−T ) = {(t, x, y, v) ∈ KT ×Y : y ≤ v}.
(28)

Finally, let us define the space boundary measures ϑ+L , ϑ−L , ϑ+R and ϑ−R with the
following supports

K+
L := spt(ϑ+L ) = {(t, x, y, v) ∈ KL ×Y : y ≥ v}

K−L := spt(ϑ−L ) = {(t, x, y, v) ∈ KL ×Y : y ≤ v}
(29)

and

K+
R := spt(ϑ+R) = {(t, x, y, v) ∈ KR ×Y : y ≥ v},

K−R := spt(ϑ−R) = {(t, x, y, v) ∈ KR ×Y : y ≤ v}.
(30)

We are now in position to state the following lemma.

Lemma 2 (Recovering all Kruzkhov entropies). Assume that

ϑ+ + ϑ− = ν ⊗ λY, (31)

ϑ+0 + ϑ−T = ν0 ⊗ λY, ϑ+T + ϑ−T = νT ⊗ λY, (32)

ϑ+L + ϑ−L = νL ⊗ λY, ϑ+R + ϑ−R = νR ⊗ λY. (33)
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Then, (16) is equivalent to∫
K+

θ(v)

(
∂ψ2

∂t
(y − v) +

∂ψ2

∂x
(f(y)− f(v))

)
dϑ+

+

∫
K−

θ(v)

(
∂ψ2

∂t
(v − y) +

∂ψ2

∂x
(f(v)− f(y))

)
dϑ−

+

∫
K+

0

θ(v)ψ2(0, x)(y − v)dϑ+0 +

∫
K−0

θ(v)ψ2(0, x)(v − y)dϑ−0

−
∫
K+

T

θ(v)ψ2(T, x)(y − v)dϑ+T −
∫
K−T

θ(v)ψ2(T, x)(v − y)dϑ−T

+

∫
K+

L

θ(v)ψ2(t, L)(f(y)− f(v))dϑ+L +

∫
K−L

θ(v)ψ2(t, L)(f(v)− f(y))dϑ−L

−
∫
K+

R

θ(v)ψ2(t, R)(f(y)− f(v))dϑ+R −
∫
K−R

θ(v)ψ2(t, R)(f(v)− f(y))dϑ−R ≥ 0,

(34)

for all nonnegative functions θ ∈ C (Y).

Note that from the Stone-Weierstrass Theorem, the constraints (31), (32) and (33)
can be expressed as moment constraints: (31) holds if and only if, for all α ∈ N4,∫

K+∪K−
tα1xα2yα3vα4d(ϑ+ + ϑ−)(t, x, y, v) =

∫
K
tα1xα2yα3dν(t, x, y)

∫
Y
vα4dv (35)

and similarly for (32) and (33).

Proof of Lemma 2: For conciseness, we focus only on the first two term in (34). The
terms considering the boundary measures can be treated similarly. Let us prove that if
for all nonnegative functions θ ∈ C 1(Y) and all nonnegative functions ψ2 ∈ C 1(T×X),∫

K+

θ(v)

(
∂ψ2

∂t
(y − v) +

∂ψ2

∂x
(f(y)− f(v))

)
dϑ+

+

∫
K−

θ(v)

(
∂ψ2

∂t
(v − y) +

∂ψ2

∂x
(f(v)− f(y))

)
dϑ− =∫

K+∪K−
θ(v)

(
∂ψ2

∂t
|y − v|+ ∂ψ2

∂x
sign(y − v)(f(y)− f(v))

)
d(ϑ+ + ϑ−) ≥ 0

(36)

then the following inequality holds, for all test functions ψ2 ∈ C 1(T×X) and all v ∈ Y:∫
T×X×Y

∂ψ2

∂t
|y − v|+ ∂ψ2

∂x
sign(y − v)(f(y)− f(v))dν ≥ 0. (37)

First, observe that (31) implies that∫
K+∪K−

θ(v)

(
∂ψ2

∂t
|y − v|+ ∂ψ2

∂x
sign(y − v)(f(y)− f(v))

)
d(ϑ+ + ϑ−) =∫

Y
θ(v)

(∫
T×X×Y

(
∂ψ2

∂t
|y − v|+ ∂ψ2

∂x
sign(y − v)(f(y)− f(v))

)
dν

)
dv.

(38)

Then, since (36) holds for any nonnegative functions θ, and y− v = |y− v| on spt(ϑ+)
(resp. v − y = |y − v| on spt(ϑ−)),∫

T×X×Y

(
∂ψ2

∂t
|y − v|+ ∂ψ2

∂x
sign(y − v)(f(y)− f(v))

)
dν ≥ 0. (39)
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2

In order to express (16) as moment constraints, it remains to prove that the func-
tions ψ2 and θ can be replaced by suitable polynomials. Here, in contrast with the
first step, where the functions ψ1 were unconstrained, the functions ψ2 and θ have to
be nonnegative. To address this issue, we again use positivity certificates from real
algebraic geometry.

Lemma 3. Let

φ+,α1 (t, x, y, v) := tα1(T − t)α2(x− L)α3(R− x)α4(v − y)α5(ȳ − v)α6(y − v),

φ−,α1 (t, x, y, v) := tα1(T − t)α2(x− L)α3(R− x)α4(v − y)α5(ȳ − v)α6(v − y),

φ+,α2 (t, x, y, v) ::= tα1(T − t)α2(x− L)α3(R− x)α4(v − y)α5(ȳ − v)α6(f(y)− f(v)),

φ−,α2 (t, x, y, v) := tα1(T − t)α2(x− L)α3(R− x)α4(v − y)α5(ȳ − v)α6(f(v)− f(y))

(40)

for α ∈ N6. Then, (16) is equivalent to∫
K+

(
∂φ+,α1

∂t
+
∂φ+,α2

∂x

)
dϑ+ +

∫
K−

(
∂φ−,α1

∂t
+
∂φ−,α2

∂x

)
dϑ−

+

∫
K+

0

φ+,α1 dϑ+0 +

∫
K−0

φ−,α1 dϑ−0 −
∫
K+

T

φ+,α1 dϑ+T −
∫
K−T

φ−,α1 dϑ−T

+

∫
K+

L

φ+,α2 dϑ+L +

∫
K−L

φ−,α2 dϑ−L −
∫
K+

R

φ+,α2 dϑ+R −
∫
K−R

φ−,α2 dϑ−R ≥ 0

(41)

for all α ∈ N6.

Proof of Lemma 3: The proof relies on a result of real algebraic geometry. Again, in-
voking the Stone-Weierstrass Theorem, in (16) we can restrict the test functions ψ2 and
θ to be polynomials. To enforce their positivity, we use Handelman’s Positivstellensatz
[19] that implies that

ψ2(t, x) =
∑

α1,α2,α3,α4∈N4

cψ2
α t

α1(T − t)α2(x− L)α3(R− x)α4 ,

θ(v) =
∑

α5,α5∈N
cθα(v − y)α5(ȳ − v)α6

(42)

with finitely many positive real coefficients cψ2
α , cθα. Now, (41) implies that

∑
α∈N6

cψ2
α c

θ
α

{∫
K+

(
∂φ+,α1

∂t
+
∂φ+,α2

∂x

)
dϑ+ +

∫
K−

(
∂φ−,α1

∂t
+
∂φ−,α2

∂x

)
dϑ−

+

∫
K+

0

φ+,α1 dϑ+0 +

∫
K−0

φ−,α1 dϑ−0 −
∫
K+

T

φ+,α1 dϑ+T −
∫
K−T

φ−,α1 dϑ−T

+

∫
K+

L

φ+,α2 dϑ+L +

∫
K−L

φ−,α2 dϑ−L −
∫
K+

R

φ+,α2 dϑ+R −
∫
K−R

φ−,α2 dϑ−R

}
≥ 0,

(43)
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which, by linearity of the integrals and the derivatives, recovers (34) for ψ2 and θ given
in (42). Consequently, by Lemma 2, (34) implies that (16) holds. 2

Remark 4. Note that the measure defined in (17) is similar to the occupation measure
introduced in [25], which deals with optimal control of nonlinear finite-dimensional
systems. This notion has been further used in many other contexts, as for instance the
computation of region of attraction [20]. Therefore, the formulation given in (15)-(16)
might be instrumental to solve other problems than computing numerically the solution
of scalar hyperbolic PDE.

The next section aims at showing that a moment formulation can be numerically
solved thanks to the moment-SOS hierarchy and SDP.

3.2 The Generalized Moment Problem and its relaxations

Roughly speaking, the Generalized Moment Problem (GMP) is an infinite-dimensional
linear optimization problem on finitely many Borel measures νi ∈ M (Ki)+ whose
supports are contained in given sets Ki ⊆ Rni , with i = 1, . . . , k and ni ∈ N. That
is, one is interested in finding measures whose moments satisfy (possibly countably
many) linear constraints and which minimize a linear criterion. In full generality, the
GMP is intractable, but if all Ki are basic semi-algebraic sets and the integrands
are polynomials (semi-algebraic functions are also allowed1), then one may provide
an efficient numerical scheme to approximate as closely as desired any finite number
of moments of optimal solutions of the GMP. It consists of solving a hierarchy of
semidefinite programs2 of increasing size. Convergence of this numerical scheme is
guaranteed by invoking powerful results from Real Algebraic Geometry (essentially
positivity certificates).

Let hi ∈ R[wi] and hi,k ∈ R[wi] be polynomials in the vector of indeterminates
wi ∈ Rni and let bk be real numbers, for finitely many i = 1, 2, . . . , N and countably
many k = 1, 2, . . .. The GMP is the problem

ρ? := infν
∑N

i=1

∫
Ki
hidνi

s.t.
∑N

i=1

∫
Ki
hi,kdνi 5 bk, k = 1, 2, . . .

νi ∈M (Ki)+, i = 1, . . . , N.

(44)

Entropy mv solution as a GMP In the scalar hyperbolic case, the measures νi
under consideration are ν, νT , ν0, νR, νL and all the measures we have introduced when
transforming the Kruzkhov inequality into moment constraints. The sets Ki correspond
to T, X and Y. Finally, the polynomials hi,j are given in (26) (conservation law) (41)
(entropy inequality), (35) (Kruzhkov entropies), and (21-25) (boundary measures).

We may also define an objective functional∫
K
hdν +

∫
K0

h0dν0 +

∫
KT

hTdνT +

∫
KL

hLdνL +

∫
KR

hRdνR, (45)

1A semi-algebraic function is a function whose graph is a semi-algebraic set, i.e. it is described by finitely
many polynomial inequalities and equations.

2A semidefinite program is a particular class of a convex conic optimization problem that can be solved
numerically efficiently.
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with h, h0, hT , hL, hR ∈ R[t, x, y].
If σ0 = δy0(x) with y0 an initial condition in (13)-(14) and, in addition, if one imposes

suitable boundary measures as exposed in Remark 3, then this objective functional is
not especially useful to recover the entropy mv solution of scalar hyperbolic PDE,
since the corresponding Young measure is concentrated as a consequence of Theorem
1: there is nothing to be optimized. However, with such an objective functional, one
can compute quantities of interest such as the energy of the solution. Moreover, our aim
is to relax the GMP in order to solve it numerically and, then, this objective functional
might be helpful to accelerate the convergence of the corresponding relaxations. We
refer to Section 4 for more discussions about the choice of objective functionals for the
Riemann problem of the Burgers equation.

Finally, one is able to define a GMP describing entropy mv solution:

infν, νT , νL and/or νR (45) (objective functional)

s.t. (26) (conservation law),
(41) (entropy inequality),
(35) (Kruzhkov entropies),
(21− 25) (boundary measures),
ν ∈M (K)+ (occupation measure),
νT ∈M (KT )+ (time boundary measure),
νL ∈M (KL)+ (space boundary measure),
and/or νR ∈M (KR)+ (space boundary measures)

(46)

where the measures defined in (31)-(33) and related to the Kruzkhov entropies are
considered as implicit variables.

From measures to moments Instead of optimizing over the measures in problem
(46), we optimize over their moments. For simplicity and clarity of exposition, we
describe the approach in the case of a single unknown measure ν, but it easily extends
to the case of several measures. So consider the simplified GMP:

ρ? = infν
∫
K hdν

s.t.
∫
K hkdν 5 bk, k = 1, 2, . . .
ν ∈M (K)+.

(47)

The moment sequence z = (zα)α∈Nn of a given measure ν ∈M (K)+ is defined by

zα =

∫
K

wα dν, α ∈ Nn (48)

where wα = wα1
1 · . . . · wαn

n . Conversely, given a sequence (zα)α∈Nn , if (48) holds for
some ν ∈ M (K)+ we say that the sequence has the representing measure ν. Recall
that measures on compact sets are uniquely characterized by their moments; see e.g.
[24, p. 52].

Let Nnd := {α ∈ Nn : |α| ≤ d}, where |α| :=
∑n

i=1 αi, and s(d) :=
(
n+d
d

)
. A vector

p := (pα)α∈Nn
d
∈ Rs(d)is the coefficient vector (in the monomial basis) of a polynomial

p ∈ R[w] with d = deg(p) expressed as p =
∑

α∈Nn
deg(p)

pαwα. Next, integration of p

with respect to a measure ν involves only finitely many moments:∫
K
p dν =

∫
K

∑
α∈Nn

d

pαwα dν =
∑
α∈Nn

d

pα

∫
K

wα dν =
∑
α∈Nn

d

pα zα.
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Next, define a pseudo-integration with respect to an arbitrary sequence z ∈ RNn
by:

`z(p) :=
∑
α∈Nn

pαzα (49)

and `z is called the Riesz functional. Moment sequences can be characterized via the
Riesz functional:

Theorem 2 (Riesz-Haviland [24, Theorem 3.1]). Let K ⊆ Rn be closed. A real se-
quence z is the sequence of some measure ν supported on K if and only if `z(p) ≥ 0
for all p ∈ R[w] nonnegative on K.

Assuming that K is closed, we can reformulate the GMP (47) as a linear problem
on moment sequences. Consider the optimization problem:

ρ∗ = infz `z(h)
s.t. `z(hk) 5 bk, k = 1, 2, . . .

`z(p) ≥ 0, for all p ∈ R[w] nonnegative on K.
(50)

By Theorem 2, the two formulations (50) and (47) are equivalent. Of course problem
(50) is still numerically intractable.

The second and last step to approximate GMPs numerically consists of replacing
the cone of polynomials nonnegative on K by a more tractable cone. This is where one
exploits the fact that K is basic semi-algebraic set.

From nonnegative polynomials to sums of squares Characterizing nonnega-
tivity of polynomials is an important issue in real algebraic geometry. Let K be a basic
semi-algebraic set, i.e.:

K = {w ∈ Rn : g1(w) ≥ 0, . . . , gm(w) ≥ 0}. (51)

for some polynomials g1, . . . , gm ∈ R[w], and assume that K is compact. In addition
assume that one of the polynomials, i.e. the first one, is g1(w) := N −

∑n
i=1 w2

i for
some N ∈ N sufficiently large3. For notational convenience we let g0(w) := 1.

Remark 5. Note that the compact sets T,X and Y which are defined in the latter
section can be expressed as basic semi-algebraic compact sets. Indeed, one has

T = {t ∈ R : t(T−t) ≥ 0}, X = {x ∈ R : (x−L)(R−x) ≥ 0}, Y = {y ∈ R : (y−y)(ȳ−y) ≥ 0}.
(52)

Recall that a polynomial s ∈ R[w] is a sum of squares (SOS) if there are finitely
many polynomials q1, . . . , qr such that s(w) =

∑r
j=1 qj(w)2 for all w.

The following result due to Putinar [32] is crucial to approximate (50) numerically.

Theorem 3 (Putinar’s Positivstellensatz). If p > 0 on K then p =
∑m

j=0 sjgj for some
SOS polynomials sj ∈ R[w], j = 0, 1, . . . ,m.

3This condition is slightly stronger than asking K to be basic semi-algebraic compact. However, the
inequality N −

∑n
i=1 w2

i ≥ 0 can always be added as a redundant constraint to the description of a basic
semi-algebraic compact set.
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By a density argument, checking nonnegativity of `z on polynomials nonnegative
on K can be replaced by checking nonnegativity only on polynomials that are strictly
positive on K and hence on those that have an SOS representation as in Theorem 3.

Next, for a given integer d, denote by Σ[w]d ⊂ R[w] the set of SOS polynomials of
degree at most 2d, and define the cone Q(g) ⊂ R[w] by:

Qd(g) :=


m∑
j=0

σj gj : deg(σj gj) ≤ 2d, σj ∈ Σ[w], j = 0, 1, . . . ,m

 (53)

and observe that Qd(g) ⊂ Qd+1(g) consist of polynomials positive on K for all d.
Let vd := (wα)|α|≤d ∈ R[w]s(d) be the vector of monomials of degree at most d.

For instance, for n = 2 and d = 3, vd = (1 w1 w2 w
2
1 w1w2 w

2
2 w

3
1 w

2
1w2 w1w

2
2 w

3
2). For

j = 0, 1, . . . ,m, let dj denote the smallest integer larger than or equal to deg(gj)/2,
let Md−dj (gj z) denote the real symmetric matrix linear in z corresponding to the

entrywise application of `z to the matrix polynomial gj vd−djv
T
d−dj . For j = 0, i.e.,

g0 = 1, this matrix is called moment matrix. It turns out that `z(gj q
2) ≥ 0 for all q ∈

R[w]d if and only if Md−dj (gj z) � 0 where the inequality means positive semidefinite.
Therefore checking whether `z is nonnegative on Qd(g) reduces to checking whether
Md−dj (gj z) � 0 for j = 0, 1, . . . ,m, which are convex linear matrix inequalities in z.

Moment-SOS hierarchy The following finite-dimensional semidefinite program-
ming (SDP) problems are relaxations of the moment problem (50):

ρ∗d = infz `z(h)
s.t. `z(hk) 5 bk, deg(hk) ≤ 2d, k = 1, 2, . . .

Md−dj (gj z) � 0, j = 0, 1, . . . ,m
(54)

and they are parametrized by the relaxation order d.

Theorem 4 (Convergence of the moment-SOS hierarchy [24]). Assume there is some
M > 0 and k ∈ N such that `z(hk) ≤ bk implies `z(1) < M . Then:

(i) The semidefinite relaxation (54) has an optimal solution zd = (zdα), ρd ≤ ρd+1

and limd→∞ ρd = ρ∗;

(ii) If (50) has a unique minimizer z∗, then

lim
d→∞

zdα = z∗α, ∀α ∈ Nn. (55)

A proof is provided in [24], but, for clarity, we recall the steps and the arguments
used to obtain the result.

Proof of Theorem 4: Let z := (zα)α∈Nn
2d

be a feasible solution of (54). From

Md−d1(g1 z) � 0 we obtain
∑n

i=1 `z(w2
i ) ≤ Nz0, and in particular `z(w2

i ) ≤ Nz0,
i = 1, . . . , n. By iterating one also obtains `(w2d

i ) ≤ Ndz0, i = 1, . . . , n. Moreover,
combining with Md(z) � 0, from [24]:

|zα| ≤ max

[
z0, max

i=1,...,n
`z(w2d

i )

]
=: τd, ∀α ∈ Nn2d.

This inequality together with the fact that `z(1) = z0 is bounded implies that the
moment sequence z is uniformly bounded. Then, the feasible set of (54) is closed,
bounded, and hence compact. Hence (54) has an optimal solution zd.
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Next, for a given d, let zd be an optimal solution to (54) and complete zd with zeros
to make it an infinite sequence indexed by α ∈ Nn. Then define:

ẑdα :=
zdα
τk
, ∀α ∈ Nn; 2k − 1 ≤ |α| ≤ 2k; k = 1, . . . , d. (56)

By construction, |ẑdα| ≤ 1, for all α ∈ Nn and therefore ẑd becomes an element of
the unit ball B1 of the Banach space `∞ of bounded sequences, equipped with the
sup-norm. Since `∞ is the topological dual of `1, by the Banach-Alaoglu theorem [2,
Theorem 3.16], B1 is weak star (sequentially) compact. Hence there exists ẑ? ∈ B1 and
a subsequence {dk} ⊂ N such that ẑdk → ẑ? for the weak star topology σ(`∞, `1). In
particular, for every α ∈ Nn, limk→∞ ẑdkα = ẑ?α. Since τk is bounded for all k = 1, . . . , d,
using (56) in the other direction, there exists z∗ = (z∗α)α∈Nn such that

lim
k→∞

zdkα = z?α, ∀α ∈ Nn. (57)

The pointwise convergence (57) implies Md(gj z?) � 0 for j = 0, 1, . . . ,m. Hence by
Theorem 3, z∗ has a representing measure ν supported on K. In particular, from (57),
`z(hk) 5 bk for all k = 1, 2, . . . which proves that ν is a feasible solution of (47). In
addition,

ρ? ≥ lim
k→+∞

ρ?dk =

∫
K
hdν ≥ ρ?, (58)

which proves that ν is an optimal solution of (47). Finally, if (47) has a unique
minimizer ν? then ν = ν? and the convergence (57) holds for the whole sequence,
which yields (55). This concludes the proof. 2

Remark 6 (Extension to several measures). Theorem 4 extends naturally to the GMP
(44) with finitely many measures. A more detailed discussion is provided in [24, Section
4.5.2 p. 88].

Convergence of the relaxations of (46) Problem (46) can be approximated by
a hierarchy of semidefinite relaxations as mentioned in Remark 6. Moreover observe
that the mass of all measures appearing in (46) is bounded, because their marginals
with respect to time and/or space are Lebesgue. Indeed, for instance,

∫
T×X×Y dν =∫

T×X×Y dt dxµ(t,x)(dy) = 1, where we have used the fact that µ is a Young measure.
Then, according to Remark 6 and Theorem 4, optimal solutions of the moment-

SOS hierarchy (54) (adapted to the present context) converge to optimal solutions of
(46) as d goes to infinity, in the sense of (55). In particular, one may extract the mv
solution of (15) and even obtain the entropy solution of (13)-(14), provided that σL
and/or σR and σ0 are concentrated.

3.3 Interpretation of the moment solutions

An optimal solution zd at step d of the moment-SOS hierarchy of relaxations (54)
adapted to the GMP (46), consists of finite sequences of approximate moments, one
for each unknown measure of (46). If one is interested in statistical properties of the mv
solution such as its mean or its variance, the moments provide the perfect information,
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at least for sufficiently large d. However, if one is rather interested in properties of the
graph of the entropy solution, a post processing step is required.

An inverse problem Recovering the graph of the solution {(t, x, y(t, x)) : t ∈
T, x ∈ X} ⊂ T × X × Y from the moments of the measure ν = λTλXδy(t,x) is an
inverse problem whose detailed study is out of the scope of this paper, see e.g. [4] in
the context of controlled ODEs. However, we briefly outline here one possible strategy
with a formal justification. It turns out that it works surprising well in all our examples
of the Burgers equation with or without shock.

Let w = (t, x, y) and zα =
∫
T×X×Y wα dν denote the vector of moments of ν. For

any polynomial p ∈ R[w]d with vector of coefficients p in the monomial basis, it holds

p>Md(z)p =

∫
p2 dν.

Consequently, if p is in the kernel of Md(z), we have that∫
T×X×Y

p2 dν = 0.

In other words, the support of the measure is contained in the zero level set of every
polynomial (whose vector of coefficients is) in the kernel of the moment matrix. How-
ever, this inclusion can be strict in some cases. Therefore we propose to also consider
polynomials corresponding to small eigenvalues. Let us explain this now:

Since the moment matrix is positive semidefinite, it has a spectral decomposition

Md(z) = PEP> (59)

where P is an orthonormal matrix whose columns are denoted pi, i = 1, 2, . . . and
satisfy p>i pi = 1 and p>i pj = 0 if i 6= j, and E is a diagonal matrix whose diagonal
entries are eigenvalues ei+1 ≥ ei ≥ 0 of the moment matrix. Each column pi is the
vector of coefficients in the monomial basis of a polynomial pi ∈ R[w], so that

p>i Md(z)pi =

∫
p2i dν = ei.

The following result shows that the measure is concentrated on a sublevel set of an
SOS polynomial constructed from the spectral decomposition of the moment matrix.

Lemma 4 (Concentration inequality). Let r ∈ N and β > 0. Define

γ =

∑r
i=1 ei
β

and

psos =
r∑
i=1

p2i . (60)

Then
ν({w : psos(w) ≤ γ}) ≥ 1− β.
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The proof of Lemma 4 follows readily from the inequality

ν({w : psos(w) > γ}) ≤
∫
psos dν

γ
= β

which holds since ν is a probability measure and psos is non-negative. Lemma 4 justifies
the following algorithm, which extracts from a grid the values at which the polynomial
psos is small:

Input moment matrix Md(z) of measure ν = λTλXδy(t,x), small real ε > 0, grid points
(ti, xj , yk)i,j,k=1,...,N ⊂ T×X×Y;

Step 1 Compute spectral decomposition (59) of Md(z) and construct SOS polynomial
psos in (60) with the largest number of terms r such that

∑r
i=1 ei < ε;

Step 2 For each i, j, k = 1, . . . , N , evaluate pi,j,k := psos(ti, xj , yk);

Step 3 For each i, j = 1, . . . , N , let yi,j := yk∗ where k∗ := arg mink pi,j,k;

Output Approximation (yi,j)i,j=1,...,N ⊂ Y of y(t, x) at grid points (ti, xj)i,j=1,...,N ⊂
T×X.

The computational burden is modest: an eigenstructure decomposition at Step 1, and
grid point evaluations of polynomial psos at Step 2.

4 The Riemann problem for the Burgers equa-

tion

For a numerical illustration, we consider the classical Riemann problem (see e.g., [11])
for a Burgers equation. In particular, we choose the flux

f(y) =
1

4
y2.

The Riemann problem to this conservation law is a Cauchy problem with the following
initial condition, piecewise constant with one point of discontinuity:

y0(x) =

{
l if x < 0,
r if x > 0,

where l, r ∈ R. The solution to the Riemann problem depends strongly on the values
of l and r. In particular:

1. If l > r, the shock at the initial condition spreads along the characteristics.

2. If l < r, the solution is not necessarily unique. The entropy condition allows to
select the right solution, which is known as a rarefaction wave.

Both cases are interesting from a numerical point of view for their own reasons. In
general, the first case is difficult to tackle because of the discontinuity. In general,
numerical schemes based on discretization tend to smoothen out the shock. Indeed,
recovering numerically the exact point of discontinuitiy is a challenge for these schemes.

In the second case the solution is continuous, but not necessarily unique. For the
Burgers equation, it has been shown that one single entropy condition is sufficient to
guarantee uniqueness of the solution [7]. To the best of our knowledge, there is no
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similar result for the uniqueness of entropy mv solutions for Burgers equation with
concentrated initial data, except for classical solutions [8].

We present numerical results for both cases. We are going to consider l, r ∈ {0, 1}.
Following the discussion yielding (11), we can assume that the solution takes values only
in Y = [0, 1]. The time-space-window on which we consider the solution is T = [0, 1]
and X = [L,R] = [−1

2 ,
1
2 ].

Further note that, from the initial condition, we can derive that

y(t, L) = l, ∀t ∈ T.

Moreover, due to positivity of y, the solution on T×X does not depend on the initial
condition for x > 1

2 .
Remark on the significance of the numerical results upfront We need to

emphasize that these experiments are by no means conclusive. Our implementation
is based on the Matlab interface Gloptipoly3 [21] and the SDP solver of MOSEK [5].
The purpose of the numerical examples is to show that our framework actually works
in practice and with a proper implementation might actually provide an alternative to
schemes based on discretization.

4.1 Shock waves

Let l = 1 and r = 0. As it has been noticed before, with such an initial condition the
solution is discontinuous, for all t > 0. The unique analytical solution corresponding
to this initial condition is

y∗(t, x) =

{
1 x > t

4 ,
0 x < t

4 .
(61)

As an objective function, we choose the default implemented in Gloptipoly, which
minimizes the trace of the moment matrix. Since the trace is the convex envelope
of the rank on the set of matrices with norm less than one, this is likely to cause
early convergence of the moment-SOS hierarchy: low rank solutions correspond to
measures supported on sets of zero Lebesgue measure. As in this case the marginal of
ν with respect to y is supported on {0, 1} we expect this criterion to be appropriate to
accelerate convergence. Indeed, for d = 6 (i.e. moments of degree up to 12) we end up
with the following moments for y:

(z0,0,k)k=0,1,... = (1.0000, 0.6250, 0.6250, 0.6250, 0.6250, . . .)

which correspond (up to numerical accuracy) exactly with the moments of the analytic
solution.

Localizing the shock
In order to approximate the solution from our approximated moments we follow

the path lined out in Section 3.3. Applying our algorithm with ε = 10−6 yields a
polynomial psos with r = 54 terms in the approximate kernel of the moment matrix of
size 84, and to the approximated solution represented on Figure 1.

As already mentioned the computed moments can be used in order to approximate
the location of the shock at some given time t. Here we will take t = 0.75, consequently
the shock is located at exactly x = 0.1875. We used a standard Godunov scheme (we
refer to [27] for more details) to compute the solution up to this time. For space
discretization, we took a mesh size of 0.0005 and a consistent discretization in time
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Figure 1: Approximation of the solution y(t, x) obtained with our GMP approach, in the
case of a shock.

x 0.1850 0.1855 0.1860 0.1865 0.1870 0.1875 0.1880 0.1885
Godunov 0.9999 0.9991 0.9936 0.9580 0.7647 0.2724 0.0123 0.0000
GMP 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Table 1: Approximation of y(0.75, x) with Godunov and GMP.

such that the scheme stays stable. In Table 1, we display the obtained values from this
approach on an interval around the shock. We can see the typical behaviour of shock
smoothing. In contrast, the values obtained by our GMP approach exactly represent
the position of the shock.

4.2 Rarefaction waves

Now let l = 0 and r = 1. As it has been noticed before, with such an initial condition,
entropy conditions are crucial to select the right solution, i.e., the solution with a good
physical meaning. The analytical entropy solution corresponding to this example is

y(t, x) =


0 x ≤ 0,
2x
t 0 ≤ x ≤ t

2 ,
1 x ≥ t

2 .
(62)

Numerically implementing all entropy pairs of Kruzkhov is possible (as seen in
Section 3.1), but heavy. It is known that the entropy η(y) = y2 provides all necessary
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Figure 2: Approximation of the solution y(t, x) obtained with our GMP approach, in the
case of a rarefaction wave.

information to make the entropy solution unique for Burgers equation [7]. Then, instead
of using all Kruzkhov pairs, we propose the following family of entropies in this example:

ηk(y) = yk, ∀k ∈ N (63)

and the corresponding polynomial functions qk. Note that η is strictly convex on
Y = [0, 1]. In particular, we do not have to split the measures in (16) into two
measures, since there is no absolute value appearing in (63). It is neither necessary to
introduce a lifting variable as was discussed in Section 3.1. Finally, we define the sum
over all entropy constraints as an objective function to be maximized.

Solving the relaxation of order d = 6 (i.e. moments of degree up to 12), we obtain
the following moments for the marginal on y:

(z0,0,k)k=0,1,... = (1.0000, 0.3750, 0.3333, 0.3125, 0.3000, 0.2917, 0.2857, 0.2812, . . .)

which, again up to numerical accuracy, coincide with the moments of the actual analytic
entropy solution. Applying the algorithm from Section 3.3 with ε = 10−6 yields a
polynomial psos with r = 48 terms in the approximate kernel of the moment matrix of
size 84, and the approximated solution represented on Figure 2.

5 Conclusion

In this paper, we have provided a new method to solve scalar polynomial hyperbolic
partial differential equations. This method relies on the moment-SOS hierarchy sur-
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veyed in [24]. More precisely, we have proved that the truncated moments associated to
the measure-valued solution formulation converge to the Dirac measure concentrated
on entropy solution to the scalar polynomial solution. we believe that all the arguments
of our paper extend to the case of a spatial variable x of dimension greater than one.

The idea of solving linear problems on measures to solve nonlinear differential equa-
tion is not new. In the context of nonlinear ordinary differential equations (ODEs),
the linear problems involved measures called occupation measures. Roughly speaking,
occupation measures allow to measure the time spent by a graph of the trajectory of
the ODE in a given subset of the state space. Provided that the nonlinearities con-
sidered are polynomial, one can transform the nonlinear ODE into a linear moment
problem, in turn solved numerically with the moment-SOS hierarchy, see [25] and the
survey [31]. Therefore, the current paper can be seen as an extension to (uncontrolled)
PDEs of the results provided in [25] for (controlled) ODEs.

This opens many further research lines. For example:

• One of the most interesting aspect of the notion of very weak solution is the linear
formulation on measures of nonlinear differential equations. Such formulations
have been useful to solve many problems appearing in the ODE framework, such
as optimal control [25] or approximation of region of attraction [20]. The challenge
was to prove that the measure formulation was not a relaxation of the original
nonlinear problem. For the hyperbolic conservation law studied in our paper, we
have used entropy inequalities for that purpose. We are wondering whether it is
possible to extend these techniques to the case of other nonlinear PDEs.

• A class of other nonlinear PDEs could be parabolic ones. One of the interest
of these equations is that they regularize the solution, whatever is the initial
condition. Therefore, as it is done for ODEs in [25], it might be possible to define
test functions depending on the solution to the parabolic equation and then define
an occupation measure associated to the latter. This together with the relaxed
control theory surveyed in [12] might be instrumental to solve optimal control
problem for nonlinear parabolic equations.

• The Burgers equation is irreversible. Roughly speaking, given a terminal condi-
tion y(T, x) with T > 0, there exists a continuum of initial conditions yielding
y(T, x), see e.g., [18]. Such a continuum can be described with measures and,
hence, our linear formulation might be useful to solve such inverse problems,
extending to PDEs what was developed in [20] for ODEs.

Acknowledgement: The authors would like to thank Matthieu Barreau for his
help with the Godunov numerical scheme and Sylvain Ervedoza for all the interest-
ing and encouraging discussions. This work also benefited from feedback from Yann
Brenier, Bruno Després, Maxime Herda, Milan Korda, Ondřej Kreml and Josef Málek.

A Proof of Theorem 1

The proof is divided into two steps. The first step consists in proving that v can be
replaced by y(t, x) or 〈µ(t,x), y〉. The second step aims at proving the contraction in-
equality given in (7). In each step, a special choice of test function is done in order to
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prove the result.

• First step: Doubling variable

Let us consider the entropy pair given in (8). For all (s, z) ∈ R+ × R, we choose
v = y(s, z), where y is an entropy solution to (12):∫ T

0

∫
R

(
∂ψ

∂t
〈µ(t,x), |y − y(s, z)|〉+

∂ψ

∂x
〈µ(t,x), sign(y − y(s, z))(f(y)− f(y(s, z))〉

)
dx dt

+

∫
R
ψ(0, x)〈σ0, |y − y(s, z)|〉dx−

∫
R
ψ(T, x)〈µ(t,x), |y − y(s, z)|〉dx.

(64)

Similarly, for all (s, z) ∈ R+ ×R, we set v = 〈µ(t,x), y〉 in (3) and use the fact that µ is
a probability measure:∫ T

0

∫
R

(
∂ψ

∂s
〈µ(t,x), |y − y(s, z)|〉+

∂ψ

∂z
〈µ(t,x), sign(y − y(s, z))(f(y)− y(s, z))〉

)
ds dz

+

∫
R
ψ(0, z)〈µ(t,x), |y − y0(z)|〉dz ≥ 0.

(65)

Let us choose ψ̃ := ψ̃(t, x, s, z). Thanks to the two latter inequalities, one has∫
R+

∫
R

∫
R+

∫
R

((
∂ψ

∂s
+
∂ψ

∂t

)
〈µ(t,x), |y − y(s, z)|〉

+

(
∂ψ

∂z
+
∂ψ

∂x

)
〈µ(t,x), sign(y − y(s, z))(f(y)− f(y(s, z)))〉

)
ds dz dx dt

+

∫
R

∫
R
ψ(t, x, 0, z)〈µ(t,x), |y − y0(z)|〉dz dx

+

∫
R

∫
R
ψ(0, x, s, z)〈σ0, |y − y(s, z)|〉dz dx ≥ 0.

(66)

Let ρε ∈ C 1(R) satisfy ∫
R
ρε(s)ds = 1. (67)

For all ϕ ∈ C 1
c (R+ × R), one defines ψ̃ as follows

ψ̃(t, x, s, z) =
1

ε2
ρε

(
t− s
2ε

)
ρε

(
x− z

2ε

)
ϕ

(
t+ s

2
,
x+ z

2

)
. (68)

Therefore (
∂ψ̃

∂t
ψ̃ +

∂ψ̃

∂s

)
=

1

ε2
∂ϕ

∂t

(
t+ s

2
,
x+ z

2

)
ρε

(
x− z

2ε

)
ρε

(
t− s
2ε

)
(69)

and (
∂ψ̃

∂x
+
∂ψ̃

∂z

)
=

1

ε2
∂ϕ

∂x

(
t+ s

2
,
x+ z

2

)
)ρε

(
x− z

2ε

)
ρε

(
t− s
2ε

)
. (70)
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We aim at proving that

ρε

(
t− s
ε

)
→ δ(t− s) as ε→ 0, (71)

and

ρε

(
x− z
ε

)
→ δ(x− z) as ε→ 0, (72)

so that we will have, thanks to (69) and (70)∫
R+

∫
R

(
∂ϕ

∂t
〈µ(t,x), |y − y(t, x)|〉+

∂ϕ

∂x
〈µ(t,x), sign(y − y(t, x))(f(y)− f(y(t, x))〉

)
dx dt

+

∫
R
ϕ(0, x)〈µ(t,x), |y − y0(x)|〉dx ≥ 0.

(73)

Noticing that, for a fixed t > 0,

2

∫
R

1

2ε
ρ

(
t− s
ε

)
ds = 2, (74)

then, up to a change of variable, one has, for any continuous function φ := φ(t, s)∫
R

∫
R

1

ε
ρ

(
t− s
ε

)
φ(t, s)dt ds = 2

∫
R
φ(t, t)dt. (75)

Since φ is continuous and lies in a compact set, then it is uniformly continuous. There-
fore, one has

|t− s| ≤ 2ε⇒ |φ(t, s)− φ(t, t)| ≤Mε. (76)

Therefore, for any positive value k, it follows that∣∣∣∣∫
R+

∫
R+

1

ε
ρ

(
t− s
2ε

)
φ(t, s)− φ(t, t)dt ds

∣∣∣∣ ≤Mε

∫
R

∫
|t−s|≤2ε,|s|≤k,|t|≤k

1

ε
ρ

(
t− s
2ε

)
dt ds

≤4Mεk.

(77)

Note that
Mε → 0 as ε→ 0. (78)

Hence, ∣∣∣∣∫
R+

∫
R+

1

ε
ρ

(
t− s
2ε

)
(φ(t, s)− φ(t, t))dt ds

∣∣∣∣→ 0 as ε→ 0. (79)

Similarly, one can prove that, for any continuous function φ̃ := φ̃(x, z)∣∣∣∣∫
R

∫
R

1

ε
ρ

(
x− z

2ε

)
(φ̃(x, z)− φ̃(x, x))dt ds

∣∣∣∣→ 0 as ε→ 0. (80)

Finally, using (69) and (70), the equation (66) converges to∫
R+

∫
R

(
∂ϕ

∂t
〈µ(t,x), |y − y(t, x)|〉+

∂ϕ

∂x
〈µ(t,x), sign(y − y(t, x))(f(y)− f(y(t, x)))

)
dx dt

+

∫
R
ϕ(0, x)〈σ0, |y − y0(x)|〉dx ≥ 0,

(81)

25



as ε goes to 0.

• Second step: Contraction inequality

Given two positive values r ∈ R and T ∈ R+, let us choose ϕ as follows:

ϕ(t, x) = θε(t)∆ε(t, x), (t, x) ∈ R+ × R (82)

where

θε(t) :=


1 t ≤ T,
T − t
ε

T ≤ t ≤ T + ε,

0 t ≥ T + ε,

(83)

and

∆ε(t, x) :=


1 |x| ≤ r + C(T − t),
r + C(T − t)− |x|

ε
r + C(T − t) ≤ |x| ≤ r + C(T − t) + ε,

0 |x| ≥ r + C(T − t) + ε

(84)

where C denotes the Lipschitz constant of the function f . Differentating θε with respect
to t yields

∂θε(t)

∂t
:=

 −
1

ε
T ≤ t ≤ T + ε,

0
(85)

Differentiating ∆ε with respect to t yields

∂∆ε

∂t
:=

 −
C

ε
r + C(T − t) ≤ |x| ≤ r + C(T − t) + ε,

0 |x| ≥ r + C(T − t) + ε,
(86)

Finally, differentiating ∆ε with respect to x yields

∂∆ε

∂x
:=

 −
sign(x)

ε
r + C(T − t) ≤ |x| ≤ r + C(T − t) + ε,

0 |x| ≥ r + C(T − t) + ε.
(87)

Hence, using these functions in (81), one has

− 1

ε

∫ T+ε

T

∫
R

∆ε(t, x)〈µ(t,x), |y − y(t, x)|〉dt dx

− L

ε

∫ T

0

∫
r+C(T−t)≤|x|≤r+C(T−t)+ε

〈µ(t,x), |y − y(t, x)|〉dt dx

− 1

ε

∫
R+

∫
r+C(T−t)≤|x|≤r+C(T−t)+ε

sign(x)〈µ(t,x), sign(y − y(t, x))(f(y)− f(y(t, x)))〉dt dx

+

∫
R
ϕ(0, x)〈σ0, |y − y0(x)|〉dx ≥ 0.

(88)
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Note that one has

sign(x)〈µ(t,x), sign(y − y(t, x))(f(y)− f(y(t, x)))〉 ≤ C〈µ(t,x), |y − y(t, x)|〉. (89)

Therefore, (88) becomes

1

ε

∫ T+ε

T

∫
R

∆ε(t, x)〈µ(t,x), |y − y(t, x)|〉dt dx ≤
∫
R
ϕ(0, x)〈σ0, |y − y0(x)|〉dx.

From this latter equation, one can conclude the proof when ε goes to 0. Indeed, the
left hand side of the inequality can be bounded as follows:

1

ε

∣∣∣∣∫ T+ε

T

∫
R

∆ε(t, x)〈µ(t,x), |y − y(t, x)|〉dt dx
∣∣∣∣

≤1

ε

∣∣∣∣∣
∫ T+ε

T

∫
|x|≤r+ε

r + C(T − t)− |x|
ε

〈µ(t,x), |y − y(t, x)|〉dt dx

∣∣∣∣∣
≤1

ε

∫ T+ε

T

∫
|x|≤r+ε

∣∣∣∣r + C(T − t)− |x|
ε

∣∣∣∣ ∣∣〈µ(t,x), |y − y(t, x)|〉
∣∣ dt dx.

(90)

Noticing that, for any t ∈ [T, T + ε] and any |x| ≤ r + ε, one has∣∣∣∣r + C(T − t)− |x|
ε

∣∣∣∣ ≤ 1, (91)

then one has

1

ε

∫ T+ε

T

∫
R

∆ε(t, x)〈µ(t,x), |y−y(t, x)|〉dt dx ≤ 1

ε

∫ T+ε

T

∫
|x|≤r+ε

∣∣〈µ(t,x), |y − y(, x)|〉
∣∣ dt dx.
(92)

Moreover, one has

1

ε

∫ T+ε

T

∫
|x|≤r+ε

∣∣〈µ(t,x), |y − y(, x)|〉
∣∣ dt dx→ ∫

|x|≤r
〈σT , |y − y(T, x)|〉dx as ε→ 0.

(93)
Similarly, one can prove that∫

R
ϕ(0, x)〈σ0, |y − y0(x)|〉dx→

∫
|x|≤r+CT

〈σ0, |y − y0(x)|〉dx as ε→ 0. (94)

Finally, it yields, for all positive values T and r∫
|x|≤r
〈σT , |y − y(T, x)|〉dx ≤

∫
|x|≤r+CT

〈σ0, |y − y0(x)|〉dx. (95)

This concludes the proof of Theorem 1.
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