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Abstract: We present a novel aerial manipulator concept composed of a fully actuated
hexarotor aerial vehicle and an n degree of freedom manipulator. Aiming at interaction tasks,
we present a trajectory following control framework for the end-effector of the manipulator. The
system is modeled in Euler-Lagrangian formalism and in Denavit-Hartenberg form. Benefiting
from the redundancy of the system, we present several cost function strategies based on the
projected gradient method to optimize the aerial manipulator behavior. The control framework
is based on exact feedback linearization. In an advanced simulation section, we thoroughly
present the robustness of the system and its limits in two typical configuration constituted by
an 8 and a 10 degrees of freedom redundant aerial manipulator.
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1. INTRODUCTION

Nowadays, Unmanned Aerial Vehicles (UAVs) are exten-
sively employed in different application scenarios like re-
mote monitoring (Merino et al., 2012) and aerial photog-
raphy, search and rescue missions like SHERPA (2013-
2017) and to perform many other contact-less operations.
In recent years, new research efforts have been made to-
wards the accomplishment of aerial physical interaction
tasks which require the UAV, equipped with one (or
more) robotic manipulator(s), to get in contact with the
surrounding environment. Some examples of such oper-
ations can be found in aerial manipulation and grasp-
ing (Mellinger et al., 2011), peg-in-hole (Ryll et al., 2017),
structure assembly and decommissioning (Staub et al.,
2018) and also cooperative transportation (Mellinger
et al., 2010). Such a direction has also been fostered by
European Projects like AeRoArms (2015-2019).

This new field of complex tasks yields new challenges in
the mechanical structure, in the design of aerial manip-
ulators (Orsag et al., 2013), in the modeling methodolo-
gies (Yang and Lee, 2014), and specially in the control. In
the last years, we saw a development from UAVs equipped
with simple gripper, towards highly complex n-degree of
freedom (DoF) compliant manipulators (Yüksel et al.,
2015), Baizid et al. (2015). As these complex manipula-
tors can be in constant motion, the reaction forces can
destabilize the flight and the interaction of the UAV. To
circumvent this problem, an applicable control scheme is
needed not only to ensure the stability of the platform,
but also to allow a precise tracking of a desired trajectory
of the manipulator end-effector.

To fulfill these requirements, several control schemes have
been developed. An adaptive scheme has been presented
in Antonelli and Cataldi (2014), which compensates the
manipulator mass and forces due to its motion. Lippiello
and Ruggiero (2012) follow a similar modeling approach
with an underactuated quadrotor design for a Cartesian
impedance control. An approach based on the Lagrangian

formulation is presented in Yang and Lee (2014), while
the controller is based on a backstepping-like end-effector
tracking law. In Orsag et al. (2014) a dual arm manip-
ulator is used in a valve turning scenario. A sequential
Newton method for unconstrained optimal control is used
in Garimella and Kobilarov (2015) for model-predictive
control in pick and place tasks with an aerial manipulator
and Kim et al. (2015) presents a work focused on the task
of opening an unknown drawer.

In this paper we present a novel approach - the combina-
tion of a fully actuated hexarotor platform combined with
an arbitrary nDoF manipulator. This new approach comes
with the drawback of a more complex system compared
to standard planar multirotor systems and higher internal
forces but is beneficial in several points. Roll and pitch
angles of the aerial platform can be controlled indepen-
dently from the platform position (e.g., for more advanced
obstacle avoidance), Franchi et al. (2018). A planar rotor
system with in total the same number of DoFs, would
need a manipulator with two additional DoFs. Standard
aerial manipulating platforms are underactuated in the
dynamics of their center of mass, e.g. Yang and Lee (2014).
Thus, these systems are only able track trajectories that
are smooth in C4 for the lateral position. For the proposed
system a smoothness C2 is sufficient.

The contributions of our solution are, first of all, a novel
combination of fully actuated aerial platform and redun-
dant manipulator. At the best of our knowledge, this
arrangement has never been thoroughly investigated so
far. Secondly, we present an entire modeled, combining
the aerial vehicle and the manipulator, making advantage
of the well-known Denavit-Hartenberg parametrization.
Thirdly, we propose a novel controller based on full feed-
back linearization of the dynamics and the exploitation of
the system redundancy.

The structure of the paper is as follows. We will derive
the dynamical model in Sec. 2. Afterwards, in Sec. 3 we
will take advantage of the model to develop a controller
based on feedback linearization and present a redundancy



Fig. 1. Exemplary schematics of the considered aerial
platform and the n-degree robotic arm. For clarity,
the platform and the arm are drawn detached and
the arm has been cut between link 2 and n − 1. The
following properties are presented: Ili - Moment of
inertia of link i, mli - mass of link i, ai - distance
between joint i and i+ 1, li - distance between joint i
and CoG of link i, qi - generalized coordinate of joint
i.

exploitation approach, followed by Sec. 4 where we present
a use-case scenario with a 2 and a 4 DoF manipulator.
Based on this scenario, we test the validity of our control
framework in practical case simulations in Sec. 5. Finally,
we conclude the paper with an outline of our results and
a hint of future works.

2. MODELING

In this work we consider an aerial manipulator composed
by a fully-actuated aerial vehicle (in the following de-
noted as the ‘aerial vehicle’) and a manipulator mounted
onboard of it. The aerial vehicle that we consider is a
hexarotor with tilted propellers proposed in Rajappa et al.
(2015). Fig. 1 provides a scheme of the aerial manipulator
as well as the definition of the main symbols adopted in
the paper, which are formally introduced in the following.

We start by defining a fixed world frame, FW , whose
axes (unit vectors) are {xW ,yW , zW } and origin is OW .
Then we define two moving frames. The frame FR : OR −
{xR,yR, zR} is rigidly attached to the aerial vehicle and its
origin OR coincides with the Center of Mass (CoM) of the
aerial vehicle; whereas the frame FE : OE − {xE ,yE , zE}
is rigidly attached to the end-effector of the manipulator.
The positions of OR and OE expressed in FW are denoted
with pr ∈ R3 and pe ∈ R3, respectively.

The aerial vehicle configuration in 3D space is fully de-
scribed by pr and by the rotation matrix Rr ∈ SO(3)
(where SO(3) = {A ∈ R3×3|AAT = I, det(A) = 1}),
representing the rotation of FR w.r.t. FW . The angular
velocity of FR with respect to FW , expressed in FW , is
denoted with ωr ∈ R3.

The manipulator has n degrees of freedom and we denote
with qm = [qm1 · · · qmn ]T ∈ Rn its generalized coordi-

nates, where qmi represents the i-th joint variable, with
i = 1 . . . n. The end-effector configuration in 3D space
is fully described by pe and by the matrix Re ∈ SO(3),
representing the rotation of FE w.r.t. FW . The angular
velocity of FE with respect to FW , expressed in FW , is
denoted with ωe ∈ R3.

In order to use the Lagrangian approach we write the
configuration of the aerial vehicle with a minimal set of
generalized coordinates as qr = [qr

T
1 qr

T
2 ]T ∈ R6, where

qr1 = pr, and qr2 = η = [φ θ ψ]T is a minimal
parameterization of Rr, like, e.g., the roll, pitch, and
yaw angles. Finally, we denote with Tη the matrix such
that ωr = Tηη̇. We will show in Sec. 3.2 that using
minimal representation is not restrictive in our case as
the attitude of the aerial vehicle will not exceed near
hovering condition. The complete configuration of the
aerial manipulator is then described by q = [qTr qTm]T ∈
R6+n.

The dynamical model of the aerial manipulator is easily
derived applying the Euler-Lagrange equation to the ki-
netic and potential energy of the system, thus obtaining

M(q)q̈ + c(q, q̇) + d(q̇) + g(q) =
[
τr
τe

]
, (1)

where M(q) ∈ R(6+n)×(6+n) is the positive definite inertia
matrix of the whole aerial manipulator, c(q, q̇) ∈ R6+n

contains all the centrifugal and Coriolis terms, d(q̇) ∈
R6+n contains the friction terms, g(q) contains all the
gravity terms, and τr ∈ R6 and τe ∈ Rn are the control
wrench applied to the aerial vehicle and the control torques
applied to each joint of the manipulator, respectively.
This approach is thoroughly presented in Lippiello and
Ruggiero (2012).

The wrench τr can be decomposed in a 3D force and a 3D
moment (Rajappa et al., 2015), i.e.,

τr =
[
τr1
τr2

]
=
[

τr1
τthrust + τdrag

]
, (2)

where the single components are computed as

τr1 = kfRr

6∑
i=1

Rr
pi,αe3wi, (3)

where kf is the propeller force coefficient, Rr
pi,α is the

constant rotation matrix expressing the orientation of the
i-th propeller with respect to FR, e3 = [0 0 1]T , and wi is
the square of the spinning velocity of the i-th propeller;

τthrust = kfRr

6∑
i=1

(
pRi ×Rr

pi,αe3wi
)
, (4)

where pRi ∈ R3 is the constant position of the center of
the i-th propeller expressed in FR; and

τdrag = kdRr

6∑
i=1

Rr
pi,αe3(−1)iwi, (5)

where kd is the propeller drag coefficient. The factor (−1)i

in (5) is used to take into account the contrariwise spinning
velocity of every second propeller. The subscript in Rr

pi,α

denotes the dependency on the angle α ∈ (0, π/2], which
represents the amount of tilting of the i-th propeller about
the direction of pRi .

Replacing (3), (4), and (5) in (2) one can compactly write

τr = Gw(η, α)w, (6)
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where w = [ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6]T , where ŵi = sign(wi)w
2
i

and Gw(η, α) ∈ R6×6. Equation (6) can be used to replace
τr in (1) in order to explicitly show the dependence of the
dynamics on w.

The matrix Gw(η, α) plays a crucial role in the actuation
capabilities of the aerial vehicle. If α is 0 then all the
propellers would be coplanar and the aerial vehicle would
be underactuated, with Gw being non invertible and
degrading the system to an ordinary coplanar hexarotor.
If 0 < α < π

2 then Gw results invertible for any η and
the aerial vehicle is fully actuated. However if the aerial
vehicle is too much tilted (i.e., when φ and θ are too large)
the inversion w = G−1w (η, α)τr might return non-positive
values in one or more entries of w thus resulting in an
unfeasible command. It is then important to keep φ and
θ within the operating condition that guarantee the full-
actuation with positive propeller spinning velocities (see
Sec. 3.2).

3. CONTROL

The control problem considered in this work is to let
pe and Re exactly track a desired arbitrary trajectory
expressed as (pde(t),R

d
e(t)) ∈ R3×SO(3), while exploiting

the redundancy to possibly optimize additional require-
ments. We assume that (pde(t),R

d
e(t)) ∈ C̄3 and that

(ṗde(t),ω
d
e (t)), and (ṗde(t), ω̇

d
e (t)) are also provided, as cus-

tomary.

In order to achieve such an objective let us start from
replacing τr from (6) in (1), thus obtaining

M(q)q̈ + c(q, q̇) + d(q̇) + g(q) = K(η, α)
[
w
τe

]
, (7)

where

K(η, α) =

[
Gw(η, α) 0

0 In

]
∈ R6+n×6+n.

We then first apply the following inner control loop[
w
τe

]
= K−1

(
Muq + c + d + g

)
, (8)

where we omitted the dependency from q and q̇ for brevity.
Control (8) brings the dynamics of q in the fully linearized
and decoupled form

q̈ = uq,
where uq is an additional virtual input. Notice that this
result is not possible for standard aerial manipulators
using coplanar multi-rotors as aerial platform.

As customary, see, e.g., Siciliano et al. (2009) the differen-
tial kinematics of the aerial manipulator can be expressed
as

ve =
[
ṗe
ωe

]
=
[
ṗr
ωr

]
+ Jm(qm)q̇m = J(q)q̇, (9)

where Jm(q) and J(q) are the geometric Jacobians of
the manipulator and of the complete aerial manipulator,
respectively. By differentiating (9) we obtain the dynamics
of the end-effector configuration

v̇e = J̇(q, q̇)q̇ + J(q)q̈ = J̇(q, q̇)q̇ + J(q)uq (10)

where we applied the inner control loop (8).

Using the fact that J has always full rank for any θ 6= π(k+
1
2 ) with k ∈ Z (see Sec. 3.1) as typically done, we choose
the virtual input uq as

uq = J
(
q)†(ue − J̇(q̇,q)q̇

)
+
(
I6+n − J(q)†J(q)

)
z (11)

with []† being the Moore-Penrose inverse of the argument
and ue and z two additional virtual inputs. Under the

effect of the second inner control loop (11) the dynamics of
the end-effector task becomes exactly linearized and fully
decoupled

v̇e = ue =
[
ue1
ue2

]
,

regardless of the choice of the second input z, whose use
will be defined later. Now we are able to solve the desired
control problem stated at the beginning of this section,
i.e., the exact asymptotic tracking of a desired trajectory
For the end-effector position it is sufficient to use

ue1 = p̈d + KP1
(ṗde − ṗe) + KP2

(pde − pe) (12)

in (11) to obtain exponential and decoupled position error
convergence where KP1

,KP2
define a Hurwitz polynomial.

For the orientation of the end-effector it is instead suffi-
cient to choose

ue2 = ω̇de + Kω1
(ωde − ωe) + Kω2

eR (13)

with the orientation error defined as

eR =
1

2
[RT

eR
d
e −RdT

e Re]∨ (14)

where []∨ represents the inverse map from so(3) to R3 (Lee
et al., 2010) and Kω1

,Kω2
define a Hurwitz polynomial as

well.

The task Jacobian matrix J possesses an n-dimensional
null space onto which the additional control input z
is projected, see (11). The use of z ∈ R6+n to fulfill
additional tasks besides the tracking of a desired trajectory
is discussed in Section 3.2.

3.1 Full-rankness of J

In order to demonstrate that J is always full rank, it is
sufficient to prove that it exists a [6 × 6] submatrix of
J which is invertible. For convenience let us choose the
following submatrix of J

A =

j11 . . . j16...
. . .

...
j61 . . . j66

 (15)

the determinant of A can be found to be

det(A) = cos(θ). (16)

It follows that rank(J) = 6 for any θ 6= π(k+ 1
2 ) with k ∈ Z.

In fact this corresponds to the singularity of the roll, pitch,
yaw representation. Notice that this holds independently
from the kind of manipulator mounted onboard of the
aerial vehicle.

3.2 Redundancy Exploitation

In this section we discuss the exploitation of the n-
dimensional redundancy of the system by designing a
control law for the additional input z in (11) using the
projected gradient method (De Luca et al., 1992). As
optimization criteria to be fulfilled by the redundancy
exploitation we opt for

(1) Horizontal aerial vehicle orientation: Notice that if
q̇ = 0, the most efficient configuration in terms
of propeller spinning velocities is with θ = 0 and
φ = 0. Therefore the optimization based on H1 shall
automatically drive the system to a state close to
θ = φ = 0. By carefully selecting maximum angles
for θ and φ we can achieve a bounded behavior of the
control output w in (8).
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(a) (b)

Fig. 2. Schematic side view of the two considered manipu-
lators. (a) The two joints rotate about the same axis in
an elbow manner. (b) The manipulator (a) is extended
by a third elbow joint and a last wrist like joint.

(2) Obstacle avoidance: The aerial manipulator is meant
to interact with the environment using its end-
effector. Consequently any other collision must be
avoided. Especially any collision with the propellers
would usually result in a highly critical situation. We
therefore seek to maximize the distance between the
aerial vehicle and surrounding obstacles. The aerial
vehicle is encapsulate in a virtual cylinder, mimicking
the shape of the aerial vehicle. A shortest vector
between an arbitrary obstacle OO and a point oC
on the cylinder OC causes a virtual force acting on
the point oC . The magnitude is inverse to the actual
vector length. The virtual force results in a force and
torque with respect to the aerial robot’s CoM that
drives the aerial vehicle to avoid the obstacle. To
augment this virtual force the cost function H2 is
utilized.

(3) Limitation of arm joints: To prevent manipulator
self-collisions and collisions between the manipulator
and the aerial platform a cost function H3 is utilized.

Minimization of the three objectives concordant with the
output tracking task can be achieved by choosing

z = ∇qH1 +∇qH2 +∇qH3 (17)

where ∇[] is the gradient with respect to the variables [].

We are now in the state to compose the individual cost
functions. We choose H1 as

H1(q) =
1

2n
k1

5∑
i=4

tan2(γqi) (18)

with γ = π
2kφ,θ

and k1 as suitable scalar gain and kφ,θ as

maximum tilting angle. H2 is selected as

H2(q) = k2f( min
oo∈Oo,oR∈OR

‖oc(q)− oR‖) (19)

with o being an obstacle point and O the set of obstacle
points. f() is a function mapping the obstacle distance to
a force and a torque acting on the aerial robot’s CoM and
k2 a suitable scalar gain.

And finally the third cost function is similarly defined as

H3(q) =
1

2n
k3

n−1∑
i=7

tan2(γqi) (20)

with γ = π
2karm

and k3 as suitable scalar gain and karm as
maximum arm angle.

4. USE-CASE SCENARIO

In order to concretely present the general system described
so far, let us now focus on two use case scenarios, first (1)
a system with a 2 DoF manipulator depicted in Fig. 2-
(a) and second (2) a system with a 4 DoF manipulator

depicted in Fig. 2-(b). In both scenarios, all the links of
the manipulator lay in the {xR,yR} plane of FR. The
first example realizes two elbow joints, while the second
example extends the first by a third elbow-joint and a
final wrist. The Denavit-Hartenberg parameters of the
manipulators can be found in Tab. 1. These configurations
have been purposefully chosen driven by the idea that the
aerial vehicle can primarily be in charge of the desired end-
effector position and its yaw orientation, while the remain-
ing orientation quantities can be primarily controlled by
the manipulator. The total number of degrees of freedom
of the aerial manipulator, with n+ 6 = 8 and n+ 6 = 10,
still leaves extra maneuvering room for the exploitation of
the redundancy.

4.1 Added Uncertainties and Simplifications

We decided to test the robustness of the controller against
a model with realistic uncertainties. Based on previous
experiences, we firstly added to all model parameters a
Gaussian distributed uncertainty with different standard
deviations depending on the measurability of the property
(mass properties: σ1 = 0.01, length properties: σ2 = 0.02,
inertia properties: σ3 = 0.05). The controller is fed with
the nominal property values while the model contains
the altered real values. Secondly, we considered commu-
nication delays, control quantization effects and actuation
noise on the propellers and joint actuation. Thirdly we
overlaid sensor measurements (e.g. joint position, aerial
robot position and their derivatives) with a realistic noise
profile. Fourthly the dynamics of the brushless controllers
and the propellers are modeled with a first order transfer
function whereas the controller is based on the presented
model. Finally, for simplicity we neglected the effects due
to motors and gear boxes driving the manipulator joints.

5. NUMERICAL VALIDATION

In this section we present the simulation results to vali-
date the presented control framework. Firstly, we present
results of two trajectory tracking experiments (I & II)
with configuration (1) demonstrating the general tracking
capabilities of the system and the benefits of the optimiza-
tion. Secondly, we will show the robustness of the method
with a Monte Carlo experiment (III) exploiting configu-
ration (2). The interested reader is referred to a video
(https://youtu.be/9DBKfToHWGM) showing the presented
experiments in detail.

5.1 General Tracking and Optimization Benefits

In experiment (I) the end-effector of the manipulator shall
track a desired trajectory describing a 360 deg rotation
about the end-effector axis ye (see Fig.2-(a) and Fig. 4-(a))
while keeping the position constant. A time-lapse picture
of the trajectory is depicted in Fig. 3. The end-effector
tracking error remains marginal during the maneuver with
a maximum position error max(|ee|) < 0.02 m (see Fig.
4-(b & c)). Thanks to the optimization in Sec. 3.2 the

Table 1. Denavit-Hartenberg parameters of the
considered manipulator (compare with Fig. 2).

Link a1 αi di υi

1 a1 0 0 υ1
2 a2 0 0 υ2
3 0 π

2
0 π

2
+ υ3

4 0 0 a3 + a4 υ4
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Fig. 3. Time-lapse picture of the aerial manipulator dur-
ing experiment (I). The end-effector performs a full
rotation while the position is constant. Thanks to
the optimization the aerial vehicle remains almost
horizontal. For clarity: the single time instances are
presented next to each other, while in reality, the
small red dot in all pictures overlaps.
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Fig. 4. Full rotation in spot of the end-effector: (a) Desired
orientation expressed in Euler angles; (b) end-effector
position tracking error; (c) end-effector orientation
tracking error; (d) Actual orientation of the aerial
vehicle expressed in Euler angles; (e) angle of the n-th
joints; (f) propeller spinning velocities.

tilting angle of the aerial vehicle remains small and the
rotor spinning velocity bounded (4-(d & e))

In experiment (II) the end-effector of the manipulator shall
track a translational trajectory pde parallel to the world
frame axis xW . The desired orientation Rd

e of the end-
effector remains constant. Given the initial state of the
robot the aerial vehicle would collide with an obstacle that
lies in the way of the trajectory (see Fig. 5). To track
the trajectory safely, the aerial robot has to exploit its
redundancy and change the position of the aerial robot
with respect to the end-effector. It is obvious that the
aerial vehicle performs a complex trajectory in order to
avoid the obstacle. Thanks to the redundancy exploitation
in (19) this capability is achieved.

Fig. 5. Time-laps picture of the aerial robot avoiding an
obstacle. The end-effector is tracking the translational
trajectory (blue line) while the aerial vehicle automat-
ically dodges the obstacle.
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Fig. 6. Translational trajectory of the end-effector: (a)
Desired position for the end-effector; (b) end-effector
position tracking error; (c) end-effector orientation
tracking error; (d) Actual orientation of the aerial
vehicle expressed in Euler angles; (e) propeller spin-
ning velocities; (f) position of the end-effector and the
aerial vehicle in the x-z plane representation.

Fig. 6 presents the results of experiment (II). The first plot
of Fig. 6 presents the desired trajectory of experiment (II).
While following the desired trajectory the translational
error and orientation error remain very small (plot two
and three). The orientation of the aerial vehicle remains
as well almost horizontal, with a maximum pitch angle
of θ = 6 deg. The fifth plot shows the actual spinning
velocity of the six propeller. It is clear that all propeller
rates stay positive and close to the nominal horizontal
spinning velocity. Finally, the last plot depicts the position
of the aerial vehicle and the end-effector in the x-z plane.
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Fig. 7. Upper figure: Number of trials where instability was
reached out 100 trials. With increasing uncertainties
the number of unstable trials increases. Lower figure:
Box plot of the Monte Carlo simulation showing the
position error ep in the different conditions k.

5.2 Monte Carlo Simulation

To further test the stability of our system and to find its
limits we conducted a Monte Carlo simulation on config-
uration (2). In the simulation we follow an eight-shaped
trajectory while increasing the uncertainties of the model
(see Sec. 4.1) by multiplying the expected uncertainty with
a constant parameter k. In every condition of the Monte
Carlo simulation, we performed the individual simulations
100 times with randomized modeling error distribution.
In total we executed seven conditions with an increas-
ing standard deviation of a truncated Gaussian distri-
bution (truncated at two standard deviations) as follows
k[σ1 σ2 σ3] with k=[0 1 2 3 5 10 15]. In Fig. 7 the results
are presented. It becomes clear that with an increasing
uncertainty the performance degrades. Additionally, with
a very high uncertainty, trials become unstable. This is ex-
pected as the controller cannot deal with extreme modeling
errors. Anyway, even with a ten times higher uncertainty
than expected no trials are unstable.

6. CONCLUSION

In this paper we presented a novel aerial manipulator
based on a fully actuated aerial vehicle and an n-degree
of freedom manipulator. We derived the dynamical model
as well as the Denavit-Hartenberg parameters for the sys-
tem. Then, we developed a controller based on feedback
linearization aiming at trajectory tracking with the end-
effector. Using an optimization scheme, we exploited the
redundancy by optimizing the rotor spinning velocities
(by keeping the platform horizontal), the aerial vehicle
position and the manipulator joints positions. In an in-
tense simulation and evaluation section we presented the
capabilities of the aerial manipulator and as well showed
the robustness of the system and its limits in a Monte
Carlo simulation.
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